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Abstract—Rapid advancements in smart-city logistics and fleet
management require strong solutions for optimizing energy
efficiency and real-time decision-making in dynamic large-scale
Internet-of-Vehicles (IoV) networks. Traditional methods for
resource allocation and route optimization struggle with net-
work uncertainty, time-varying traffic requirements, and energy
constraints. This paper introduces a quantum soft actor-critic
(Q-SAC) framework, an energy-aware quantum reinforcement
learning algorithm, to optimize semantic resource caching and
adaptive routing in large-scale IoV environments. By combining
quantum computing with deep reinforcement learning, Q-SAC
utilizes quantum superposition and parallelism to efficiently
explore complex and high-dimensional continuous state spaces,
allowing for swift responsiveness to dynamic network require-
ments and vehicular movement patterns. The framework uses
semantic caching to prioritize context-relevant data, reducing
latency and energy consumption. Simulation results in dynamic
urban logistics show the proposed algorithm’s superior perfor-
mance and faster route convergence in uncertain environments.

I. INTRODUCTION

Recent advances in semantic communication have demon-
strated the potential to compress and transmit only the most
meaningful content. In [1], a latency minimization problem
was formulated to jointly optimize content caching, service
placement, and computation task offloading to enhance the
network performance. In [2], a demand prediction approach
based on the spatio-temporal graph neural network was pre-
sented to obtain the optimal load with caching content in the
6G enabled IoV. An average delay minimization problem is
formulated to jointly optimize execution mode, transmission
path selection, and cache management with energy harvesting
in vehicular networks [3]. These state-of-the-art methods fail
to rapidly retrieve mission-critical and time-sensitive data,
which increases latency, energy consumption, and reduces
decision-making efficiency in high-density vehicular networks.
In [4], a hierarchical SAC algorithm is presented to enhance
dynamic performance of automated guided vehicles in a com-
plex dynamic environment. In [5], a double bootstrapped SAC
is proposed to accelerate the decision-making and convergence
speed among autonomous vehicles. The complexity of these
models in high-dimensional settings reduces algorithm perfor-
mance in uncertain environments. Quantum algorithms have
been applied in IoV ecosystems to improve semantic task pro-

cessing as vehicles and decision variables grow exponentially
with network size and complexity [6].

Despite advances in semantic-aware caching and routing
for large-scale IoV systems, three issues remain in energy-
constrained smart-city fleets [7]. First, cache policies overlook
data relevance, treating important alerts like routine updates,
wasting energy with unnecessary low-value transmissions [8].
Second, routing protocols focus solely on shortest paths or link
quality, ignoring message importance and vehicle battery lev-
els, risking downtime and reduced service [9]. Third, although
quantum algorithms excel at large combinatorial problems,
their use in real-time semantic caching and routing for IoV
remains unexplored [10], [11].

To address these challenges, this paper presents the applica-
tion of a Quantum-SAC (Q-SAC) algorithm for energy-aware
semantic caching and routing in large-scale IoV networks,
offering computational scalability, adaptability in complex IoV,
and energy efficiency unmatched by traditional deep reinforce-
ment learning approaches. This algorithm empowers smart-
city IoV fleets to make intelligent, collaborative decisions,
minimizing energy consumption while ensuring the timely
and context-aware delivery of high-priority information under
dynamic urban conditions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We examine system models for semantic optimization in
smart-city IoV and offer a mathematical formulation of the
problem.

A. Mathematical System Model

We consider an IoV network consisting of vehicles, roadside
units (RSUs), and an edge/cloud server. The system aims to
optimize energy-sensitive semantic caching and resource allo-
cation while ensuring efficient communication and mobility-
sensitive connectivity. Let V = {v1, v2, . . . , vN} be the set
of vehicles, R = {r1, r2, . . . , rM} be the set of RSUs,
C = {c1, c2, . . . , cK} be the set of contents that can be
cached, S = {s1, s2, . . . , sL} be the set of edge/cloud servers,
and T be the total time horizon divided into time slots τ .
Vehicles dynamically move through the network requesting
content, while RSUs and edge servers store semantic content
representations to reduce redundant transmissions and save
energy.



