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Abstract—The emerging quantum technology has highlighted
the necessity for secure and efficient secret sharing in quantum
networks. In this paper, we introduce a verifiable multiparty
counterfactual quantum secret sharing (QSS) protocol, enhancing
security and efficiency. This QSS protocol utilizes a low-depth
quantum circuit to encrypt and decrypt information, which
comprises a unitary operator constructed using a preshared
secret key. To ensure the robustness and verifiability of the shared
secret key, the protocol imposes constraints on the participants
with the Chinese remainder theorem. The most significant
advantage of our proposed QSS protocol is incorporating
counterfactual communication, which considerably enhances
the scheme’s security by enabling exchange-free information
sharing among participants, thereby minimizing the risk of
eavesdropping or intercept-and-resend attacks. Furthermore,
we incorporate a weighted-threshold mechanism that provides
flexibility, enabling diverse use cases to design security protocols
for quantum networks. The security analysis of the counterfactual
QSS protocol and its implementation on IBM Quantum
computers reveals strong resilience to internal and external
attacks, along with high efficiency and robustness, making it
effective for quantum encryption in the noisy intermediate-scale
quantum era.

Index Terms—Chinese remainder (or Sunzi’s) theorem,
counterfactual quantum protocols, quantum secret sharing.

I. INTRODUCTION

SECURITY in conventional cryptographic schemes
primarily relies on computational complexity, assuming

that adversaries have limited computational resources
[1]. However, the emergence of quantum computing, a
radically different paradigm that exploits the principles
of quantum mechanics—such as superposition and
entanglement—fundamentally challenges this assumption
[2]–[4]. These quantum properties have enabled the
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creation of unconditionally secure, anonymous, and secret
communication systems, significantly advancing the field
of quantum cryptography [5]–[7]. Consequently, classical
cryptographic concepts, including secret sharing, must be
reevaluated for their feasibility and adaptability in the
quantum computing era.

A. Related Works

Secret sharing was first introduced through two foundational
schemes developed independently: one based on Lagrange
interpolation and the other utilizing linear geometric
projections [8]. In secret sharing, a secret is divided into
multiple parts and distributed among authorized participants.
The secret can only be reconstructed when these participants
collaborate according to a specified protocol. This concept has
led to the development of numerous protocols designed to
address a wide range of scenarios and security requirements,
including access structures, secret verification, and fraud
detection [9]–[13]. While the primary goal of secret sharing is
to protect sensitive information by distributing shares among
multiple parties, its applications extend to areas such as
hierarchical access control, electronic voting, group signatures,
secure multiparty computing, and electronic auctions [14].

The transition from classical secret sharing to the quantum
domain was achieved through the use of multipartite
entangled Greenberger–Horne–Zeilinger (GHZ) states,
marking a significant development in the field of quantum
secret sharing (QSS) [15]. Subsequently, numerous QSS
protocols have been proposed, utilizing techniques such as
the quantum Fourier transform, Grover’s algorithm, and
error-correcting codes in conjunction with mathematical tools
such as Lagrange interpolation and the Chinese remainder
theorem (CRT) [16]–[24]. Furthermore, unitary operation-
based encryption techniques, including quantum permutation
padding [25], and experimental quantum homomorphic
encryption [26], have demonstrated promising prospects
for interaction-free delegated quantum computing. These
advancements can be integrated with secret sharing protocols
for various applications.

B. Motivations

Despite significant research interest in QSS protocols,
many existing methods remain challenging to implement, as
they rely on fault-tolerant quantum computers and noiseless
quantum channels. This presents a considerable limitation
in the noisy intermediate-scale quantum (NISQ) era, where
quantum states and operations are susceptible to gate operation
errors, decoherence, and channel noise [27]–[29]. The recently
proposed CRT-based weighted-threshold QSS protocol and the
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two-qubit-based protocol address some practical shortcomings
by exploiting the reversibility of single-qubit phase-shift
unitary operations and employing entanglement, respectively
[30], [31]. These schemes are more flexible, simple, and
efficient than the traditional QSS protocols. However, they
require verifications of the validity of the reconstructed
secret’s correctness, vulnerability to dishonest participants, and
impracticability when the number of participants increases.
Additionally, the two-qubit-based protocol increases noise due
to entangling gates, making it more difficult to implement
on quantum computers than single-qubit-based gates, further
hindering efficiency and reliability.

Although the QSS protocol plays a crucial role in protecting
sensitive information, particularly in military and government
applications, the protocol remains vulnerable to counterfactual
attacks, which pose a severe risk to the security of shared
secret keys [32]. Counterfactual communication is a novel
mode of communication that enables information transmission
without requiring any information-carrying particles to travel
through the channel [33]. Attackers can exploit the intrinsic
properties of counterfactual communications to remain
undetected within the channel, enabling them to execute
counterfactual attacks [34].

