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ABSTRACT The concept of healthy ageing is emerging and becoming a norm to achieve a high quality of
life, reducing healthcare costs and promoting longevity. Rapid growth in global population and urbanisation
requires substantial efforts to ensure healthy and supportive environments to improve the quality of life,
closely aligned with the principles of healthy ageing. Access to fundamental resources which include
quality healthcare services, clean air, green and blue spaces plays a pivotal role in achieving this goal. Air
quality, in particular, is a critical factor in achieving healthy ageing targets. However, it necessitates a global
effort to develop and implement policies aimed at reducing air pollution, which has severe implications for
human health including cognitive impairment and neurodegenerative diseases, while promoting healthier
environments such as high quality green and blue spaces for all age groups. Such actions inevitably depend
on the current status of air pollution and better predictive models to mitigate the harmful impact of emissions
on planetary health and public health. In this work, we proposed a hybrid model referred as AirVCQnet,
which combines the variational mode decomposition (VMD) method with a convolutional neural network
(CNN) and a quantum long short-term memory (QLSTM) network for the prediction of air pollutants. The
performance of the proposed model is analysed on five key pollutants including fine Particulate Matter
PM2.5, Nitrogen Dioxide (NOs), Ozone (O3), PM10, and Sulphur Dioxide (SO2), sourced from air quality
monitoring station in Northern Ireland, UK. The effectiveness of the proposed model is evaluated by
comparing its performance with its equivalent classical counterpart using root mean square error (RMSE),
mean absolute error (MAE), and R-squared (R?). The results demonstrate the superiority of the proposed
model, achieving a performance gain of up to 14% and validating its robustness, efficiency and reliability
by leveraging the advantages of quantum computation.

INDEX TERMS Air pollution, CNN-QLSTM, healthy ageing, predictive models, quantum machine
learning.

I. INTRODUCTION
IR pollution poses the greatest global environmental
challenge of this era, directly impacting our planet
and public health across the lifespan. Key air pollutants
include fine Particulate Matter PM2.5, Nitrogen Dioxide
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(NOs), Ozone (O3), PM10, and Sulphur Dioxide (SO3) are
emitted into the air from fossil fuel combustion, transporta-
tion and various non-exhaust industrial emissions [1]. Re-
cent research indicates extensive strong evidence of serious
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health implications on individuals’ health when exposed to
environments that exceed World Health Organisation (WHO)
recommended air quality standards, contributing to around
6.7 million premature deaths globally each year [2], [3]. The
United Nations (UN) established sustainable development
goals (SDGs), specifically 3, 7 and 11 reflect the urgency
to reduce morbidity, mortality, and adverse environmental
effects through specific targets to advance public health,
directly contributing to the broader realm of the healthy
ageing, and promote sustainable urban growth [4]. However,
the United Kingdom (UK) government aims to achieve a 35%
reduction in air pollution by 2030 [5]. Even with growing
global awareness and policies, research on the impact of
air pollution on vulnerable and elderly groups needs further
exploration to better understand, manage and model air pol-
lution for a better tomorrow’s digital world aligned with UK
Clean Air Strategy roadmap and 25 Year Environment Plan
(25YEP) [6], [7].

The global population is ageing, and medical advance-
ments are helping people live longer. However, achieving
longevity with healthy ageing is crucial. By 2050, the pop-
ulation aged 60 years or over is expected to double, with
a significant proportion expected to live in urban areas [8].
The swift growth in urbanisation along with demographic
shift, necessitates ecological upgrades to ensure a healthier
environment that supports healthy ageing for a growing pop-
ulation. To achieve this, reduction in air pollution is vital,
as exposure to pollutants causes serious health implications
such as respiratory, cardiovascular, and chronic lung dis-
eases. Cohort studies show a positive correlation between
PM2.5 exposure and the elevated risk of cognitive decline
and dementia [9]-[12]. Another high risked pollutant, NO4
is also explored and is being associated with a high risk
of dementia, Parkinson’s, and Alzheimer disease [11], [13]-
[15]. For instance, Japan has an ageing population with 30%
of the people already aged 60 years or over and is the
only Asian country working towards a net zero transition
while considering the challenges related to its ageing society.
Similarly, China has also acknowledged the need to adapt to
and mitigate climatic changes to protect vulnerable elderly
populations from health risks associated with extremes of
heat.