1) Semantic Modeling: We use a semantic-aware strategy
to enhance data transmission, caching, and computation by
emphasizing meaningful content over raw data. Our model
incorporates semantic relevance, complexity sc and transmis-
sion efficiency σij between node i and j for task offloading
and caching. The semantic complexity of content ck at time
τ , denoted as sc(ck, τ), evaluates the contextual relevance for
specific tasks as:

sc(ck, τ) = λ1Uk(τ) + λ2Pk(τ) + λ3Tk(τ), (1)

where Uk(τ) is the request frequency of content ck, Pk(τ)is
its predicted future demand, Tk(τ) is its time sensitivity
(e.g., real-time safety alerts), λ1, λ2, λ3 are tunable weight
parameters. The overall semantic task performance at time τ
is defined as:

Sp(τ) = ϕ1 · sc(τ) + ϕ2 · σij(τ), (2)

where ϕ1, ϕ2 are weighting factors that balance semantic
complexity and efficiency. Tasks with higher complexity are
prioritized using a semantic priority score is given by:

Pscore = ϕ · sc(τ). (3)

2) Dynamic Network Topology Model: We represent the
IoV network as a dynamic graph Gτ = (V,R, Eτ ), where
Eτ denotes the communication links that change over time τ .
The link (i, j) ∈ Eτ is determined by a probabilistic function
that considers mobility, separation, and wireless channel con-
ditions. The link capacity Cij between the nodes i and j at
time slot τ is given by:

Cij(τ) = B log2

(
1 +

Pij(τ)hij(τ)

N0B

)
, (4)

where B is the bandwidth, Pij(τ) is the transmission power,
hij is the channel gain between node i and node j at time τ
and N0 is the noise power spectral density.

3) Vehicle Mobility Modeling: Using stochastic differential
equations, the vehicle trajectories can be predicted. Let Xτ be
the position of a vehicle at time t:

dXτ = µ(Xτ , τ)dτ + σij(Xτ , τ)dWτ , (5)

where µ(Xτ , τ) is the drift term (deterministic trend, e.g., road
layout), σij(Xτ , τ) is the diffusion coefficient (randomness
due to traffic fluctuations), and dWτ represents increments of
a Wiener process.

B. Energy-Aware Semantic Caching Model

Each vehicle vi and edge node eij is equipped with a
semantic-aware cache, each with a finite storage capacity. The
semantic similarity between two contents ck and ck′ is defined
as:

S(ck, ck′) =

∑d
i=1 vi,kvi,k′

‖vk‖‖vk′‖
, (6)

where vk represents semantic vector of content. Content ck
caches if its similarity with cached content ck′ is below the
predefined threshold θ, as mentioned in S(ck, ck′) < θ, as the

predefined threshold θ ensures content diversity. The binary
caching decision variable xi,k(τ) at time step τ is expressed
as:

xi,k(τ) =

{
1, if content dk is cached at node i,
0, otherwise.

(7)

Globally, all the energy cost are measured in Joules (J). The
energy cost for caching is:

Ecache
i (τ) = xi,k(τ) (Pcache + γSk) , (8)

where Pcache represents the fixed caching power, Sk is the
content size, and γ is a scaling factor.

C. Energy-Aware Routing Model with Constraints

Each vehicle must optimize its route Ri(τ) while mini-
mizing latency and energy consumption. The routing decision
variable yi,j(τ) at time step τ is given by:

yi,j(τ) =

{
1, if vehicle i transmits through edge node j,
0, otherwise.

(9)
The latency cost Lroute

i (τ) at time step τ is:

Lroute
i (τ) =

∑
(i,j)∈L(τ)

yi,j(τ)

(
Dk

Bi,j(τ)
+Dproc,j

)
, (10)

where Dk
Bi,j(τ)

represents time taken to transmit data of size
Dk over transmission link with available bandwidth Bi,j(τ)
and Dproc,j accounts for the processing delays.

D. Energy-Aware Network Model

Each node i has a real-time energy budget Ei(τ). The
energy consumption is partitioned into three main components:

1) Communication Energy: For a transmission over link
(i, j):

Eijcomm(τ) = κij dij(τ), (11)

where dij(τ) is the distance between nodes and κij is the
energy cost per unit distance.