C. Contributions

To address the aforementioned issues, we propose
a verifiable (W, ω, n)-multiparty weighted-threshold
counterfactual QSS scheme, where W , ω, and n denote
a set of weights, a threshold value, and a participant number,
respectively. This protocol employs a quantum unitary
operation to encrypt and decrypt quantum information
using a secret key. The QSS scheme leverages the CRT to
split and reconstruct the key, making it suitable for both
quantum and classical information sharing in the NISQ era,
offering enhanced security and practicality. A key feature
of our protocol is the use of counterfactual communication
techniques, which rely on photon interference in the quantum
channel rather than the exchange of physical particles,
ensuring a highly secure communication channel.

In our counterfactual QSS protocol, counterfactual quantum
secure direct communication (QSDC) is employed to
transfer classical information—such as co-prime integers
and remainders—among participants in a counterfactual
manner. Meanwhile, quantum information is transmitted
through a counterfactual quantum channel using quantum
state transfer (QST). The secret key is then reconstructed
using the CRT, followed by a verification process to
ensure its correctness and security. This verifiable mechanism
confirms the integrity of the reconstructed secret key by
detecting dishonest behavior during the verification stage
and preventing malicious participants from accessing the
secret unless they cooperate honestly. Moreover, the inherent
properties of counterfactual communication provide strong
resistance against eavesdropping and intercept-and-resend
attacks, ensuring the privacy and confidentiality of shared
secrets. To evaluate the efficiency of counterfactual QSDC
and QST protocols, we analyze their transmission success

probabilities. The results demonstrate that these counterfactual
protocols are highly efficient when a large number of inner
and outer cycles of the nested Mach-Zehnder interferomenter
(MZI) are used. Finally, we conduct a security analysis of
the counterfactual QSS protocol and assess its feasibility by
implementing the devised unitary encryption scheme on the
cloud IBM Quantum (IBMQ) computers.

The remainder of this paper is organized as follows.
Section II introduces the fundamental concepts of
counterfactual quantum communication (CQC), including
counterfactual QSDC and QST protocols. Section III presents
the proposed weighted-threshold counterfactual QSS scheme.
Section IV provides the security analysis of the designed
counterfactual QSS protocol. Section V presents the numerical
analysis, evaluating the security of quantum encryption and
analyzing its IBMQ implementation. Finally, Section VI
summarizes our findings and discusses potential extensions
and generalizations of our study.

II. PRELIMINARIES

This section briefly introduces CQC, quantum encryption,
and the CRT.

A. Counterfactual Communication

CQC combines interaction-free measurement (IFM) [35],
[36] and the quantum Zeno effect (QZE) to enable information
transmission without particles passing through the channel
[33], [37], [38]. IFM detects the presence of an absorptive
object (AO) in an interferometer without direct interaction
[35], while the QZE preserves a quantum state through
frequent measurements [39]. In this CQC framework, the
absence of an AO in the interferometer encodes bit 0, while its
presence encodes bit 1. We summarize CQC, counterfactual
QSDC, and counterfactual QST protocols used in our proposed
method.

1) Counterfactual Secure Direct Communication:
Counterfactual QSDC enables the direct transmission of
classical information from Alice to Bob without the need for
a private key and without any information-carrying particle
passing through the channel [40]. The protocol requires each
party to initially prepare 2N maximally entangled Bell pairs.
In this setup, Alice’s qubits act as quantum AOs (QAOs),
while Bob’s qubits act as photons. The initial composite state
of Alice and Bob can be expressed as follows:

|Ψ⟩j = |ϕ0⟩A1jA2j
|ϕ1⟩B1jB2j

(1)

where |ϕ0⟩A1jA2j
and |ϕ1⟩B1jB2j

denote the maximally
entangled Bell pairs of Alice and Bob, respectively, and
j = 1, 2, . . . , 2N . Fig. 1 demonstrates the counterfactual
QSDC protocol, which involves the following steps.

• Counterfactual entanglement swapping: Alice and
Bob send their respective qubits A2j and B1j to the
counterfactual swap (C-Swap) gate. This gate swaps two
entangled pairs as follows:

|Ψ̃⟩j = |ϕ0⟩A1jB1j
|ϕ1⟩A2jB2j

. (2)
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Fig. 1. A counterfactual QSDC protocol. After the C-Swap gate, Alice and
Bob share entangled pairs, where half of these pairs are used for message
encoding. Alice encodes two classical bits m1m2 using the unitary operations
before transmitting them through the DCQZ gate. Bob then decodes the
transmitted information m̂1km̂2k based on the measurement outcome from
Alice.

• Security checking: Alice randomly selects N entangled
pairs, announces their positions to Bob, and measures
their corresponding qubits to verify the security of the
swapped entangled pairs. If the pairs are secure, they
proceed to the next step.

• Encoding: On the remaining N entangled pairs, Alice
encodes her message by applying the Xm1kZm2k

operation on her qubit, where X = |0⟩⟨1| + |1⟩⟨0| and
Z = |0⟩⟨0| − |1⟩⟨1| are Pauli operators and m1km2k ∈
{00, 01, 10, 11}, k = 1, 2, . . . , N .