The UN has declared 2021-2030 as the "Decade of
Healthy Ageing", led by the WHO. This global collaboration
is a united effort to help people live healthy longer lives
over the next decade [8]. The primary objective is to im-
prove the elderly population’s lives by building supportive
environments and providing access to personalised care. To
address and support the challenges of healthy ageing, the
UK government invested in research and innovation (via
UKRI) by allocating a budget of £98 million in different
projects including our SPACE (Supportive Environments for
Physical and Social Activity, Healthy Ageing, and Cognitive
Health) project [16]. In this work, as part of SPACE project,
we are exploring better models for air pollution prediction
which can be further used to overcome the challenges of
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healthy ageing and urban environments. Promoting healthier
urban environments is crucial not only to mitigate widespread
health risks and to improve the quality of life for the ageing
population but also to address climate challenges, support
net zero emissions and ensure sustainable living for all. This
demands a substantial reduction in air pollution, hotspot
identifications and accurate air pollution prediction. The
primary objective of this work is to develop air pollution
prediction models using emerging concepts of quantum ma-
chine learning. We anticipate that findings from this work
will provide evidence-based insight and lead to developing
policies and programmes that improve the urban environment
for healthy ageing, life expectancy and quality of life for
everyone. The main contributions of this work include:

o We proposed a hybrid forecasting model i.e. AirVCQnet
using a combination of variational mode decomposi-
tion (VMD) to generate frequency dependent features,
which are further used to extract complex features us-
ing convolutional neural network (CNN). Such features
are further used by quantum long short-term memory
(QLSTM) models to capture time dependencies for an
improved prediction. To the best of our knowledge, this
is the first time quantum machine learning is used to
predict air pollutants in the realm of healthy ageing and
climate change.

o We have performed a detailed experimental investiga-
tion to find the optimum parameters of VMD, CNN,
four qubit variational quantum circuit (VQC) and QL-
STM to obtain improved performance based on real-
world dataset, local to Northern Ireland, for five pollu-
tants including fine PM2.5, NO,, O3, PM10, and SOs.

o« We have proposed five bespoke forecasting models
having similar model architecture with a unique set of
hyperparameters for each of the five respective pollu-
tants. We have evaluated the performance of the pro-
posed models using root mean square error (RMSE),
mean absolute error (MAE), and R-squared (R?) and
provided a comparison to the equivalent classical model
(i.e., VMD-CNN-LSTM having same architecture and
hyperparameters) for each pollutant. To the best of our
knowledge, this is the first study which provides a head-
to-head comparison of a benchmark quantum based
model to its classical counterpart with same architecture
and parameters on the air pollution data.

The rest of the paper is organised as follows: related
work is provided in Section II. Fundamentals of quantum
computing are explained in Section III. Section IV describes
the dataset and Section V provides technical details of the
proposed model. Model training and testing are discussed in
Section VI. Results and discussion is presented in Section
VII. Lastly, the findings are concluded in Section VIII.

Il. RELATED WORK

Air quality and healthy ageing represents two sides of the
same coin, as poor air quality exacerbates age related health
issues. However, accurate pollution prediction to address
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potential health and climate challenges is necessary. Recent
technological advancement by leveraging machine learning
through hybrid and ensemble modelling has made significant
progress in air pollution prediction. However, recently quan-
tum machine learning has gained considerable attention and
has been extensively explored for its potential in time series
prediction.

A recent study proposed a temporal change information
learning method for dynamic sequence modelling, where a
variant of long short-term memory (LSTM) namely transfor-
mation LSTM is proposed to capture rapid and slow changes
in information (historical data) [17]. Additionally, the study
also proposed a new objective function and optimisation
algorithm named adaptive moment estimation forgetting gra-
dient to attain effective optimal parameters for modelling
multivariate time series data. To check the effectiveness of
the proposed model, a comprehensive analysis is performed
using three different datasets (i.e. weather, PM2.5 air qual-
ity, and energy consumption dataset), and the results show
the superiority of the proposed method over others based
on evaluation metric MAE and RMSE. A unified machine
learning architecture for air pollutants prediction is proposed
in [18]. The proposed architecture is based on lightGBM
and RF regressor to capture spatiotemporal dependencies
in data. Six months’ data collected from distinct locations
including Malaysia, India and the Philippines is used to train
the model, taking into consideration all relevant direct and
indirect factors dependencies on target pollutants to predict
the following day. The proposed approach performed well
in comparison to a recurrent neural network (RNN) and
transformer models in terms of RMSE. In [19], a study made
comparison of two hybrid models namely CNN-LSTM and
CONV-LSTM with combinational differences of CNN and
LSTM layers in its architecture. The dataset used consists
of 1488 data samples, recorded on an hourly resolution
to predict PM2.5 concentration for the next few hours in
Kemayoran district of Central Jakarta, Indonesia. Findings
revealed the performance of CONV-LSTM better than other
over assessment indicators like RMSE, MAE and MAPE.

