
1

Carbon-Aware Edge Computing for Internet of
Everything Networks: A Digital Twin Approach
Dang Van Huynh, Member, IEEE, Saeed R. Khosravirad, Senior Member, IEEE, Vishal Sharma, Senior

Member, IEEE, Joongheon Kim, Senior Member, IEEE, Berk Canberk, Senior Member, IEEE, and Trung Q.
Duong, Fellow, IEEE

Abstract—The rapid growth of edge computing has enabled
low-latency and high-efficiency processing for a wide range of
applications; however, it also leads to significant energy consump-
tion and carbon emissions. In this context, this study investigates
a CO2 emission minimisation problem in a digital twin-aided edge
computing system, aiming to optimise task offloading decisions,
transmit power, and processing rates of Internet of Things
(IoT) devices. To address the formulated mixed-integer non-
linear programming problem, we propose two solutions: an
alternating optimisation method based on the successive convex
approximation framework and a deep reinforcement learning
(DRL) approach. Extensive simulations validate the effectiveness
of the proposed solutions, demonstrating significant reductions in
CO2 emissions, robust optimisation performance, and superior
results compared to benchmark schemes. The findings highlight
the feasibility of integrating advanced optimisation and artificial
intelligence-driven techniques to achieve environmentally sustain-
able and high-performance edge computing systems, paving the
way for greener technological innovation.

Index Terms—Digital twin, carbon neutrality, deep reinforce-
ment learning, mobile edge computing, sustainability.

I. INTRODUCTION

Unlike traditional computing architectures that often require
data to be transmitted to distant data centres for processing,

D. V. Huynh is with the Faculty of Engineering and Applied Sci-
ence, Memorial University, St. John’s, NL A1B 3X5, Canada (e-mail: vd-
huynh@mun.ca).

S. R. Khosravirad is with Nokia Bell Labs, Murray Hill, NJ 07964 USA
(e-mail: saeed.khosravirad@nokia-bell-labs.com).

V. Sharma is with the School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast, Belfast, BT7 1NN, UK (email:
v.sharma@qub.ac.uk).

J. Kim is with the Department of Electrical and Computer Engineering,
Korea University, Seoul 02841, South Korea (e-mail: joongheon@korea.ac.kr).

B. Canberk is with the School of Computing, Engineering and The Built
Environment at Edinburgh Napier University, Edinburgh, EH11 4BN, UK (e-
mail: b.canberk@napier.ac.uk).

T. Q. Duong is with the Faculty of Engineering and Applied Science,
Memorial University, St. John’s, NL A1C 5S7, Canada and also with the
School of Electronics, Electrical Engineering and Computer Science, Queen’s
University Belfast, BT7 1NN Belfast, U.K., (e-mail: tduong@mun.ca).

This work was supported in part by the Canada Excellence Research
Chair (CERC) Programm, project number CERC-2022-00109. The work of
B. Canberk is supported in part by The Scientific and Technological Research
Council of Turkey (TUBITAK) Frontier R&D Laboratories Support Program
for BTS Advanced AI Hub: BTS Autonomous Networks and Data Innovation
Lab Project 5239903. The work of V. Sharma and T. Q. Duong was supported
in part by UKRI in the UKRI-Horizon Europe program with the UKRI
reference number 10061165 under MISO project “Autonomous Multi-Format
In-Situ Observation Platform for Atmospheric Carbon Dioxide and Methane
Monitoring in Permafrost & Wetlands”.

This paper was presented in part at IEEE Global Communications Confer-
ence 8–12 December 2024, Cape Town, South Africa [1].

Corresponding authors is Trung Q. Duong.

mobile edge computing (MEC) shifts computational power
closer to the data’s source [2]. This proximity enables signif-
icantly faster processing times and reduced latency, making
MEC ideal for latency-sensitive applications such as smart
factories, intelligent transportation systems, and immersive
technologies [3], [4]. By processing data locally or near the
edge, MEC not only enhances performance but also reduces
the bandwidth requirements associated with data transfer to
centralised locations. Despite its advantages, MEC introduces
a range of technical challenges that demand innovative solu-
tions [5]. These challenges include efficient resource allocation
to optimise performance within the constraints of limited
computational and energy resources, seamless integration with
diverse and existing network infrastructures, and the develop-
ment of robust security measures to protect sensitive informa-
tion from potential threats [6]. Addressing these complexities
is critical to unlocking MEC’s full potential and enabling its
widespread adoption across various domains.