• Counterfactual transmission: Utilizing the dual form of
chained quantum Zeno (CQZ) operations [37], Alice and
Bob engage in the counterfactual transmission of Alice’s
encoded message.

• Decoding: Alice measures her qubit in the Hadamard
basis and announces the result ck through a classical
channel. Based on the detector click Dab after the dual
CQZ (DCQZ) operation and Alice’s announcement, Bob
decodes Alice’s message as m̂1k = a and m̂2k = b⊕ ck,
where ⊕ denotes the binary addition.

2) Counterfactual State Transfer: Counterfactual QST
allows the transfer of an arbitrary quantum state from Alice to
a remote party, Bob, without transmitting information-carrying
particles through a channel, as shown in Fig. 2 [41]. It is
facilitated by the horizontally polarized CQZ (H-CQZ) gate,
which changes the photon polarization in the presence of AO
[33], [42]. In this setup, Alice holds a QAO, while Bob inputs
a photon into the H-CQZ gate. The initial composite state of
Alice and Bob can be written as

|η0⟩AB = (α |0⟩A + β |1⟩A) |H⟩B (3)

where |α|2 + |β|2 = 1. To transfer a phase-shifted arbitrary
quantum state, Alice applies a unitary operation U (θ) =
|0⟩⟨0| + eıθ |1⟩⟨1| on her QAO before the H-CQZ operation
where ı =

√
−1 and θ ∈ [0, 2π] represents phase information.

After the H-CQZ operation, the qubits of Alice and Bob
become entangled as follows:

|η1⟩AB = α |0⟩A |H⟩B + βeıθ |1⟩A |V⟩B . (4)

To disentangle the qubits, Alice performs the Hadamard
gate H = (X +Z) /

√
2 on her qubit and measures it

on the computational basis. Then, she communicates the
measurement outcome µ to Bob. If µ = 0 (1), then Bob applies

QAOα |0〉+ β |1〉

Bob |H〉

U (θ) H

H-CQZ α |0〉+ eıθβ |1〉I(Z)

µ

Fig. 2. A counterfactual QST protocol. Initially, Alice holds a QAO, and Bob
inputs a horizontally polarized photon |H⟩ to the H-CQZ gate. If Alice wants
to add a phase shift to a qubit to be transmitted, she applies U (θ) on her
QAO before the H-CQZ operation, where θ represents the phase information.
Following the H-CQZ operation, Alice performs the Hadamard gate H on
her qubit, conducts measurement in the computational basis, and discloses
the result µ. If µ = 0 (1), Bob reconstructs the transmitted quantum state by
applying the I (Z) gate on his qubit.

the I (Z) gate on his qubit to reconstruct the transmitted
quantum state.

B. Quantum Encryption

Now, we discuss quantum encryption that utilizes unitary
operators for encrypting data and their corresponding
Hermitian conjugate operators for decryption [25].

1) Quantum Encryption Circuit: A quantum circuit for
encryption can be generated according to Algorithm 1.
The resulting circuit is denoted as U (θkey), where θkey is
a random seed derived from the provided secret_key.
To ensure hardware compatibility, the circuit undergoes
transpilation, mapping logical gates to native basis gates of
the target quantum processor, optimizing execution fidelity,
and minimizing depth [43], [44].

2) Encryption of Classical Information: To encrypt a k-
bit classical sequence, it is divided into ℓ = k/n chunks,
where n is the number of qubits used per chunk. If k is not
divisible by n, the sequence is padded with zeros. Each qubit
is initialized to |0⟩⊗n with the X gate applied to encode 1,
leaving 0 unchanged. After encoding, the encryption circuit
is applied, and the qubits are measured, retaining the most
possible 2n chunks. This process repeats for all ℓ chunks,
which are combined to form the encrypted sequence. Padded
bits are removed to finalize the encryption [25].

3) Encryption of Quantum Information: The encryption
of quantum information involves three key steps. First, the
quantum state is prepared as a linear combination of its
eigenstates, ρ =

∑
k λk |ψk⟩⟨ψk|, and sent to the input of the

quantum encryption circuit. This encryption circuit transforms
each eigenstate |ψk⟩ into an encrypted state |ψk⟩ = U (θkey).
The density matrix of the encrypted quantum state then
becomes ρenc = U (θkey)ρU (θkey)

† where the superscript
† denotes the Hermitian conjugate. Then, quantum state
tomography can be used to analyze the encrypted state
by estimating it through measurements on multiple copies.
Finally, the encrypted state ρenc is transmitted through a
quantum channel.

