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Abstract—We introduce a prototyping testbed—GenSC-6G—
developed to generate a comprehensive dataset that supports
the integration of generative artificial intelligence (AI), quantum
computing, and semantic communication for emerging sixth-
generation (6G) applications. The GenSC-6G dataset is designed
with noise-augmented synthetic data optimized for semantic de-
coding, classification, and localization tasks, significantly enhanc-
ing flexibility for diverse AI-driven communication applications.
This adaptable prototype supports seamless modifications across
baseline models, communication modules, and goal-oriented de-
coders. Case studies demonstrate its application in lightweight
classification, semantic upsampling, and edge language inference
under noise conditions. The GenSC-6G dataset serves as a
scalable and robust resource for developing goal-oriented commu-
nication systems tailored to the growing demands of 6G networks.

I. INTRODUCTION

THE integration of generative artificial intelligence (AI)
with semantic communication (SC) marks a transfor-

mative paradigm shift in communications, transitioning from
basic data transmission to goal-oriented, context-aware infor-
mation exchange [1], [2]. By leveraging advanced AI and
foundation models [3], [4], these systems enhance efficiency
and adaptability, tailoring transmissions to align with specific
communicative goals. At its core, the SC employs a knowledge
base (KB) with semantic encoders and decoders, prioritizing
context and intent over raw data [5]. This innovative approach
enables ultra-efficient compression, making it ideal for ap-
plications such as Internet of Things (IoT), cloud services,
autonomous systems, and other cutting-edge sixth-generation
(6G) use cases, as illustrated in Fig. 1.

Recent advancements have demonstrated the successful
integration of advanced AI and SC systems, paving the way
for more adaptive and intelligent communication networks [6].
Building on this progress, numerous studies have explored how
generative AI can enhance data generation and transmission
quality in 6G networks [7], [8]. For example, generative AI
has been utilized at the network edge to improve visual data
transmission quality by leveraging multimodal data inputs
[9]. Similarly, integrating AI into communication devices has
facilitated support for diverse data formats and translation
tasks [10]. Moreover, advanced AI techniques have been em-
bedded in decoders to allow the generation of new information
on the receiver end, further enhancing the potential of AI-
generated content (AIGC) [11]. Generative models play a
crucial role in creating and updating the KB within SC systems
by dynamically generating refined knowledge representations

B. E. Arfeto, S. Tariq, U. Khalid, and H. Shin (corresponding author) are
with Kyung Hee University, Korea; T. Q. Duong is with Memorial University,
Canada, and Queen’s University Belfast, UK.

N
ar

ro
w

 A
I

G
en

er
at

iv
e 

A
I

15-Class Classification,
Object Detection, Segmentation

GenSC-6G Dataset

Semantic Communication Noise 
Ground Truth

Ground Truth, Encoded Features

Baseline Model

ResNet, Swin Transformer, ViT, etc.

Diffusion Model

StableDiffusion

AWGN

RFI

ResNet SwinT ViT....

AWGN

RFI

ResNet SwinT ViT....

Sem
antic

C
om

m
unication

LLM - Conversational AI

Manufacturing Automation

Medical Imaging

Scene Understanding

Predictive Modelling

Generated User Personalization

Semantic Quality Enhancement

Synthetic Data Generation

Internet of Everything

Machine-to-Machine
Terahertz Communication

Predictive RIS

Vehicle-to-Everything

G
oal-O

riented
Task

Autonomous Driving

AI-6G Use Cases

Noise

Noise

Fig. 1. GenSC-6G dataset structures. The dataset consists of the ground-
truth data, encoded features, and additive noise. The AI-6G use cases span
narrow AI and generative AI applications over SC and goal-oriented tasks
in multiple fields. ResNet, ViT, SwinT, AWGN, RFI, LLM, and RIS stand
for residual network, vision transformer, swin transformer, additive white
Gaussian noise, radio frequency interference, large language model, and
reconfigurable intelligent surface, respectively.

[12]. This KB serves as a repository for learned semantics,
enabling efficient encoding and decoding while minimizing
raw data transmission. Constructing a robust KB, however,
requires extensive labeled datasets for effective model training.