2) Computation Energy: For a computational load Ci(τ)
(e.g., data processing, model inference):

Eicomp(τ) = ηi Ci(τ), (12)

with ηi as the energy cost per computation unit.
3) Caching Energy: For storing data of size sd at node i:

Eicache(τ) = λi
∑
d∈D

sd yid(τ), (13)

where yid(τ) ∈ {0, 1} is the caching decision (1 if data d is
cached at node i at time t ), and λi is the energy per unit
storage cost.

E. Combinatorial Caching Problem Formulation

We aim to minimize the total energy consumption through-
out the network while ensuring low latency content delivery.
Let the total energy consumption Ω(i,j)(τ) for the nodes i and



j to facilitate the communication and computation of caching
and routing at time step τ as:

Ω(i,j)(τ) =
∑
i∈V

(
Etotal
i (τ) + βLroute

i (τ)
)

(14)

Given X = {xi,k(τ)} is the binary caching decision for
content k at vehicle i, Y = {yi,j(τ)} is the routing decision
variable indicating if vehicle i transmits via edge node j),
P = {Pij(τ)} is the power allocation for transmission
between nodes, Ecache

i (τ), Ecomm
i (τ), and Ecomp

i (τ) are the
energy costs for caching, communication, and computation,
respectively, Lroute

i (τ) is the latency cost, and β is a tradeoff
factor controlling the balance between energy and latency. The
optimization problem can be formulated as follows.

P1: min
X,Y,P

∑
i∈V

(
Ω(i,j)(τ)

)
(15a)

s.t. :
∑
k∈C

xi,k(τ)Sk ≤ Cmax
i , ∀i ∈ V ∪R (15b)

Etotal
i (τ) ≤ Emax

i , ∀i ∈ V (15c)
0 ≤ Pij(τ) ≤ Pmax

i , ∀(i, j) ∈ Et (15d)
Dk ≤ Cij(τ)Ts, ∀(i, j) ∈ Et,∀k ∈ C (15e)∑
j∈Ni

yi,j(τ)−
∑
j∈Ni

yj,i(τ) = dti, ∀i ∈ V (15f)

xi,k(τ) +
∑
j∈Ni

yi,j(τ) ≥ zi,k(τ), ∀k ∈ C,∀i ∈ V

(15g)
πij(τ) ≥ θ, ∀(i, j) ∈ Et (15h)

Herein, (15b) ensures that cached content size doesn’t exceed
the vehicle or RSU storage capacity, (15c) limits total energy
for caching, communication, and computation, (15d) requires
nonnegative communication power within device limits, (15e)
ensures feasible data transmission under changing channel
conditions. (15f) maintains data flow consistency by aligning
packet transmission with content request flow, (15g) handles
binary caching and routing decisions, while (15h) uses Marko-
vian probabilistic link modeling.

III. PROPOSED Q-SAC ALGORITHM DESIGN

In real-time, (15a) becomes NP-hard and impractical with
increasing IoV devices, complicating offloading in high-
dimensional spaces. We present the Q-SAC algorithm lever-
aging quantum variational circuits (QVCs) and regularized
RL for quicker task processing. The method uses quantum
policy optimization and hybrid quantum-classical critics to
efficiently handle network dynamics, allowing for scalable and
energy-efficient decisions in large IoV environments. The next
subsection explains the Q-SAC framework and its real-time
applications.

A. Markov Decision Process (MDP) Reformulation

We reformulated (15a) as an MDP represented by a
tuple (S,A,P, r, ρ): S is the state set, A is the continuous
action space, P(s′|s, a) is the transition probability, with

P (sτ+1 | sτ , aτ ) as the probability of moving from state
sτ to sτ+1 after action aτ at time τ . r(s, a) is the reward
function, and ρ ∈ [0, 1) is the discount factor. The state,
action, and reward functions are defined as follows.