Recently, digital twin (DT) technology has emerged as a
pivotal enabler for edge computing, facilitating the develop-
ment of a new generation of real-time networking systems.
With the capability to create comprehensive digital replicas
of physical systems, DT provides the foundation for making
prompt and optimal decisions to control and manage these sys-
tems efficiently [7]–[9]. Through DT synchronisation mecha-
nisms, real-time data from physical MEC systems—including
computational task descriptions, the operational status of user
devices and edge servers, and channel conditions—can be
accessed and processed seamlessly to deliver optimal configu-
rations. Leveraging the DT concept, numerous studies have
proposed optimal designs for edge computing systems by
addressing critical challenges such as adaptive computing ad-
justments, power control optimisation, service placement, and
user association [10]–[12]. These advancements significantly
contribute to the development of transformative applications
that demand low latency, high reliability, and dynamic adapt-
ability. Examples include the metaverse, intelligent transporta-
tion systems, and autonomous factories. By enabling such
applications, DT-assisted edge computing demonstrates its
potential to redefine the boundaries of technological innovation
in a highly interconnected world.

Notably, recent studies in edge computing have focused
on carbon-aware problems, exploring the trade-off between
meeting stringent user requirements—such as low latency and
ultra-fast processing—and minimising environmental impacts
[13]–[15]. These significant efforts are making positive strides

2

toward addressing the critical global issue of climate change
through technological innovation. To tackle this challenge,
numerous efficient solutions have been proposed, including op-
timising computing resources, managing transmission power,
and enhancing resource utilisation to minimise energy con-
sumption and reduce CO2 emissions. Research in this area
is still in its early stages, and given the urgency of climate
change, there are numerous open challenges and opportunities
for meaningful contributions. Advancing this field can lead to
environmentally sustainable solutions that benefit the planet
while simultaneously driving technological progress. Such
contributions hold the potential to strike a balance between
environmental preservation and the continuous momentum of
technological innovation.

A. Literature Review

In MEC, the optimal design of joint communication and
computing resource allocation stands out as a primary research
focus [16]–[18]. In particular, a multi-UAV employing MEC
was considered in [16] to enable the requirement of ultra-
reliable low latency communications (URLLCs) in intelli-
gent autonomous transport applications, where the energy
consumption of the system was minimised by jointly opti-
mizing communication and computation parameters. In [17],
a scheme for joint task offloading and resource allocation
aimed at minimising total processing delay in Internet of
vehicle (IoV) systems was proposed. The scheme optimised
task scheduling, channel allocation, and computing resource
allocation for the vehicles, aiming to enhance overall system
efficiency. Additionally, a solution for distributed resource
optimisation was introduced in [18] to address fairness-aware
latency minimisation among users in MEC systems assisted
by digital twin (DT) technology, which optimised various
communication and computation variables, such as transmit
power, bandwidth allocation, task offloading portions, and
processing rates of user equipment, through both centralised
and distributed optimisation approaches. Overall, the research
focus on resource allocation in MEC systems has garnered
attention due to various technical challenges. However, there
are still open issues to explore in these areas, including
understanding the environmental impact of communication
and computing systems, managing the trade-offs between
system budget, computing capacity, quality-of-service (QoS),
quality-of-experience (QoE), and reducing the carbon footprint
released into the environment.