While testbeds, such as DeepSense 6G [13], offer realistic
environments for sub-terahertz (THz) beam prediction, their
high cost and limited adaptability pose scalability challenges.
Generative AI addresses these limitations by producing real-
istic synthetic datasets, reducing the manual data collection
burden, and enhancing scalability across domains. To support
the further development of 6G technologies and semantic-
native communication, generative semantic communication for
6G (GenSC-6G) is designed as a flexible and sustainable
testbed that bridges multiple stacks and integration. In addi-
tion to scalability, sustainability is critical in communication
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systems, especially for 6G applications on edge devices. Hy-
brid quantum-classical (HQC) processing and model pruning
contribute to this goal by offloading computationally intensive
tasks and enabling faster inference [14]. Furthermore, recent
work in quantum SC has highlighted robustness and security
advantages of quantum integration, further broadening the
potential of sustainable SC frameworks [15]. To address these
challenges, this paper offers the following contributions:

• Adaptable SC Framework: A flexible prototype that en-
ables customization of baseline models, communication
modules, and decoders for SC.

• Generative AI-Driven SC: The integration of generative
AI for synthetic data generation and enriching the KB and
leveraging large language model (LLM) capabilities for
enhanced semantic tasks.

• Noise-Augmented Dataset: A labeled dataset with in-
jected noise, specifically optimized for semantic tasks
such as target recognition, localization, and recovery.

• Case Study on Semantic Tasks: A detailed case study
that evaluates baseline models across various semantic
tasks, assessing performance and adaptability.

II. GENSC-6G DATASET STRUCTURES

The GenSC-6G dataset is meticulously organized to
support machine learning (ML) tasks, including classification,
segmentation, object detection, and edge LLM tasks. Each
ML or semantic task is associated with a standalone
ground-truth data collection or a combination of multiple
collections in a generic format. These collections achieve
dual objectives: i) they ensure that models can be effectively
trained and evaluated across different and interconnected
tasks; and ii) the generic format of the dataset provides
scalability and flexibility for SC tasks, enabling easy
modification of wireless methods, parameters, or noise
levels. This adaptability allows it to serve goal-oriented
tasks in any environment. The dataset is available at
https://github.com/CQILAB-Official/GenSC-6G.
Each collection of semantic tasks is structured as follows.

1) Ground-Truth Data: The ground truth data collection is
precisely annotated for each of the 15 defined classes, with cor-
responding class and segmented labels. This dataset includes
a total of 4, 829 instances for training and 1, 320 instances
for testing. The context of the dataset pertains to common
vehicle types in both military and civilian sectors. The input
data collection is designed for the semantic upsampling task.

2) Base-Model Features: The dataset includes features ex-
tracted from base models in the form of matrices, as illustrated
in Fig. 1. These extracted features serve as data represen-
tations, enabling the processing across multiple decoding
components within the large AI framework.

3) Additive Noise Features: In this component, the dataset
includes features with various levels additive white Gaussian
noise (AWGN). These noise features allow for testing the
resilience and adaptability of the base models while also
enabling in-depth analysis of noise effects and modulation.

4) Framework Source Code: A codebase is provided in-
cluding the transmission configuration, base model, and met-
rics, as illustrated in Fig. 2.

III. PROTOTYPING A LARGE-AI SC TESTBED

In this section, we present a modular framework integrating
large AI models and HQC computing with SC to enhance data
generation, transmission efficiency, and adaptability within the
joint source-channel coding (JSCC) framework.

A. Generative AI Auto Dataset

We first introduce the concept of dataset auto-creation by
integrating diffusion models and automated mechanisms to
streamline data generation, labeling, and training processes.

1) Diffusion-Driven Data Generator: The GenSC-6G
testbed leverages text-to-image diffusion models to automate
the generation of diverse and trainable images for the base
model. This framework uses the latent diffusion model (LDM),
which transforms high-dimensional data into low-dimensional
latent spaces, optimizing computational efficiency, output
quality, and diversity. The LDM operates in two main stages:
forward diffusion, in which an image is progressively trans-
formed into a noisy representation by adding Gaussian noise
over several steps, and reverse diffusion, where this noisy la-
tent representation is iteratively denoised back into a coherent
image guided by text prompts.