A hybrid deep learning model is proposed by combining
bidirectional LSTM (BiLSTM), bidirectional gated recurrent
unit (BiGRU) and fully connected layers [20]. Where the
BiLSTM and BiGRU layer extract initial and deep features
respectively, which are further used by fully connected layers
to predict hourly PM2.5 concentration at multiple locations
in China. The dataset contains 35064 hrs of data from each
monitoring station including 12 air pollutants and numerous
meteorological factors to capture intricate relationships be-
tween data. In [21], proposed another hybrid approach for
short-term prediction of PM2.5 concentrations by incorporat-
ing wavelet denoising, VMD and principal component anal-
ysis for the feature extraction and BiLSTM neural network
for modelling data. The experimental data is comprised of
30198 hrs including various air pollutants and meteorological
factors and is collected from Quzhou city, Zhejiang Province.
The proposed model used previous 24 hr multivariate data
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to predict the following hour. Findings from experiments
validated the efficacy of the proposed model. A multivariate
time series prediction model is proposed using Beijing AQI
dataset comprised of 4320 data samples [22]. The study
modified the binary salp swarm algorithm for the selection
of features and parameters optimisation simultaneously. The
echo state network (ESN) model is employed for PM2.5
concentration prediction by incorporating seven air pollutant
data as input features. Results show the effectiveness of the
MBSSA-ESN model over BSSA-ESN and other models opti-
mised by evolutionary algorithms using standard indicators.
The study in [23] proposed a lightweight GRU model and
employed the spatial temporal correlation of multi-node data
to improve the prediction accuracy of air quality forecast-
ing. The effectiveness of the approach is validated using a
publicly available Intel lab dataset and attained reduced error
scores in terms of RMSE and MAE in comparison to single
node based prediction. In [24], the combination of GRU and
graph convolution network is proposed for the prediction
tasks like traffic and air quality prediction across cities. The
study proposed a spatiotemporal prediction model with trans-
fer knowledge to solve data scarcity issues. Experimental
analysis is conducted using datasets collected from London
and Beijing, and the results indicate that the proposed domain
adversarial model outperformed other models.

In recent years, quantum computing has gathered much
attention because of its higher computational advantages
over classical computing. Machine learning algorithms using
quantum computing, also known as quantum machine learn-
ing, are rapidly growing, and catching researchers’ interest
towards its potential application in numerous fields such as
renewable energy, intelligent transportation systems, natural
language processing, finance, and wireless communication
[25]-[29]. Recent research shows the superiority of quan-
tum machine learning over classical machine learning where
quantum computing is exploited to improve machine learning
algorithms with the initial thought of accelerating the training
process in potential applications [30]. A hybrid quantum
LSTM network is proposed by embedding VQC in LSTM
to improve the solar irradiance prediction accuracy [31]. The
considered dataset is comprised of four years and is collected
from five cities in China. Solar irradiance and meteorological
data (such as wind speed, press, solar zenith angle, humidity,
temperature, dew point, cloud and GHI) of the previous 24
hrs is used for the hour ahead prediction. The results are
evaluated using standard evaluation metrics RMSE, MAE
and R? score and compared with other models (SARIMA,
CNN, RNN, GRU and LSTM). In a similar study [32], a
hybrid classical quantum model is proposed, which combines
the classic LSTM model with a quantum neural network
(QNN) for wind speed forecasting. The proposed model used
2D wind speed data of the previous 32 hrs to forecast the
wind speed of the farm situated in Fuhai, Taiwan for the
following 24 hrs. The used dataset is collected from seven lo-
cations across various countries, spanning a year. For hyper-
parameter selection, Taguchi orthogonal experiments were
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performed. The study used QNN with 10 qubit system and
the quantum circuits with a depth of 2 repetitions showed the
best score. The proposed approach outperformed five other
models (RF, SVR, XGBoost, NAR, LSTM Autoencoder, and
LSTM) and is evaluated using performance indicators such
as RMSE, MAE and R? score.