1) State space: captures all the necessary information that
describes the current network conditions and resource status.
The state vector can be defined as:

sτ =
(
Etotal
i (τ), xi,k(τ), Cij(τ), di(τ), Lroute

i (τ)
)
. (16)

2) Action space: at each time step τ , the agent takes an
action aτ ∈ A that consists of making decisions. Thus, the
overall action vector consists of decision variables given as:

aτ =
(
{xi,k(τ), yi,j(τ), {Pij(τ)}(i,j)∈Eτ

)
. (17)

3) Reward function: provides feedback where the agent
(via Q-SAC) will learn to select actions that minimize these
costs in expectation. The expected reward function is given
by:

r(sτ , aτ )) = −
∑
i∈V

(
Etotal
i (τ) + βLroute

i (τ)
)

+
∑
i,j

λQe (18)

where Qe represents the penalties for constraints violations
and λ is the large penalty factors. If constraints are violated,
we impose heavy penalties.

B. Quantum Soft Actor for Scalable Energy-Aware Caching
and Routing in Smart-City IoV Fleets

1) Quantum State and Action Representation for IoV: The
state of vehicle is encoded as ψs = Uφ(s)0⊗n, where Uφ(s)
maps classical state features (location, energy levels, cache
contents, connectivity) to quantum states and 0⊗n is the initial
zero state. We use higher-order encoding to transform the
classical space into a multi-qubit quantum Hilbert space. The
routing and caching actions are encoded using:

ψs =

2n−1∑
i=0

zi(s)i, (19)

where i represents the computational basis states
0, 1, ..., 2n − 1 and zi(s) represents normalized amplitudes
for cache operations (store, update, remove) and routing
decisions (vehicle-to-vehicle, vehicle-to-edge).

2) Soft Policy Optimization with Entropy Regularization:
Q-SAC boosts efficiency in large-scale smart-city IoV by
optimizing the soft policy objective, defined as:

Jπ(θ) = Es∼ρπ,a∼πθ [Qφ(s, a)− ϕ log πθ(a|s)] (20)

where Qφ(s, a) is the soft Q-value function evaluating energy-
aware caching and routing efficiency, ϕ is the entropy regu-
larization coefficient promoting route diversity and caching
adaptability, and −ϕ log πθ(a|s) promotes exploration to min-
imize congestion and enhance energy optimization.



3) Quantum Gradient Estimation for Fleet Policy Optimiza-
tion: The quantum gradient of the policy loss function for the
routing and caching policy is given by:

∇θJπ(θ) = Es,a [∇θ log πθ(a|s)(Qφ(s, a)− ϕ log πθ(a|s))] ,
(21)

where ∇θ log πθ(a|s) represents quantum policy gradient
methods for variational quantum circuits (VQCs).

C. Quantum Soft Critic for Scalable Smart-City IoV Fleets

In Q-SAC, the quantum soft critic estimates the soft Q-value
function Qφ(s, a) to evaluate routing and caching efficiency
based on energy savings and data retrieval latency. The soft Q-
value function is estimated using a quantum variational circuit
as:

Qφ(s, a) = ψs,a,φHQψs,a,φ, (22)

where ψs,a,φ = Uφ(ψs ⊗ ψa) represents the quantum state of
the system and HQ is a Hermitian observable corresponding
to Q-value estimation. By measuring HQ in the quantum
state ψs,a,φ, we obtain an estimate of Qφ(s, a), ensuring
efficient routing and caching decision-making. The soft Q-
value function follows the soft Bellman equation given by:

Qφ(s, a) = r(s, a) + ρEs′∼P [Vφ(s′)] , (23)

where the soft state value function of IoV fleet is:

Vφ(s) = Ea∼π [Qφ(s, a)− ϕ log πθ(a|s)] . (24)

This soft Bellman update is performed using quantum Gibbs
sampling to estimate future routing and caching benefits.

1) Quantum Temporal Difference Learning for Smart-City
Optimization: The quantum soft critic is trained by minimiz-
ing the soft Bellman loss is given by:

LQ(φ) = Es,a,r,s′
[
(Qφ(s, a)− β)

2
]
, (25)

where β = r(s, a)+ρ [Vφ(s′)] denotes the energy-aware target
value. This enables optimal routing and caching strategies
for scalable, energy-efficient IoV fleets in smart-city environ-
ments.