4) Decryption: The decryption process for both classical
and quantum information includes the application of the
Hermitian conjugate of the encryption circuit, denoted as
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Algorithm 1 Quantum Encryption Circuit Generation
1: Input: num_qubits, basis_gates, secret_key,
required_depth

2: Output: Encryption Quantum Circuit
3: Initialize random_seed with secret_key
4: Define circuit as QuantumCircuit(num_qubits)
5: while depth of circuit < required_depth do
6: Select q1, q2 randomly from 0 to num_qubits - 1
7: Generate random angles θ, ϕ, λ, γ
8: if num_qubits = 1 then
9: Add U3 gate to circuit with θ, ϕ, λ on q1

10: else if q1 ̸= q2 then
11: Add CU3 gate to circuit with θ, ϕ, λ using q1,

q2
12: end if
13: Transpile circuit to match basis_gates
14: end while
15: Trim circuit to required_depth
16: return circuit

U (θkey)
†. However, a successful decryption process can only

be realized if the party attempting to decrypt possesses the
correct θkey, as 2n! combinations of quantum permutation
matrices are possible for generating encrypted circuits. The
advantages of this encryption technique in the quantum
domain are described in [25].

C. Weighted-Threshold Secret Sharing With CRT

The CRT-based weighted-threshold secret sharing scheme
provides securely distributing secret keys among a hierarchical
group of participants. Each participant is assigned a weight,
and a threshold value ω is defined, requiring that a subset
of participants whose combined weights meet or exceed
ω to reconstruct the secret key θkey. The CRT ensures
the existence of a unique secret key θkey that satisfies a
system of congruences. By leveraging this property, the
scheme enables participants to securely share their assigned
parameters, modular values, and remainders to reconstruct the
key collectively.

III. COUNTERFACTUAL SECRET SHARING

We present the proposed counterfactual QSS scheme using
a weighted-threshold CRT methodology to enable secure and
efficient distribution of secret keys among n participants. This
QSS protocol is structured into three primary phases, including
the key generation and distribution phase, the reconstruction
phase, and the verification phase. The scheme utilizes
counterfactual QSDC and QST, leveraging the enhanced
security offered by counterfactuality.

A. Key Generation and Distribution Phase

In this phase, the dealer formulates the access structure for
participants by adjusting the weight values attributed to each
individual. In the traditional QSS protocol outlined in [30],
the dealer plays a pivotal role in preparing and sharing private
keys. The dealer is responsible for determining the allocation

Algorithm 2 Key Generation and Distribution
1: Input: wi ∈ W weights, n participants, threshold ω
2: Output: Secret key θkey for dealer, si = (ai,mi) for each

participant Pi

3: for all wi ∈ W do
4: Generate co-prime integers mi

5: ▷ Adjust mi according to weight wi

6: end for
7: for x ∈ X =

{∏n
i=1m

k
i

∣∣ k = 0, 1
}

do
8: if

∑n
i=1 wi < ω then

9: Add x to set A ▷ For sums less than ω
10: else if

∑n
i=1 wi ≥ ω then

11: Add x to set B ▷ For sums satisfying ω
12: end if
13: end for
14: Determine θkey where maxA < θkey ≤ minB
15: ▷ Choose θkey between maxA and minB
16: for i = 1 to n do
17: ai ← θkey mod mi ▷ Calculate remainder ai
18: end for
19: Distribute si using counterfactual QSDC
20: return θkey for dealer, si for each Pi

of these keys to participants and encrypting quantum particles
using the assigned keys, ensuring secure communication. The
weighted-threshold scheme introduces an additional layer of
security. In this scheme, the dealer assigns a weight wi ∈ W
to the ith participant, reflecting their significance within the
group. A threshold value ω is defined, requiring that a subset
of participants satisfies

∑k
i=1 wi ≥ ω for successful secret

reconstruction. This constraint guarantees that only authorized
participants with a sufficient combined weight can access the
secret key.

The CRT ensures the existence of a unique integer, the secret
key θkey, which satisfies a system of simultaneous congruences
as follows:

θkey =




n∑

i=1

ai

n∏

j ̸=i

M

mj


 mod M (5)

where ai is the remainder of the Euclidean division of x ∈
X =

{∏n
i=1m

k
i

∣∣ k = 0, 1
}

by mi and M =
∏n

i=1mi [45].
The moduli m1,m2, . . . ,mn are pairwise relatively prime
positive integers, ensuring uniqueness and solvability. The
remainders satisfy 0 ≤ ai ≤ mi for each i. The dealer
then distributes shares to each participant in the form of pairs
si = (ai,mi). Similar to this distribution phase, the dealer
in the counterfactual QSS protocol disseminates shares of
the modulus and the remainder to all participants. Initially,
n participants are assigned weights wi ∈ W , and the dealer
generates co-prime integers mi for each participant. Based on
these weights, the dealer generates a key and specific shares
for each participant. For low wi, the corresponding integer mi

consists of a product of smaller prime numbers, while a high
value of weight wi leads to mi being composed of a product
of larger prime numbers. To guarantee the secure distribution
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of classical data, the counterfactual QSDC is utilized, as
described in Algorithm 2.