Quantum computing is utilised by integrating quantum
inspired neural network model with deep learning model.
Where the quantum inspired neural network and LSTM
replace the fully connected layer of CNN to enhance the
prediction accuracy of wind speed [33]. Additionally, quan-
tum particle swarm optimisation is employed for optimis-
ing the parameters of the model architecture. The 2D spa-
tiotemporal dataset is collected from four different loca-
tions to predict the wind speed of the following day of
Fuhai, Taiwan. The dataset used is of one year with an
hourly wind speed resolution. The comprehensive analy-
sis with other models (XGBoost, DBM, ARIMA-ANN,
GRNN, LSTM-M, CNN-LSTM, CNN-LSTM-FC, CNN-
LSTM-CVNN) demonstrates the effectiveness of the pro-
posed model and is validated using evaluation indicators
RMSE, MAE and R?. In [34], a hybrid quantum classical
recurrent neural network (QRNN) is proposed for the predic-
tion of renewable energy of time series data. The photovoltaic
output power data is comprised of one year and is collected
from a power production plant situated in Oak Ridge, TN,
USA. The model is composed of two cascaded classical
LSTM layers with a fully connected layer and is integrated
with a variational quantum (VQ) layer. To exploit the entan-
glement and superposition properties of quantum, the consid-
ered VQ layer consists of a 2 qubit system, ZZFeatureMap
with linear entanglement and depth 2. To process the infor-
mation, Real Amplitude ansatz circuit with depth 1 and linear
entanglement is considered followed by the measurement
layer to produce the expected outcome based on the Pauli-
Z gate. The study conducted an experimental analysis of
four seasons and compared the performance of the proposed
model with the LSTM and RF model using RMSE as an
assessment indicator and showed better results in terms of
reduced error score as compared to the classical counterparts.
A linear-layer-enhanced quantum LSTM (LQLSTM) model
is proposed based on QLSTM for carbon price forecasting
[35]. The study introduced a shared linear embedding layer
before VQC, which by compressing the input features subse-
quently reduces the number of qubits and improves learning.
However, a separate linear embedding layer is preferred after
VQCs to get different information according to each VQC’s
functionality. Additionally, a strongly entangled controlled-
Z gate is preferred over CNOT gate in the variation layer.
The dataset is comprised of four years and is collected from
European Union Emission Trading. Comprehensive analysis
shows the performance of LQLSTM model is better than
QLSTM in terms of reduced RMSE and MAE value but
comparable to LSTM.

lll. QUANTUM COMPUTING FUNDAMENTALS

In this section, we provided an overview of the fundamentals
of quantum computing to contextualise the methods and
models employed in this work. Quantum information is rep-
resented by a qubit and is defined by its quantum state |1))
as

[v) = pol0) +p1l1), 1)

where pg and p; are the probability amplitudes which satisfy
2 2
lpol”™ + |p1|” = 1.
In this work, we have used a combination of quantum gates
in our VQC which we define below in detail.

« Hadamard Gate (H) is used to create a superposition
between qubits and is defined as

1 /1 1
=5 ”

« Rotation Gates (R, R, ) are used to rotate a given
qubit state around the x, y, and z axes of the Bloch
sphere, respectively. These operations change a qubit’s
position on the Bloch sphere based on the rotation angle
0. The three rotation gates are defined as:

cos (g) —18in (g)
+(0) = ) 3
—isin(4)  cos (%)
cos (g) —sin (g)
Ry(0) = ) (€]
sin (g) cos (g)
—1i0/2 0
rO=(7)" we)©

o Controlled-NOT Gate (CNOT) provides one of the
essential operations in quantum processing by entan-
gling quantum states. As defined in eq. 6, the 2-qubit
CNOT operation flips the state of the target qubit if the
control qubit is in state |1), otherwise the state remains

unchanged.
1 0 00
01 00
CNOT = 00 0 1 (6)
0 010

o Pauli-Z Gate (P,) is commonly used in the measure-
ment stage where it performs a phase flip of state |1),
leaving the state |0) unchanged. P, is defined as:

1 0
P. = (0 _1), @

and when applying P, to eq. 1, one obtains P,|¢) =
pol0) — p1|1), which has eigenvalues of +1 and —1
which correspond to the states |0) and |1), respectively.
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IV. DATASET

In this study, the experiments are conducted using a publicly
available dataset collected from Air Quality Northern Ireland,
UK [36]. The dataset contains air quality parameters, which
include the key air pollutants such as PM2.5, NOs, O3, PM10
and SO,. The dataset contains hourly concentration levels
of the aforementioned pollutants and is comprised of 1440
hrs used for experimental analysis. The descriptive statis-
tical information of the air quality parameters is provided
in Table. 1. This provides insight into total count, mean,
and standard deviation along with their respective minimum
and maximum values for all major pollutants. The mean
and standard deviation range between 1.78 to 38.60 and
1.94 to 21.21, respectively. Additionally, the minimum and
maximum values fall between 0 to 1 and 19 to 129 for all the
pollutants. The dataset is pre-processed to remove outliers
and invalid values using interquartile range (IQR) method.