2) Auto Inference Mechanism: With the GenSC-6G dataset
pipeline, an auto-generation mechanism is employed in real
time to continuously generate new data. The workflow in-
volves feeding the trained model dynamically with input data
through a diffusion model, producing diverse data instances.
These instances are then labeled automatically and passed to
the training pipeline, with the model saved for subsequent
training sections. A masked autoencoder model with a vision
transformer (ViT) such as the segment anything model (SAM)
or you only look once (YOLO) can be potentially employed
for auto-localization tasks (instance segmentation and object
detection). This approach allows for consecutive model train-
ing without the need for manual data collection.

B. Base-Model Encoder

We now outline the framework components responsible for
encoding, transmission, and task-aware decoding.

1) Backbone Encoder Selection: To ensure optimal perfor-
mance across semantic decoding tasks, we employ a spectrum
of backbone encoders—convolutional neural networks (CNNs)
for robust local feature extraction, ViTs for capturing global
context, and lightweight neural networks for real-time edge
inference—chosen based on device capabilities and operating
conditions, and leveraging pretrained weights for accelerated
convergence or training from scratch when required. Contin-
gent upon quantum processing unit (QPU) availability, we
integrate HQC, harnessing quantum superposition and entan-
glement to generate exponentially enriched high-dimensional
embeddings with inherent noise resilience. This flexible design
allows substituting any backbone encoder, ensuring compati-
bility with current and future model architectures.

2) Mobile Deep Learning: To accommodate limited com-
putational resources available on edge devices, the backbone
framework is alterable in an optional way to use lightweight
neural networks such as EfficientNet and MobileNet. These
models feature significantly fewer parameters compared to
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Fig. 2. A GenSC-6G testbed prototype. The large-AI SC testbed framework prototypes a flexible architecture in which the backbone encoder and communication
modules are alterable to fit any backend, and the semantic decoders can be adapted for various downstream goal-oriented tasks. The overall pipeline is as follows.
Inputs from the GenSC-6G dataset pass through a configurable backbone encoder to extract semantic features. These embeddings are either enhanced via
quantum distributed learning on QPUs or processed classically on CPUs. The features are then transmitted over JSCC-enabled channels (classical or CV-QKD
quantum links). At the receiver, task-aware decoders conditionally perform semantic upsampling, localization, classification, and LLM-based text generation.
ReLU, TX, RX, mmWave, OFDM, PSK, CV-QKD, MHSA, BLIP, GPT, LLaMA, and FPN stand for the rectified linear unit, transmitter, receiver, millimeter
wave, orthogonal frequency division multiplexing, phase-shift keying, continuous-variable quantum key distribution, multi-head self-attention, bootstrapping
language-image pretraining, generative pretrained transformer, LLM Meta AI, and feature pyramid network, respectively.

traditional deep learning (DL) models, effectively reducing
the parameter number and computational complexity at each
layer. This reduction translates into faster inference and load
times, which are crucial for real-time applications (see Ta-
ble I). EfficientNet and MobileNet achieve this by optimizing
network layers, employing depthwise separable convolutions,
and reducing the overall model size, all while striving to
maintain high accuracy with lower computational demands.

3) Feature Extraction: Feature extraction transforms raw
input data into compact, informative representations that pre-
serve essential semantic and structural information for down-
stream SC tasks. In the GenSC-6G, this is performed by an
interchangeable backbone encoder—either a CNN baseline or
ViT—chosen depending on the target application. CNNs apply
stacked convolution and pooling layers to hierarchically extract
local features, while ViTs split the input into patches and use a
self-attention mechanism to model global context. As shown in
Fig. 2, the backbone encoder begins by passing the input data
through several convolutional layers, progressively reducing
data dimensionality while retaining key semantic components
throughout the patching and filters.

4) Conditional Quantum Embeddings: This process maps
the semantic features extracted from the backbone encoder
into quantum states. The features are first passed through a
fully connected layer for dimensionality reduction, preparing

them for quantum encoding. The prototype can then uti-
lize amplitude-embedding and angle-embedding techniques to
encode these features into qubits. In amplitude embedding,
the normalized feature vector is directly used to define the
amplitudes of the quantum state, allowing for efficient repre-
sentation of high-dimensional data in a quantum system. This
method maps the classical information into the amplitudes of
a superposed quantum state. In angle embedding, the features
are encoded into the rotation angles of quantum gates, such
as parameterized rotation gates on the bloch sphere, which
manipulate the state of the qubits accordingly. These embed-
dings translate classical data into quantum formats suitable for
quantum processing and transmission. Additionally, an entan-
glement layer can be incorporated into the quantum encoder to
exploit the entanglement properties. This layer uses quantum
gates, such as the controlled-NOT or controlled-phase gates,
to establish entanglement among qubits, thereby enabling the
quantum system to capture complex feature interactions and
dependencies in larger dimensions within the semantic data.