B. Reconstruction Phase

This phase requires participants to collaborate in
reconstructing the secret key. The involved members
exchange their modulus and remainder values, then apply
the CRT algorithm to reconstruct the key, denoted as θ̂key.
In this phase, each participant has already received their
share si = (ai,mi) during the distribution phase. Secret
key reconstruction is achieved when a sufficient subset of
participants cooperatively shares their ai and mi values.
By solving the system of congruences using the CRT
algorithm, the secret key θkey can be securely retrieved. This
process ensures that only participants meeting the predefined
threshold condition can reconstruct the secret. As outlined
in Algorithm 3, the participants exchange their share values
by using counterfactual QSDC. Counterfactuality enhances
the robustness of counterfactual QSS, offering a reliable and
secure solution for quantum communication in multiparty
settings.

C. Verification Phase

In the final phase, the participants authenticate the
reconstructed key θ̂key by applying it to the encryption
algorithm (see Algorithm 3). Subsequently, these parties
perform counterfactual QST to convey quantum states σj

securely to the dealer. The dealer then verifies whether
the reconstructed key θ̂key matches the original dealer key
θkey. Finally, the participants collaborate to reconstruct the
secret key, as described in Algorithm 3. The involved
members exchange their modulus and remainder values and
subsequently apply the CRT algorithm to reconstruct the key.
A schematic representation of the designed counterfactual QSS
scheme and its various stages is shown in Fig. 3.

IV. SECURITY ANALYSIS

Since the shared secret key is a fundamental requirement
of the designed protocol, it is crucial that its portion is
not leaked to eavesdroppers. Additionally, as counterfactual
QSDC and QST play essential roles in the key sharing
and verification stages, ensuring the secure transmission of
messages and quantum states is imperative. It has been
proven that counterfactual QSDC is secure against various
types of external attacks, such as man-in-the-middle and
Trojan horse attacks [40]. To further ensure the security
of the transmitted quantum states, we analyze the security
of the counterfactual QST in Section IV-A. The potential
attacks that Eve may launch in the counterfactual QSDC and
QST are categorized as external attacks. In addition to these
attacks, internal attacks may also arise, where one or more
dishonest participants attempt to obtain the secret key without
collaborating with others. To mitigate these threats, the devised
protocol incorporates a crucial verification step, which is
fundamental in all secure communication scenarios. Moreover,
the counterfactual nature of the protocol eliminates the need

Algorithm 3 Key Reconstruction and Verification
1: Input: si = (ai,mi) for each participant
2: Output: Reconstructed key θ̂key
3: function DECOYSTATES({ρ1,ρ2, . . . ,ρm})
4: Prepare sequence of decoy states {|ϕ⟩⟨ϕ|}
5: Insert decoy states randomly into {ρ1,ρ2, . . . ,ρm}
6: Check for eavesdropper presence
7: end function
8: function CRT(S = {s1, s2, . . . , sk})
9: return θ̂key from CRT algorithm

10: end function
11: Participants:
12: for all Pi, i = 1, 2, . . . , k do
13: Exchange modulus mi among participants using
14: counterfactual QSDC
15: for all mj , j ̸= i do
16: if mj ̸= mi and gcd (mi,mj) = 1 then
17: Continue the process
18: else
19: Abort the process
20: end if
21: end for
22: if participant is the leader then
23: Prepare and send quantum states σj using
24: counterfactual QST
25: end if
26: Send ai to all other participants
27: Reconstruct key using CRT: θ̂key ← CRT (S)
28: Encrypt quantum states using θ̂key
29: Send encrypted states to the dealer
30: end for
31: Dealer:
32: for i = 1, 2, . . . , k do
33: Decrypt received quantum states
34: end for
35: Announce results to all participants
36: if all results are valid then
37: Key is verified
38: else
39: Abort the process
40: end if

for entangling gates, distinguishing it from conventional
approaches. These aspects collectively enhance the security
and reliability of the counterfactual QSS protocol, ensuring
robust communication without relying on entangling gates.

A. Security of Counterfactual QST

To intercept quantum states transferred between the dealer
and the participants, Eve can attempt various attacks, despite
being constrained by the no-cloning theorem in quantum
mechanics. The two most typical attacks she can employ are
the man-in-the-middle and entangle-and-measure attacks.

1) Man-in-the-Middle Attacks: To verify security, d decoy
particles in the computational and Hadamard basis states |0⟩,
|1⟩, and |±⟩ = (|0⟩ ± |1⟩) /

√
2 are inserted into the quantum
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(
θ̂key

)
ρU

(
θ̂key

)†

U
(
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)†
ρencU

(
θ̂key

)

ρenc

ρ

∑k
i=1wi ≥ ω

Eligible Access
Structure

CRT(W, ω, n) → θkey
s1, s2, . . . , sn

Weighted-Threshold Counterfactual QSS

Fig. 3. A verifiable (W, ω, n)-multiparty weight-threshold counterfactual
QSS protocol. 1) The dealer distributes the partial keys si, i = 1, 2, . . . , k
to participants following the counterfactual QSS protocol, ensuring security
through counterfactual QSDC. 2) Participants collaborate to reconstruct the
key using their shares via CRT and verify the threshold condition