Regarding DT technology, recent research has increasingly
focused on leveraging DT technology to address energy con-
sumption challenges in edge computing environments [19]–
[21]. A DT-assisted intelligent partial offloading approach
for vehicular edge computing has been proposed, optimising
resource allocation and reducing energy consumption in ve-
hicular networks by creating a virtual representation of the
system to facilitate efficient decision-making [19]. A DT-
assisted edge computation offloading framework for industrial
Internet of Things (IIoT) systems has been developed, inte-
grating non-orthogonal multiple access (NOMA) to minimise
task completeion delay [20]. A DT-enabled continual learning

strategy for service provisioning in edge computing has been
introduced, enabling dynamic adaptation to resource demands
while maximising total utility gain [21]. These advancements
highlight the potential of DTs in providing accurate system
modelling and real-time insights, paving the way for energy-
optimised edge computing solutions across diverse applica-
tions.

In the realm of sustainable computing, carbon neutralisation
has emerged as a critical focus in the design and operation
of edge computing systems. Recent advancements have intro-
duced innovative approaches to address these challenges [13]–
[15], [22]–[28]. These studies emphasise efficient solutions
such as advanced resource scheduling algorithms, energy-
aware task offloading, and collaborative energy management
techniques to optimise resource utilisation and minimise car-
bon footprints. For instance, a sustainable resource manage-
ment framework in [13] utilised deep reinforcement learning
(DRL) models to significantly reduce energy consumption and
CO2 emissions. Similarly, [22] introduced an optimal task
scheduling and offloading solution, reformulating a mixed-
integer linear programming problem using graph-based tech-
niques to address carbon footprint reduction in edge comput-
ing.

Research has also tackled more intricate challenges. One
such challenge is the joint machine learning (ML) task of-
floading and carbon emission rights purchasing problem, as
discussed in [23], where a two-timescale Lyapunov opti-
misation technique has been employed to achieve optimal
decision-making. Additionally, online collaborative energy-
network resource scheduling has been proposed for wireless
power transfer (WPT)-enabled green edge computing that
effectively balances energy and network resources to achieve
carbon-neutral operations [15]. Furthermore, [25] presented
a Lyapunov optimisation-based approach to reduce carbon
emissions for computation-intensive tasks in queuing-aware
network models. Joint task offloading and energy-sharing
mechanisms have also been explored as effective strategies
for reducing the carbon footprint of edge computing. Such
approaches have demonstrated considerable energy savings
and environmental impact reductions [26]. Expanding on this,
electric vehicles (EVs) have been integrated into edge data
centres as mobile energy sources, providing flexible energy
support during peak demand periods and further enhancing
sustainability [14].

AI-powered sustainable resource management frameworks
have demonstrated significant potential in serverless edge com-
puting environments. These frameworks leverage advanced
machine learning algorithms to dynamically optimise resource
allocation, predict workload patterns, and adapt to fluctuating
energy availability, enabling significant reductions in energy
consumption and operational costs. For example, ATOM fo-
cuses on dynamic resource allocation to optimise energy
efficiency while maintaining system performance [13]. Like-
wise, [24] proposed a DRL-based strategy for edge computing
management, aimed at minimising long-term operational costs
and promoting low-carbon solutions. FaasHouse, introduced
in [27], integrates energy-aware resource scheduling to offer a
sustainable solution. By optimising resource allocation based

3

on energy availability and workload demands, it enhances
operational efficiency. Similarly, EESaver dynamically adjusts
resource usage to minimise energy consumption without com-
promising service quality [28]. These systems underline the
importance of intelligent resource management in advancing
energy-efficient operations.

Collectively, these advancements highlight the importance
of integrating sustainability principles into the edge comput-
ing paradigm. By combining techniques such as intelligent
resource scheduling, energy-aware task management, and col-
laborative energy sharing, these solutions pave the way for
environmentally responsible and highly energy-efficient sys-
tems. Importantly, these studies have effectively addressed the
pressing challenges of carbon reduction in modern computing
infrastructures. Overall, sustainable edge computing represents
a significant research direction with direct implications for a
global issue—reducing carbon footprint in advanced comput-
ing systems. Recent efforts in this area have been directed
towards optimal designs of resource allocation solutions to
minimise CO2 emissions effectively.