5) Quantum Parallel Processing: HQC computation in the
large-AI SC testbed framework combines QPUs with tradi-
tional graphics processing units (GPUs) to execute DL tasks
more efficiently. QPUs work alongside GPUs to handle tasks
such as HQC optimization, state preparation, and sampling,
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which complement GPU operations on matrix multiplication
and dense processing. The testbed framework employs skip
connections and resource splitting, enabling QPUs to manage
quantum-specific computations while GPUs process standard
neural network layers. Specifically, to implement this, the
model architecture is enhanced with quantum layers, consist-
ing of a basic entanglement layer and amplitude embedding.
The skip connection features are conditionally encoded into
these quantum layers for QPUs. In general, this task division
helps manage computational loads on backbone feature ex-
traction, decoding, and inference. Hence, the framework incor-
porates quantum kernels, which introduce quantum properties
into the learning process to enhance model performance. These
quantum kernels, in the form of embeddings within QPUs,
map data into high-dimensional quantum Hilbert spaces, pro-
viding more powerful data representations that can improve
classification accuracy and decision-making processes. Addi-
tionally, the framework supports quantum distributed learning,
partitioning model training and gradient aggregation across
multiple QPU nodes to accelerate convergence. This hybrid ap-
proach allows the system to dynamically offload complex tasks
to cloud-based QPUs when on-premises hardware reaches its
computational limits.

6) Semantic Compression: The semantic compression pro-
cess is performed by extracting and prioritizing only the most
relevant features from the input data. A critical step of this
compression process is quantization. After feature extraction,
the data is quantized to map the continuous feature space
into a discrete set of values, reducing data precision in a
controlled manner. The backbone maintains a balance between
compression efficiency and semantic relevance preservation.

7) Fine-Tuning, Retraining, and Output: Once the encoder
is initialized with a pretrained network, the model can be
fine-tuned or retrained. Fine-tuning involves adjusting the pre-
trained weights with a lower learning rate to adapt to the new
task while preserving useful representations—freezing some
layers. Retraining involves filling in missing weights, such as
those in the decoder and fully connected layers, or resetting
the weights entirely—allowing the model to be trained from
scratch. After the feature extraction step, the encoder produces
a compressed representation of the input data. This compact
form reduces data dimensionality while retaining the most
significant semantic information, which is then prepared for
transmission. The output from the bottleneck can be reused
for various goal-oriented tasks, such as classification, object
detection, or segmentation.

C. Semantic Transmission

This task entails encoding extracted semantic features into
latent representations and conveying them over classical or
quantum channels using bandwidth-efficient JSCC schemes.

1) Bandwidth-Efficient SC: Efficient compression of se-
mantic data is critical to transmitting relevant information
without exhausting resources. The model compression mecha-
nism, such as entropy coding, represents the most frequent se-
mantic components with fewer bits, maximizing compression
efficiency. After passing through stages of feature extraction
and quantization, where the complexity and number of filters
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Fig. 3. A transceiver setup to capture noise features as part of the testbed.
The testbed leverages the Wi-Fi 7 (802.11be) OFDM communication with file
streaming. On the transmitter side, a programmable SDR setup with gigahertz
(GHz) antennas and amplifiers sends high-frequency signals to the receiver.

increase at each stage, the data is compressed. This com-
pression is achieved through techniques such as pooling and
fully connected layers, which map the extracted features into a
compact representation. The compressed data is then encoded
into a format suitable for transmission, reducing the burden on
available bandwidth by compressing them into latent features.

2) Classical and Quantum JSCC Modules: The GenSC-6G
JSCC module is designed to evaluate the quality degradation
and performance of data transmission under both classical and
quantum channel conditions.

Classical Channel: The classical channel in the GenSC-
6G prototype is configured to emulate realistic communication
scenarios, particularly focusing on noise conditions, modu-
lation schemes, and transmission protocols representative of
current and next-generation communication standards.