TABLE 1. Statistics of key air pollutants in pug/m3.

Count | Mean Std Min | 25% | 50% 75% Max
PM2.5 1440 11.26 | 10.11 0 6 8 12.76 84
NO2 1440 32.24 | 20.78 1 15 29.42 | 4450 | 129
03 1440 38.60 | 21.21 1 21 40 56 94
PM10 1440 16.58 | 11.78 0 9 13 20 97
SO 1440 1.78 1.94 0 1 1 2 19

V. PROPOSED MODEL

In this section, we provide a background of our proposed
model AirVCQnet which is a combination of VMD approach
and CNN (aka ConvID) layers to generate new features, a
Max-Pooling layer for down-sampling and a QLSTM layer
for time series forecasting. Fig. 1 provides the architecture of
the proposed model network architecture.
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FIGURE 1. Proposed model network architecture.

A. VMD

VMD is a signal processing approach which decomposes
a signal into a finite number of signals (also refer as sub-
series or IMFs) by exploiting spectral properties [37]. Each
IMF, bandlimited in nature, is defined by a unique spectral
component and can capture frequency dependant unique
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trends which can be useful in time series forecasting chal-
lenges [38]. Considering a time series V' (¢), the series can be
decomposed into K IMFs using:

vk(t) = By (t)cos(or(t)), 3
K

V()= wu(t)+ R, ©)
k=1

where vy (t) is a k*" IMF with a amplitude of By (t) and
phase of ¢ (t). Here, R refers to as residual signal and a
unique spectral component of each IMF can be found using
a derivative of the ¢ (¢). In this work, we are using VMD
approach to create new features using the hourly lag of
the respective pollutant time series. Fig. 2 shows the VMD
decomposition of the hourly lag of the PM2.5 pollutant with
K = 5 where each IMF captures different trends. In the
case of the VMD based features for time series forecasting
challenges, it is of utmost importance to select an optimum
value of the K with the intention to improve the prediction
performance metrics. We have performed several trials to find
the best value of the K with the objective to enhance the
performance of the forecasting model.
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FIGURE 2. Decomposition of lag PM2.5 into IMFs and Residual plot.

B. CNN

In recent years, CNN has become a popular approach to
generate new features, also refer as feature map, in various
fields for forecasting and classification problems [39], [40].
In a nutshell, a CNN layer uses a filter or kernel with weights
and calculates a dot product between the weights and data
of the time series to produce a new sample. By doing so,
samples of the new feature can be extracted by sliding the
filter over the given time series. The CNN’s ability to capture
local patterns depends on the kernel size which is referred
to as the length of the filter and requires careful selection.
In addition to this, various filters different in their weights
can be used to generate multiple new features and number of
output features by a CNN layer is defined by out channel
parameter. We are using ReLU activation function on the
newly generated features for each CNN layer to introduce
nonlinearity. In our proposed model, we are using two CNN
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layers and tuning the kernel size and out channel parameters
to improve the performance of the prediction. Followed by
CNN layers, we are using a Max-Pooling layer to reduce the
newly generated information.

C. QLSTM

The LSTM network is a variant of the RNN, specifically
developed to mitigate the vanishing gradient problem faced
by traditional RNNs [41]. This is what makes LSTM much
more effective in significantly improving the performance
over tasks such as time series forecasting, natural language
processing, and speech recognition, where capturing long-
term dependencies is crucial. LSTM achieved this by in-
troducing the cell state and gates, where the cell state acts
as long-term memory capable of selectively retaining and
forgetting information over time and the flow of information
is controlled by gates. Fig. 3 presents a functional diagram
of the LSTM cell, highlighting the cell state and three gates
namely the forget gate, input gate and output gate. Here,
the forget gate a(t) controls how much of the previous cell
state g(t — 1) should be retained in the current cell state
q(t). Concurrently, the proportion of new information G(t)
to be integrated into the current cell state ¢(¢) is determined
by the input gate j(¢), based on the current input f(¢) and
previous hidden state g(¢ — 1). Lastly, the output gate wu(t)
decides the next hidden state or the final output g(¢) based
on the updated cell state g(¢), which is the combination of
the past information retained from the forget gate and the
new information added by the input gate. The mathematical
framework of LSTM cell is provided in Eq. (10)-(15) as
follows:

a(t) = o(wif(t) + wgg(t — 1) + ba), (10)
§(t) = o(whf(t) +wig(t — 1) +by), (11)
q(t) = tanh(wif(t) + wig(t — 1)+ by),  (12)
u(t) = o(wif(t) + wgg(t — 1) +bu), (13)
q(t) = a(t)q(t = 1) +j()q(?), (14)

9(t) = u(t)tanh(q(t)), (15)

where, w and b denote the learnable weight matrices applied
to the inputs and the bias term, respectively. The outputs of
the corresponding gates are generated by applying respec-
tive activation functions ¢ (sigmoid) and tanh (hyperbolic
tangent) on weighted sum, allowing the model to effectively
manage the flow of information.