∑k
i=1 wi ≥

ω. 3) The reconstructed key is validated using Algorithm 3. 4) Upon successful
verification, the dealer encrypts the secret quantum information ρ using the
shared key θ̂key. 5) The encrypted state ρenc is transmitted to the participants
via counterfactual QST. 6) Participants decrypt the state using the Hermitian
conjugate of the unitary transformation, provided they possess the correct key.

state sequences, with the dealer possessing a record of their
positions. Subsequently, the dealer sends these sequences
to the participants. To intercept the dealer’s state, Eve sits
between the dealer and the ith participant Pi. She impersonates
Pi by sending her photon through the H-CQZ gate to the dealer
while simultaneously acting as the dealer for the incoming

photon from Pi. Suppose the initial joint state of the dealer,
Pi, and Eve as follows:

|ψ0⟩AEB = (α |0⟩+ β |1⟩)A (γ |H0⟩E + δ |H1⟩E) |H⟩B (6)

where A, B, and E denote the qubits of the dealer (Alice), Pi

(Bob), and Eve, respectively. After passing through the H-CQZ
gate, this initial state transforms to

|ψ1⟩AEB = |i⟩A (α |Hj⟩E ± β |Vj⟩E) (γ |H⟩B ± δ |V⟩B) (7)

where i, j ∈ {0, 1}. Note that when Alice and Bob declare
their measurement results, they are inconsistent. For d decoy
particles, Eve is detected with a probability of 1 − 1/4d. As
d increases, the probability of detecting Eve approaches one,
ensuring robust security against eavesdropping.

2) Entangle-and-Measure Attacks: Eve can attempt to steal
the QAO state of the dealer by applying a unitary operation
to entangle the transmitted particle with her own qubit and
then measuring her qubit. However, her measurement collapses
the entangled state shared between the dealer and Pi, leading
to discrepancies in their measurement outcomes. To counter
this attack, the dealer and Pi can introduce decoy particles
at random positions during quantum state transmission. The
more decoy particles incorporated, the higher the probability
of detecting Eve’s presence, thereby enhancing the protocol’s
security.

B. Security of Shared Secret Keys

The designed protocol includes a key verification stage to
prevent internal attacks before quantum information is shared.
Since the proposed scheme follows a weighted-threshold
model, the key is determined by the range between the
minimum value from the set A and the maximum value from
the set B. Hence, only participants who satisfy the weighted
threshold ω can reconstruct the key. If any participant fails
to comply with this requirement, the secret key shared by the
dealer cannot be retrieved. Once the threshold condition is
met, each legitimate participant obtains the secret key from the
dealer. To verify the secret key, participants generate arbitrary
quantum state sequences, encode them using the received
secret key, and send them back to the dealer. Since the dealer
already knows the secret key, he can decode the states and
compare them with the states declared by the participants.
Some errors may occur due to channel noise. However, if
the error rate exceeds an acceptable threshold, the dealer
immediately detects potential dishonesty among participants
and restarts the secret sharing protocol. Therefore, the protocol
can proceed only if all the participants are honest.

V. NUMERICAL ANALYSIS

This section presents the numerical analysis, evaluating
success probabilities of counterfactual QSDC and QST
protocols, assessing the security of quantum encryption, and
analyzing the IBMQ implementation results.
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Fig. 4. Success probabilities (a) Pcqsdc and (b) Pcqst of the counterfactual QSDC and QST protocols as a function of inner cycles L and outer cycles K.
For counterfactual QSDC, we set J = K MQZ operations.

A. Success Probability of Counterfactual QSDC and QST

The success probability of counterfactual communication is
mainly influenced by the numbers of inner and outer cycles—
denoted as L and K, respectively—used in the CQZ gate.
As detailed in [40], [46], and [47], the success probabilities of
the counterfactual QSDC and QST protocols can be expressed
respectively as follows:

Pcqsdc = λJλ
2
KP

2
K,L

[
1− 1

2
cos2

( π

2J

)
sin2

( π

2L

)]LJ

(8)

Pcqst =
1

2

[
cos2K

( π

2K

)
+ PK,L

]
(9)

with

λK =

[
1− 1

2
sin2

( π

2K

)]K
(10)

PK,L =

K∏

k=1

[
1− sin2

(
kπ

2K

)
sin2

( π

2L

)]L
(11)

where J denotes the number of modified quantum Zeno
(MQZ) operations used in the counterfactual QSDC protocol.
Fig. 4 shows the success probabilities Pcqsdc and Pcqst

as a function of inner cycles L and outer cycles K.
For the counterfactual QSDC protocol, we set J = K
MQZ operations. For both counterfactual protocols, the
success probabilities asymptotically approach one as the
cycle numbers L and K increase, ensuring that no physical
particle passes through the channel while transmitting both the
classical and quantum information. Subsequently, the proposed
QSS protocol leverages the inherent security advantages of
CQC [32], [48].