B. Motivation and Contributions
The increasing demand for computational resources in

edge computing, driven by latency-sensitive applications such
as intelligent transportation, industrial automation, and im-
mersive technologies, has exacerbated energy consumption
and CO2 emissions. While recent advancements in resource
optimisation and energy-aware solutions have achieved no-
table progress, significant challenges remain in effectively
balancing the trade-off between performance requirements
and environmental sustainability. This challenge is particularly
critical as addressing climate change necessitates solutions
that both minimise carbon footprints and meet the growing
performance demands of modern edge systems. Moreover,
emerging technologies such as digital twins and DRL offer
new opportunities to design intelligent, adaptive strategies that
can optimise communication and computing resources while
reducing energy consumption. Therefore, there is a pressing
need to develop innovative, practical solutions to achieve CO2

emission minimisation in edge computing systems without
compromising user experience. This study is motivated by the
potential to harness advanced techniques, such as DRL, opti-
misation, and digital twins, to contribute to a sustainable edge
computing ecosystem, enabling the development of energy-
efficient, environmentally responsible, and high-performance
systems.

Main contributions of this paper can be summarised as
follows:

• We formulate a DT-enabled CO2 minimisation problem
within the edge computing framework, incorporating
constraints such as delay tolerance, users’ energy bud-
gets, computing capacity of edge servers, and quality-of-
service (QoS) transmission rates. The formulated prob-
lem highlights the critical trade-off between performance
requirements and environmental sustainability in future
edge computing systems.

• To address the formulated problem, we propose an al-
ternating optimisation approach based on the successive

convex approximation (SCA) framework. This approach
efficiently handles optimisation variables, including trans-
mission power, processing rates, and offloading decisions,
to achieve near-optimal solutions.

• In addition to the SCA-based method, we introduce a
DRL-based solution that leverages the ability of DRL
agents to learn optimal policies through interaction with
the dynamic and uncertain environment of DT-enabled
edge computing systems. Through continuous training
and feedback, the DRL framework effectively optimises
resource allocation and task offloading strategies to min-
imise CO2 emissions while maintaining system perfor-
mance.

• Extensive simulations are performed to validate the effec-
tiveness of the proposed solutions. The numerical results
demonstrate the performance of the optimisation process,
highlight the superiority of the proposed solutions com-
pared to benchmark schemes, and analyse the impacts
of key system parameters on CO2 emissions and system
performance.

C. Paper Structure and Notations

The remainder of this paper is organised as follows. Sec-
tion II presents the system model and problem formulation,
detailing the studied model and the formulation of the CO2

minimisation problem. Section III develops the SCA-based
method to efficiently solve the formulated optimisation prob-
lem. In Section IV, we introduce the DRL-based solution,
including the reinforcement learning transformation, the pro-
posed algorithm, and its implementation details. Section V
provides extensive simulation results, demonstrating the ef-
fectiveness of the proposed solutions, comparing their perfor-
mance with benchmark schemes, and analysing the impact of
key system parameters. Finally, Section VI summarises the key
findings of this paper and discusses potential future research
directions.

Throughout the paper, scalar values are denoted using reg-
ular lowercase letters, while vector notations are represented
using bold lowercase letters. Variables or parameters associ-
ated with the m-th user device are indexed by the subscript
m. The i-th iteration in the iterative optimisation process is
represented with the superscript (i). The notation | · | denotes
the Euclidean norm of a vector, and C represents the set
of complex numbers. The term ∇θµJ indicates the gradient
of the objective function J with respect to the parameters
θµ. Additionally, Es∼pπ denotes the expectation taken over
the states s, sampled from the state distribution pπ . These
notations are consistently used throughout the paper to ensure
clarity and precision in the mathematical formulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a single base station, which is
equipped with multiple antennas (L > 0) and associated with
an edge server to process the offloaded tasks from IoT devices
(UEs). There are M single-antenna IoT devices in the system
denoted by the set of M = {1, ...,M}. An illustration of the
considered system model is displayed as Fig. 1. DT technology

4

Fig. 1. An illustration of the DT-enabled carbon-aware edge computing
systems (DTCAEC).

is employed to create a virtual replica of the physical system.
With real-time data updates and remote control capabilities
provided by DT, the system can be managed efficiently and
sustainably through optimal designs of transmit power, com-
puting rate, and task offloading decisions.