QLSTM is the quantum variant of the classical LSTM
architecture used in machine learning. A significant distin-
guishing feature of QLSTM is the integration of VQCs that
replace the traditional gating mechanisms within the LSTM
cell. Fig. 4 presents the functional diagram of the QLSTM
cell used in this work, showcasing the incorporation of four
VQCs.
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FIGURE 3. LSTM cell.
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FIGURE 4. QLSTM cell.

The mathematical formulation of QLSTM cell is detailed
in Eq. (16)-(21) as follows:

a(t) = o(VQC1(vy)), (16)
j(t) = a(VQCs(wr)), a7
q(t) = tanh(VQCs(wr)), (18)
u(t) = o(VQCiu(vy)), (19)
q(t) = a(t)g(t — 1) + j(t)q(t), (20)
9(t) = ut)tanh(q(t)), 2D

where, v; represents the current input f(¢) and the previous

hidden state g(¢—1). Similarly, the previous cell state, current
cell state and the final output is represented by ¢(t — 1), ¢(t)
and ¢(t) respectively. The quantum circuits VQC'1 to VQC4
refers to the homogenous VQCs that replace the classical
LSTM gates (i.e. forget a(t), input j(¢), update ¢(t), and
output u(t) gate). These quantum circuits transform the input
and hidden state using quantum computations, potentially
leading to more powerful and efficient sequence modelling.
In this work, we used a 4 qubit VQC architecture as shown in
Fig. 5, which is primarily based on three layers namely, the
data encoding layer, variational layer and the measurement
layer.
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FIGURE 5. Architecture of VQC.

In the data encoding layer of the VQC, each qubit is
initialised into an initial state |0) and transformed into an
unbiased superposition state having an equal probability of
0.5 using the hadamard gate. In addition, two rotation gates
R,(01,;) and R,(f2 ;) are applied with angles dependant on
the classical data. In these, 61 ; = arctan(z;) and 0y, =
arctan(x?) are calculated using the classical data samples z;
for each i*" wire considering i € {1,2,3,4}.

The variational layer introduces the entanglement using
CNOT gates and parameterised rotations using rotation gate
R(c, Bi,vi) = Ry(oi)Ry(8i)R:(7;) along z, y and z axis
on the i*" wire. In this rotation, «;, Bi, and y; are optimised
during training to improve the performance of the model.
Finally, the measurement layer collapses the quantum state of
the qubits into classical data. For this, each qubit is measured
along the z axis using the expectation value of the Pauli-
Z gate output and this expectation value can be computed
as [po*|? — |p*|? to generate classical data. Here, |p™|? for
s € {0,1} is the probability of a qubit being in state |s)
in the measurement layer. The classical data output after
measurement is from +1, equivalent to |0), to —1, equivalent
to |1), and values in between are representations of the super-
position states. This output is considered the final output of
the VQC which is further processed by a combination of the
classical layers for the respective task such as prediction or
classification.

VI. MODEL TRAINING AND TESTING

This section presents details about data preparation, model
training, parameters tuning and testing of the proposed fore-
casting model. The workflow of model training and testing
with key components is shown in Fig. 6. In this study, the
dataset used for experimentation is sourced from Belfast city
council and is publicly accessible [36]. The input feature
(a sequence) is created using historical information of the
preceding three hours of the target pollutant’s concentration.
Alongside, VMD based features are created using a lag of the
target pollutant being predicted, with experiments conducted
to determine the optimum IMF number, denoted as K for
each pollutant. The dataset is further divided into training,
validation, and testing sets with a corresponding split ratio
of 70%, 20%, and 10%. The indices in each split are pro-
gressively increased to maintain the integrity of the time
series data. This method ensures that shuffling is avoided,
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thereby preserving the temporal structure which is crucial for
accurate forecasting. After splitting, the dataset is normalized
using a z-score approach which is defined as follows:

Tnorm = z /ia (22)

v

where p and v are the corresponding mean and standard
deviation of data x. Here, data is referred to both features
and target data of the proposed model.
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FIGURE 6. Workflow of model training and testing.