Implementing CQC within the QSS framework introduces
an inherent tradeoff between enhanced security benefits from
no information-carrier transmission and the detrimental effects
of photonic loss. This photonic loss primarily arises from

absorption or scattering in optical components, as well as
weak measurements performed within the interferometer,
governed by the nested MZIs and the QZE [34], [49].
Such photonic loss can significantly degrade the fidelity
of both classical and quantum information transmission,
thereby compromising the overall efficiency of the proposed
protocol. Moreover, an excessive number of inner L and
outer K cycles intensifies these losses, potentially lowering
the success probability of counterfactual transmission and
increasing the risk of transmission failures. To counteract
these deleterious effects, high-quality optical components and
rigorous resource optimization for L and K are imperative
[50]. Such optimization aims to minimize photonic losses
while preserving both the integrity and counterfactuality of
the communication protocol, ensuring a robust and efficient
implementation of counterfactual QSS.

Furthermore, previous two-qubit-based QSS protocols [30],
[31] are susceptible to increased noise due to entangling
operations such as controlled-NOT (CNOT) gates and quantum
state teleportation. These entanglement-based protocols suffer
from decoherence and fidelity degradation due to multi-
qubit interactions, making their practical implementation
more challenging. In contrast, CQC protocols fundamentally
differ from entanglement-based schemes, as the counterfactual
protocols do not rely on quantum entanglement in the
traditional sense. Instead, the protocol leverages quantum
interference and the QZE to control photon transmission,
enabling counterfactual information transfer. The absence
of entangling operations in CQC eliminates the noise
and decoherence issues associated with entangling gates,
distinguishing it from two-qubit-based QSS protocols.
However, the counterfactual QSS protocol remains vulnerable
to counterfactual channel imperfections, including photonic
loss, dispersion, and phase instability within the optical
medium. Although there is no fault-tolerant implementation



8 ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMMUNICATIONS

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

Circuit depth

N
u
m
b
er

of
q
u
b
it
s

0

2

4

6

8

10

12

14

M
ea
n
en

tro
p
y

Fig. 5. Mean entropy ⟨H⟩ of encrypted 15-bit sequences as a function of the
quantum circuit depth and the number of qubits for qasm_simulator. The
heatmap illustrates the relationship between qubit count per chunk, encrypting
circuit depth, and mean entropy values. These entropy values are obtained by
averaging over 10 trials for each depth and qubit count combination with 212

shots per trial. Bit sequences are randomly generated for each trial and a seed
(secret key) of 836 is used for reproducibility.

of the nested MZI, the quantum error correction and phase
stabilization techniques can minimize errors introduced by
different noise sources in the counterfactual setup.

B. Security of Quantum Encryption
In this subsection, we present the specific metrics used

to assess the security of quantum encryption in terms
of its capability to obfuscate information by incorporating
randomness into the encrypted data. These metrics are
utilized in Section V-C to analyze the implementation of
the encryption scheme on actual quantum computers. For
classical information, we use entropy H = −∑

i pi log2 (pi)
spanning all possible outcomes where pi denotes the
probability of observing the ith bit sequence chunk. In
encryption schemes, entropy measures the unpredictability
or randomness of the concealed information. An increased
entropy value corresponds to enhanced security and resistance
to attacks, making it increasingly difficult to extract the
original information from the encrypted data. For quantum
information, we employ the Kullback-Leibler (KL) divergence,
defined as [51]:

D (ρ∥ρenc) = tr (ρ log2 ρ)− tr (ρenc log2 ρenc) (12)

where tr (ρ) and tr (ρ log2 ρ) denote the trace operator and the
von Neumann entropy of the quantum state ρ, respectively. In
quantum information encryption, the KL divergence quantifies
the difference or relative entropy between two quantum states,
measuring the inefficiency of assuming one quantum state
when the actual state is different.

C. IBMQ Implementation Analysis
The IBMQ cloud platform [52] is an invaluable

experimental testbed for studying and validating quantum
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Fig. 6. Comparative analysis of encoding a q-qubit Hadamard state
ρ = H⊗q using the qasm_simulator, ibm_lagos, ibmq_manila,
and ibm_nairobi quantum devices. A single-depth encoding circuit is
generated with a seed (secret key). Quantum state tomography reconstructs
the encoded state ρenc and the relative entropy D (ρ∥ρenc) is calculated
as a metric for uninterpretability. The mean relative entropy is obtained
from 1, 000 trials for qasm_simulator and 10 trials for ibm_lagos,
ibmq_manila, and ibm_nairobi (each with a random seed). All
experiments employ 212 shots per trial.

information science concepts. This platform enables users
to perform quantum computations by remotely accessing
physical quantum computers via cloud services, using a
Python-based framework known as Qiskit. The primary
focus of IBMQ systems is to simulate small-scale quantum
circuits, with performance benchmarked using key metrics
such as the quantum volume (QV), circuit layer operations
per second (CLOPS), median CNOT error rate, and median
readout error rate. Additionally, the noiseless simulator,
qasm_simulator, can be employed to validate hypotheses
and compare results against real quantum hardware, which
inherently exhibits noise and imperfections. In this paper, we
utilize qasm_simulator to investigate the mean entropy
⟨H⟩ = − 1