• Channel Noise: Noise is implemented within the testbed
to replicate real-world communication scenarios where
data transmission is disturbed. The system model sim-
ulates noise conditions by incorporating AWGN with a
specific signal-to-noise ratio (SNR) and random transmit-
ter noise from a programmable software-defined radio
(SDR) to dynamically adjust noise characteristics. An
example setup is shown in Fig. 3. By injecting controlled
and random noise levels during transmission, the system
can assess the impact on semantic data, helping to refine
error correction and noise mitigation within the network
decoder. The DL model adapts to varying noise condi-
tions by optimizing its parameters to minimize the loss
function, which measures the discrepancy between the
predicted noisy outputs and the ground-truth data.

• JSCC Transmission: The prototype utilizes JSCC to
efficiently transmit semantic information over bandwidth-
limited channels. By combining source compression and
channel coding within a single DL framework, the sys-
tem learns an end-to-end mapping from input data to
transmitted signals and from received signals to recon-
structed outputs. In this process, the semantic features
are directly mapped into channel symbols, bypassing
traditional separate source and channel coding schemes.
The testbed transmission employs orthogonal frequency-
division multiplexing (OFDM) with Wi-Fi 7 (802.11be)
(see Fig. 3). The system can be adapted to various fre-
quency bands, including THz and sub-THz bands, which
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TABLE I
PERFORMANCE OF LARGE-AI BASE MODELS TRAINED ON THE GENSC-6G DATASET FOR CLASSIFICATION, UPSAMPLING, AND EDGE LLM TASKS.

Device Backbone
Encoder

Decoder Parameters
(Upsamplers)

Processing
Unit

AWGN (SNR = 10 dB) AWGN (SNR = 30 dB)

Classifier Accuracy F1 Recall Accuracy F1 Recall
(Upsampler) (LPIPS) (CLIP-S∗) (CLIP-S†) (LPIPS) (CLIP-S∗) (CLIP-S†)

Classical

ViT-L-32 3xFC 306.79 GPU 0.8477 0.8514 0.8512 0.8485 0.8522 0.8516
ViT-L-32 (FeatUp) (30.75) GPU (0.4211) (28.0641) (29.9747) (0.4038) (27.5533) (30.0994)
ResNet-50 3xFC 25.81 GPU 0.8447 0.8468 0.8462 0.8485 0.8507 0.8510
ResNet-50 (FeatUp) (30.75) GPU (0.4163) (27.7008) (29.9923) (0.4027) (27.9054) (30.0679)
VGG-16 3xFC 138.61 GPU 0.8144 0.8163 0.8158 0.8167 0.8158 0.8161
Inception-V3 3xFC 27.42 GPU 0.8561 0.8569 0.8553 0.8644 0.8650 0.8641
DINO-V2 (FeatUp) (30.75) GPU (0.4210) (27.6070) (29.8617) (0.4153) (27.7631) (30.0411)

Mobile EfficientNet-B1 2xFC 7.79 CPU 0.8689 0.8702 0.8700 0.8705 0.8720 0.8735
MobileNet-V3 2xFC 5.48 CPU 0.7871 0.7889 0.7896 0.8197 0.8365 0.8192

HQC ViT-L-32 QNN 306.79 GPU/QPU 0.8303 0.8250 0.8232 0.8485 0.8522 0.8516
ResNet-50 QNN 25.81 GPU/QPU 0.8144 0.8181 0.8185 0.8356 0.8383 0.8381

Note: ∗ LLaMA-3; † BLIP-2

provide extensive bandwidth for semantic applications.
Quantum Channel: In the quantum communication sce-

nario, the JSCC module is adapted to encode semantic in-
formation into quantum states for transmission over quantum
channels that exploit quantum properties. The typical integra-
tion in quantum transmission can be described as follows.

• Quantum Protocols: Quantum communication protocols
leverage fundamental quantum properties to enable ad-
vanced tasks like quantum teleportation, distributed sens-
ing, and secure key distribution. In continuous-variable
quantum key distribution (CV-QKD), the transmitter
encodes information onto Gaussian-modulated coherent
states using optical quadratures, which are transmitted
over an optical channel. At the receiver, homodyne or het-
erodyne measurements extract correlated classical data,
forming the basis for generating secure cryptographic
keys protected by quantum mechanics.