A. MODEL PARAMETERS AND TUNING

In this work, we proposed AirVCQnet model with a learning
network in which we considered two Conv 1D layers followed
by a Max-Pooling and a QLSTM layer as shown in Fig. 1.
Each layer required a careful selection of the parameters. In
case of the ConvID layer, kernel size and number of filters
or features at the output of the layer are key parameters.
Considering the Max-Pooling layer which can reduce feature
map using down sampling depending on the given kernel size
value. The final layer of QLSTM captures the time dependen-
cies based on the selection of a total number of hidden units
or cells in the layer. In our proposed model, we have tuned the
parameters like kernel size, out channels i.e., the number of
filters of each ConvID layer and the number of hidden units
of the QLSTM layer. We kept the kernel size of the Max-
Pooling layer to a constant value of 2, this value is chosen
after several experimental trials. We have also considered the
learning rate as a tuning parameter to improve the forecast-
ing model performance. We used the Optuna framework to
find optimum tunable parameters of the proposed model by
minimising the validation loss during training using AdaGrad
optimiser [42], [43]. In the optimisation process, the number
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of the hidden units in QLSTM layer is in the range [8 64], the
kernel size and the out channel (also referred to as a number
of output features) of each CNN layers are in the range
of [2 5] and [4 32|, respectively. In addition, the learning
rate is used as an optimisable parameter within the range
[1e=® 1e!] and applied early stopping criteria to manage
overfitting and reduce training time. We used PennyLane
software package with a maximum of 1000 epochs and
trained the model on a high performance computing node
equipped with a dual processor (2.5 GHz and L3 128 MB),
32 cores and, a maximum available RAM of 512 GB. Table.
2 provides a summary of the optimum values of the tunable
parameters for each pollutant. Here, the optimum value of
the K is found using numerous experimental trials with the
objective to enhance the forecasting model performance for
the respective pollutant.

TABLE 2. Optimised hyperparameters of the proposed model for all the
pollutants.

Parameters PM2.5 NO- 03 PM10 SO,
Hidden units 12 55 46 35 59
Kernel size_1 2 3 5 2 5
Kernel size_2 5 4 5 4 5
Out channel_1 8 32 24 16 12
Out channel_2 30 16 19 4 15
Learningrate | 3.1e73 | 1.3e=3 | 9.7¢73 | 1.3e72 | 1.3e~3
K 5 3 2 4 2

B. PERFORMANCE METRICS

The effectiveness of the proposed model is assessed using
three widely used evaluation metrics namely R2, RMSE, and
MAE. Their mathematical formulation is provided in Eq.
(23), (24) and (25) as follows:

N A2
R2=1 %Jg_ll((ooz 003)2 : (23)
1 N
MAE:N;|OZ-—6Z-|, (24)
1 & o
RMSE =, | + ; (0; — 6;)°, (25)

where o0;, 0, 0;, and N represents the target output at the ith
sample, mean derived from target output, predicted output at
the 7" sample, and total number of test samples, respectively.
Both RMSE and MAE serve as crucial evaluation metrics and
provide insight into the prediction accuracy of the forecasting
model by reflecting the degree to which predicted output
aligns with actual target values. Alongside these, R2, also
known as the coefficient of determination is another key
metric indicating the extent to which the model captures the
underlying data pattern, with a higher score indicating the
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better fit between the actual and predicted output. Briefly,
a forecasting model with low RMSE and MAE, coupled
with R? score closer to unity is considered to have strong
predictive capability. This comprehensive evaluation informs
researchers about the model’s accuracy and enables them to
enhance its predictive performance.