2) Quantum Gradient Update for Q-Value Estimation: The
critic network parameters φ are updated using:

∇φLQ(φ) = Es,a,r,s′ [∇φQφ(s, a)(Qφ(s, a)− y)] . (26)

We apply quantum gradient descent to update the parameters
as:

θ ← θ −Θ∇θL(θ), (27)

where Θ is the learning rate and is L(θ) the cost function.
This quantum-enhanced update improves policy evaluation for
large-scale smart-city IoV Fleets as illustrated in Algorithm 1.
Moreover, the computational complexity of the actor network,
utilizing a quantum feature map and variational ansatz, is
O(r·n2q), influenced by nq qubits and r ansatz depth. The critic
network, a hybrid model with a classical neural network and
quantum Q-value estimation, has a forward pass complexity
of O(ns + na + r · n2q), based on state dimension ns and

Algorithm 1: Quantum Soft Actor-Critic (Q-SAC)
1: Initialize: πθ, Qφ, D, ρ, ϕ, M , K
2: for each iteration do
3: for each environment step do
4: Observe state st and encode as quantum state

ψst = Uφ(st)0
⊗n

5: Sample action at ∼ πθ(at | st)
6: Execute at, observe reward rt and next state st+1

7: Store (st, at, rt, st+1) in D
8: end for
9: for K epochs do

10: Sample minibatch of size M from D
11: Compute soft Q-loss using equation (23):
12: Compute soft value function via equation (24):
13: Compute Q-target: yt = rt + ρVφ(st+1)
14: Update critic parameters: φ← φ−Θ∇φLQ
15: Compute policy loss through equation (26):
16: Update policy parameters: θ ← θ −Θ∇θLπ
17: end for
18: end for

action dimension na. The per-step training complexity is
O(ns · nq + na + r · n2q), illustrating scalability and polyno-
mial efficiency over classical methods. The hybrid quantum-
classical approach optimizes large-scale IoV environments,
making Q-SAC ideal for real-time smart-city routing and
caching decisions.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We evaluate Q-SAC against classical SAC under identical
settings using IBM Qiskit. Vehicles are uniformly positioned
at RSU locations for users to process tasks locally or offload
them to the quantum server. Path loss and channel fading
in vehicular wireless environments are provided in [6], [10].
Models use a batch size of 4 with the Adam optimizer; actor
and critic learning rates are 5×10−6 and 2×2−2. VQC has 1
layer, buffer size is 1,000,000, and episode steps are 20. Noise
power density is -70 dBm, maximum latency is 40 ms, and
system bandwidth is 20 MHz.

A. Results Discussion

Fig. 1 shows energy consumption trends of classical SAC
and proposed Q-SAC as IoV users increase. Q-SAC uses
quantum-enhanced techniques to considerably achieve lower
energy consumption than classical SAC. Notably, the perfor-
mance gap between the two methods widens with the growth
in IoV user count, highlighting the superior scalability and
efficiency of the proposed Q-SAC approach in large-scale,
dynamic network environments.

Fig. 2 shows how semantic cache size (GB) affects system
latency and cache hit ratio in a smart-city IoV network
using the Q-SAC framework. Larger caches reduce latency,
boost data retrieval efficiency, and lessen congestion. They
also raise the cache hit ratio by serving more data locally



Fig. 1: Comparison of the total energy consumption

Fig. 2: Average latency performance

and cutting transmission delays. This balance underscores Q-
SAC’s capability in optimizing storage, achieving high cache
hit ratios, and ensuring scalability for real-time IoV fleet
management.

Fig. 3: Average system cost performance

Fig. 3 shows the average system cost versus system band-

width for Q-SAC and classical SAC in a smart-city IoV. With
rising bandwidth, both methods reduce system costs, enhanc-
ing resource use and communication. Yet, Q-SAC consistently
achieves lower costs, proving its superiority in optimizing
decisions under uncertain and dynamic networks.

V. CONCLUDING REMARKS

We introduce a Q-SAC framework for energy-aware se-
mantic caching and routing in large-scale smart-city IoV
environments, bridging quantum variational RL with semantic
communication. Beyond demonstrating superior energy effi-
ciency and faster convergence, we highlight the feasibility
of integrating quantum learning into low-latency vehicular
networks.
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