• Bit-Flip and Phase-Flip Noise: Qubits are susceptible
to various types of noise, including bit-flip and phase-
flip errors. Bit-flip noise alters the state of a qubit from
|0⟩ to |1⟩ or vice versa, while phase-flip noise changes the
phase between states without affecting their probabilities.
These noise types are typically modeled using Pauli
operators, specifically the Pauli-X (bit-flip) and Pauli-
Z (phase-flip) gates. Quantum error correction codes,
such as Shor or Steane codes, mitigate these errors by
leveraging entanglement and redundancy.

D. Task-Aware Decoder: Case Study

We now present case studies demonstrating the application
of the GenSC-6G prototype to various semantic decoding
tasks. Each task utilizes the compressed semantic features
transmitted over the communication channel and focuses on
different aspects of semantic understanding. We evaluate the
performance using relevant metrics and provide benchmarks
for comparison.

1) Lightweight Classification: The semantic classification
task involves categorizing images into predefined classes
based on their content. Using the GenSC-6G dataset, we
train several baseline models, including ViT-L-32, residual

network (ResNet)-50, visual geometry group (VGG)-16, and
Inception-V3, on single or combined processing units, as well
as lightweight models like EfficientNet-B1 and MobileNet-V3
suited for edge devices. All baseline models are trained under
various SNR conditions (e.g., at 10 dB and 30 dB) to evaluate
their robustness to noise in the communication channel. The
decoder architecture is defined as a lightweight module with
three fully connected layers designed to downsample the
features extracted by the encoder. Fig. 4 shows the confusion
matrix for the ResNet-50 model under AWGN with the SNR
of 10 dB (lower-left plot), illustrating the balance between true
and false positive rates. The model achieves an accuracy of
84.47% (see Table I), demonstrating robust—but improvable—
baseline performance in noisy conditions. Notably, the highest
baseline accuracy is achieved by EfficientNet-B1 with a score
of 86.89% while maintaining a mobile-friendly architecture.
Additional metrics, including F1 score and recall, are also
provided in Table I. By focusing on transmitting essential
semantic features and utilizing lightweight decoders, the mod-
els demonstrate that high classification accuracy is achievable
even in the presence of significant channel noise. These
compressed features are reusable across tasks, making them
efficient for diverse downstream AI tasks.

2) Semantic Localization: We first utilize the YOLO model
for object detection of vehicles within the images from
the GenSC-6G dataset. After detecting the vehicles with
YOLO, we perform semantic segmentation to achieve pixel-
level localization. The ground truth provided by the GenSC-
6G segments is used to train and validate the segmentation
models. By leveraging these detailed annotations, the models
learned to accurately delineate vehicle boundaries, enhancing
the localization precision. As shown in Fig. 4 (upper plot), we
use localization metrics such as the intersection over union
(IoU) and mean pixel accuracy (MPA). The higher IoU for
Image 1 at the SNR of 10 dB indicates better overlap between
the predicted segmentation and the ground truth, suggesting
accurate vehicle localization by the model in that instance.
The MPA values, while relatively low, provide insight into
pixel-level classification accuracy across the entire image,
including both the object and the background. The close MPA
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values between the two images indicate consistent pixel-level
performance, though there is room for improvement, especially
in challenging conditions. These results demonstrate that the
SC framework effectively supports semantic localization tasks
by preserving essential spatial features necessary for accurate
object detection and segmentation.

3) Semantic Upsampling Recovery: The semantic upsam-
pling recovery task focuses on enhancing low-resolution im-
ages received over noisy channels by reconstructing high-
resolution outputs. Two distinct approaches are evaluated for
upsampling combined with feature upsampling (FeatUp) for
two baseline models (ResNet and ViT). FeatUp enhances
deep features by restoring lost spatial information through
high-resolution signal guidance or implicit modeling to im-
prove performance in dense prediction tasks. To ascertain
upsampling recovery performance, we evaluate the learned
perceptual image patch similarity (LPIPS) and the peak SNR
(PSNR) for the GenSC-6G dataset in Fig. 4 (lower-right plot).
As depicted, there is an inverse relationship between the
probability of accurate reconstruction and the LPIPS score.
Lower LPIPS values indicate that reconstructed images are

perceptually closer to the ground truth. The empirical distri-
bution demonstrates that the ResNet with FeatUp has a higher
probability density in the lower LPIPS score range (from 0.05
to 0.15), indicating more accurate reconstructions, while the
ViT baseline with FeatUp remains notable performance. The
PSNR performance is also depicted as a function of SNR.
Here, ResNet-FeatUp outperforms ViT-FeatUp again, espe-
cially at high SNR values, demonstrating considerable noise
resilience and image fidelity during upsampling recovery.