VIl. RESULTS AND DISCUSSION

This section presents and discusses the experimental findings
of our proposed AirVCQnet model for all the aforementioned
pollutants. The efficacy of the single-step forecasting model
is assessed using key evaluation metrics such as RMSE,
MAE and R?. The results of the proposed AirVCQnet model
for the prediction of PM2.5 level indicate 84% accuracy
over test data along with corresponding RMSE and MAE
values of 1.81 and 1.36, respectively. The forecasting model
prediction performance for PM2.5 over test data is shown
in Fig. 7. As can be seen, the proposed model closely fits
the observed values. Our proposed model demonstrated its
best performance by achieving R? score of 92% and 91%
for NOy and O3 respectively, outperforming its prediction
accuracy for the other pollutants. Furthermore, the model
attained RMSE values of 4.84 and 5.34, along with MAE
values of 3.86 and 4.04, respectively. For PM10 and SOo
prediction, the proposed model achieved R? score of 81% and
80%, respectively. Additionally, the model recorded RMSE
of 3.31 and 0.5, along with MAE of 2.34 and 0.34 values, re-
spectively. Overall, our proposed model achieved prediction
accuracy within the range of 80% to 92% across the evaluated
pollutants for 5 different time series. To better visualize the
prediction performance of our proposed model in contrast to
its classical counterpart, the prediction curves for NOs, Og,
PM10, and SO, over the testing data as shown in Fig. 8, 9,
10, and 11, respectively.
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FIGURE 7. Comparison between actual and predicted data of PM2.5 over test
data.
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FIGURE 8. Comparison between actual and predicted data of NO5 over test
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FIGURE 9. Comparison between actual and predicted data of O3 over test
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FIGURE 10. Comparison between actual and predicted data of PM10 over
test data.
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FIGURE 11. Comparison between actual and predicted data of SO over test
data.
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To check the effectiveness of our proposed AirVCQnet
model, a comparative analysis is performed with its classical
counterpart using the same dataset and hyperparameters. The
forecasting models’ prediction performance is evaluated us-
ing the same assessment indicators. The results indicate that
for PM2.5, PM10 and SO, prediction, the classical model
achieved a prediction accuracy of around 70% or higher
with respect to R? score. The R%, RMSE and MAE values
recorded for PM2.5, PM10 and SO is 70%, 69%, and 76%,
2.47,4.25, and 0.55, 1.69, 3.19, and 0.38, correspondingly.
Among all pollutants, O3 and NO, stand out with prediction
accuracies around or exceeding 90%. For Oj, the R? score
achieved is 89% with the corresponding RMSE and MAE
values of 6.04 and 4.61. Notably, NO is the only case, where
the R% and MAE value of a classical model is comparable
to the proposed model, with an R? score of 92% and MAE
value of 3.85. On the other hand, the error score in terms
of RMSE is reported as 5, which is slightly higher than
the proposed model. Table. 3 highlights the performance
improvement of the proposed model in terms of prediction
accuracy based on R? score for all pollutants considered.
Our findings revealed that our proposed model significantly
improves the prediction performance with a gain of 14% for
PM2.5, 2% for Oz, 12% for PM10, and 4% for SO5. This
is further supported by a reduction in error in terms of both
RMSE and MAE within the range of 0.05 to 0.94 and 0.04 to
0.85 respectively. However, the performance of both models
remained comparable for NO2, with AirVCQnet offering
a modest improvement in the error reduction, as indicated
by the RMSE value. Fig. 12, 13, and 14, summarised the
performance comparison of the proposed model with the
classical counterpart (i.e. VMD-CNN-LSTM) in terms of R?
score, RMSE, and MAE values, respectively. The results of
our comparative analysis clearly indicate that our proposed
AirVCQnet outperformed its classical counterpart in yielding
a higher R? score and lower errors in terms of both RMSE
and MAE across the evaluated pollutants.

PM2.5 NO2 03 PM10 502

Classical Model ~ ® Proposed Model

FIGURE 12. Comparison of models in terms of R2.
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FIGURE 13. Comparison of models in terms of RMSE.
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FIGURE 14. Comparison of models in terms of MAE.

TABLE 3. Performance comparison based on proposed model w.r.t R2.

Models PM2.5 | NO- O3 PM10 | SO
Classical Model 0.70 0.92 | 0.89 0.69 0.76
Proposed Model 0.84 092 | 091 0.81 0.80
Gain 14 - 2 12 4

VIIl. CONCLUSION

Quantum machine learning offers significant computational
advantages and plays a vital role in understanding and learn-
ing from complex datasets to build healthier, safer and better
environments. Looking ahead, healthy ageing is one of the
fundamental pillars of building healthier modern societies,
with air quality standing out as one of the most critical influ-
encing factors shaping this outcome. In this work, we inves-
tigated a hybrid forecasting model for five key air pollutants
(i.e., PM2.5, NO,, O3, PM10, and SO-) using the emerging
concept of quantum machine learning. Our proposed model
takes advantage of features generated by VMD and CNN,
which are further used to capture time dependencies using
a QLSTM network. We investigated a four qubit VQC in
QLSTM and found optimum proposed model parameters,
including hyperparameters, to achieve a maximum R? score
of 92%. Our findings revealed the superiority of the proposed
model with the performance gain of 14% and reduced error
when comparing its performance with its equivalent classical
counterpart model with the same features and parameters. We
anticipate that quantum inspired forecasting models can play
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a crucial role in developing more accurate prediction systems
that influence our future choices and policies’ of tomorrow.
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