T

∑T
j=1

∑
i pi,j log2 (pi,j) of encoding a k-bit

sequence as a function of varying encryption circuit depths
and the number of qubits where pi,j denotes the probability
of observing the ith outcome in the jth trial from a total
of T trials. Fig. 5 illustrates a heatmap depicting the mean
entropy ⟨H⟩ of encrypted 15-bit sequences as a function
of the quantum circuit depth and the number of qubits,
obtained using qasm_simulator. The heatmap reveals a
clear increasing behavior in the mean entropy as the number
of qubits and circuit depth increase, highlighting their effect
on encryption security. However, some deviations from this
pattern can be attributed to statistical noise, as only the 212

shots used per trial may not be sufficient to eliminate entropy
fluctuations fully.

To evaluate the security of the proposed quantum encoding
scheme in terms of the relative entropy defined in (12), we
utilize three different quantum computers: ibm_nairobi
(7 qubits), ibm_lagos (7 qubits), and ibmq_manila (5
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TABLE I
COMPARISON OF QSS METHODS

Method Counterfactual QSS CRT-based QSS [30], [31] Traditional QSS [15]

Verification Verified the original key
with the reconstructed key N/A N/A

Security

Internal attacks
Resistant when∑k

i=1 wi < ω

Resistant when∑k
i=1 wi < ω

Resistant when a single
participant lacks all divided
parts of the information

External attacks
Resistant to intercept-and-resend,
man-in-the-middle, Trojan horse,
and entangle-and-measure attacks

Resistant to intercept-and-resend
and entangle-and-measure attacks N/A

Quantum resources N qubits N qubits N qubits

Scalability
Noise robustness Robust against dephasing noise N/A N/A

Efficiency Probabilistic (M,N) N/A N/A

qubits). These computers share the same QV of 32 and have
computational capacities of 2, 600, 2, 700, and 2, 800 CLOPS,
respectively. The complete backend specifications are publicly
available on the IBMQ cloud platform. For our experiment, we
prepare a q-qubit Hadamard state ρ = H⊗q , which exhibits a
low circuit depth of 1. We then employ a single-depth logical
encoding circuit generated using a secret_key as the seed
(see Algorithm 1). This circuit is used solely for secret key
generation and does not implement a physical bosonic channel.
Note that after transpilation, the circuit depth increases, as
logical gates are converted into physical gates supported by
the quantum hardware. The rationale for maintaining a low
circuit depth stems from the inherently noisy nature of current
quantum computers and their limited QV. For example, a QV
of 32 implies that a quantum circuit can reliably execute on
4 qubits with a depth of 8. To compute the mean relative
entropy, we generate random secret keys as seeds within the
range from 0 to 1, 000, producing corresponding quantum
encoding circuits. The prepared state ρ is then evolved through
these circuits, and once it is encoded as ρenc, we assess
its effectiveness by reconstructing ρenc using quantum state
tomography—the gold standard for benchmarking quantum
computers. Using built-in tomography techniques in Qiskit,
which are based on the least-square algorithm, we reconstruct
ρenc. We then calculate the relative entropy D (ρ∥ρenc) and
determine the mean value over all trials. Finally, as shown in
Fig. 6, we plot this mean relative entropy as a function of the
number q of qubits, demonstrating the enhanced security of
encoded quantum information as q increases.

VI. DISCUSSION AND CONCLUSION

In conclusion, the designed QSS protocol based on CQC
provides a practical and secure solution for hierarchical
communication systems. By utilizing counterfactual QSDC
and counterfactual QST in the initial phases and incorporating
a key verification step, the protocol offers both internal
and external security while effectively identifying dishonest
parties. Moreover, our scheme outperforms existing QSS
methods by ensuring robustness against internal and external
attacks, enabling secure key reconstruction through weighted-
threshold validation, and enhancing scalability with noise-

resistant properties, as shown in Table I. The low-depth
quantum circuit used in our protocol for encryption and
decryption reduces the number of gate operations, rendering
it ideal for implementation on the current NISQ devices. By
mitigating the noise effect and increasing entropy, the designed
protocol demonstrates near-term applicability in fields such as
quantum cloud computing and secure communication within
organizations with diverse security clearance levels.

To optimize the performance of quantum computers, both
the sender and receiver must employ the same basis gates, with
a priority given to single-qubit-based circuits. Additionally,
the number of qubits and encryption circuit depth should
not exceed the QV of the device to prevent information loss
caused by gate and readout errors. Before implementing such
a system, it is essential to conduct benchmark tests on state
reconstruction fidelity using quantum state tomography and to
assess entropy levels. These security metrics provide valuable
insights into the applicability of the proposed protocol. We
can develop pulse-efficient algorithms and utilize low-level
hardware manipulation techniques to further optimize resource
efficiency and reduce error rates. Ultimately, the proposed
protocol strikes an effective balance between security and
practicality, making it a viable candidate for deployment in
the current NISQ devices and a wide range of applications
requiring secure hierarchical communication.
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