4) Edge LLM: The edge LLM task involves integrating
advanced models, such as the bootstrapping language-image
pretraining (BLIP), generative pretrained transformer (GPT),
and LLM Meta AI (LLaMA or large language model Meta
AI), which run as a post-processing service on edge nodes,
ingesting semantic embeddings to generate text from visual
semantic features and enriching output semantics. As depicted
in Fig. 2, the prototype architecture employs a feature encoder
combined with a querying transformer. These queries are then
input into pretrained LLMs that specialize in transforming
visual-semantic representations into meaningful text outputs.
The visual-text encoder architecture plays a pivotal role in this
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setup, combining visual feature extraction with a text gen-
eration pipeline. The contrastive language-image pretraining
score (CLIP-S) is used to measure the alignment between the
generated text and the visual context (see Fig. 4 upper plot).
The CLIP-S evaluates how well the descriptions or captions
match the visual input, reflecting the effectiveness of generated
text in comprehending the scene. For example, in GenSC-6G
image captioning, LLaMA-3 reaches a CLIP-S of 35.52 for
Image 1, demonstrating its level of contextual understanding
and the richness of the text generated from the image.

IV. OPEN CHALLENGES

Despite the results demonstrated by the GenSC-6G frame-
work, several challenges remain in fully realizing its potential.
Sustainability is a significant concern, particularly in maintain-
ing energy-efficient operations for large models and continu-
ous data processing at the edges. This is critical for ensuring
that AI-driven SC systems align with the sustainability goals
of future networks. Model robustness in the face of varying
noise conditions and unpredictable environments also remains
challenging. Furthermore, quantum distributed learning across
multiple QPU nodes faces challenges in synchronization and
error accumulation, which can impede reliable convergence.
Deploying these models on mobile devices poses another
challenge, as many of the state-of-the-art AI models, including
LLM, are computationally intensive and difficult to scale
down to the limited resources of edge devices. Solutions
such as model pruning, quantization, and efficient architecture
designs require further refinement to enable real-time on-
device processing. Generalization to more downstream AI
tasks, including complex multimodal tasks, is also crucial
to expand the SC utility. Finally, quantum communication
and computing face challenges in ensuring noise resilience,
enhancing scalability, and managing the complexity of parallel
processing. Looking forward, the GenSC-6G framework is
inherently compatible with the envisioned architecture of 6G
SC stacks. Its modularity enables seamless integration across
the physical, semantic, and application layers, supporting
core functionalities. Although further integration efforts are
required, the SC framework is well positioned to interface with
emerging 6G technologies such as terahertz communication,
open radio access networks, and intelligent reflecting surfaces.
These synergies establish GenSC-6G as a versatile platform
for advancing semantic-native system design, robust model
training, and validation in real-world 6G scenarios.

V. CONCLUSION

This paper has introduced the GenSC-6G framework, which
integrates large AI, HQC optimization, and SC, tailored to
optimize 6G networks through scalable and alterable commu-
nications models. The testbed offers a flexible prototype that
enables the modification of baseline models, communication
modules, and goal-oriented decoders, supporting a variety of
downstream tasks. This modular framework leverages gener-
ative AI to enhance the KB by generating realistic synthetic
data, thus improving model diversity and adaptability in real-
world scenarios. Synergistically, these rich semantic inputs are

conditionally transformed by quantum processing into ultra-
high-dimensional embeddings and parallelized across training
to enable a scalable testbed through synthetic data generation.
Through the detailed case studies, we have demonstrated the
effectiveness of our approach in various semantic decoding
tasks, including lightweight classification, semantic localiza-
tion, and upsampling recovery. Evaluations across different
communication conditions, as seen in downstream tasks such
as semantic classification and edge LLM, highlight the practi-
cal adaptability of the GenSC-6G framework in a wide range
of semantic tasks.
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