A computational task generated at the m-th UE is modelled
as Jm = (Sm, Cm, Dmax

m), where Sm is the size of the task,
Cm is the required CPU cycles to process the task, and Dmax

m

is the delay tolerance of the task. Due to limitations in terms
of computing capacity and energy budget of constrained IoT
devices, the m-th UE has to decide whether to offload the
task to MEC or not, which is modelled as a binary variable
αm = {0, 1}. Specially, when αm = 1, the computation task
is offloaded to the MEC; otherwise, it is processed locally at
the m-th IoT devices.

A. Representations of DT-enabled Edge Computing Systems

DT has recently emerged as a promising technology to
harness the potential of MEC systems, garnering significant
attention from researchers in the field [8], [10], [29]. DT
can be effectively utilised in MEC-based systems by virtually
representing the computing capacity of physical devices, such
as IoT devices and edge servers, enabling optimal decision-
making for efficient control and management. In this paper,
we adopt the assumption that DT is leveraged to compre-
hensively control and manage the entire physical system.
To achieve this, the DT-enabled edge server is modelled as
follows: DT0 = (f0

m, f̂0
m, αm), where f0

m (cycles/second) is
the estimated processing rate of the edge server at DT, f̂0 is the
deviation between the estimate and the real value of MEC’s
processing rate [8], [10], [18].

Regarding the m-th UE, its DT model is given by DTm =
(fm, f̂m, pm, αm), where fm, f̂m, and pm are the estimated
processing rate, the deviation value of the processing rate, and
the transmission power of UE, respectively. We assume that
the necessary infrastructure is fully implemented to facilitate
real-time interactions between the DT model and the physical
system for data collection and remote control [30].

B. Wireless Transmission Model

Wireless connections between the base station (BS) and
the m-th UE are established to facilitate communication. The

channel vector hm ∈ CL×1 represents the connection between
the BS and the m-th UE and is expressed as hm =

√
gmh̄m,

where gm encompasses the large-scale channel coefficient,
accounting for factors like pathloss and shadowing, while h̄m

follows a small-scale fading distribution of CN (0, I). The
received signal vector at the BS is represented as an L × 1
matrix, expressed as

y =

M∑
m=1

hm
√
pmsm + nk. (1)

Here, pm denotes the transmission power of the m-th device,
sm represents the zero-mean and unit-variance Gaussian infor-
mation message from the m-th UE, and nk ∼ CN (0, N0IL)
signifies the additive white Gaussian noise (AWGN) encoun-
tered during data transmission, where N0 denotes the noise
power. As a result, the transmission rate (bit/s) of wireless
transmissions is calculated as

Rm(p) = B log2

(
1 +

pm∥hm∥2

Im(p) +N0

)
(2)

where Im(p) =
∑M

n̸=m
pn|hH

mhn|2
∥hm∥2 is the interference power.

Then, the transmission delay (seconds) for task offloading
from the m-th UE to the edge server is calculated as

Dtx
m(p) =

αmSm

Rm(p)
. (3)

C. Processing Delay Models

The processing delay of the computational task at the m-
th UE is determined by the offloading decision, the required
CPU cycles of the task, and the actual processing rate of the
IoT device. This delay can be expressed as [8]:

DIoT
m (αm, fm) =

(1− αm)Cm

fm + f̂m
. (4)

Similarly, the processing delay of the task offloaded to the
edge server is expressed as

DMEC
m (αm, f0

m) =
αmCm

f0
m + f̂0

m

. (5)

Consequently, the end-to-end (e2e) delay of the offloaded
task from the m-th UE consists of the local processing delay,
wireless transmission delay, and the edge processing delay,
defined as

Dm(αm,p, f) = DIoT
m (αm, fm) +Dtx

m(p) +DMEC
m (αm, f0

m). (6)

D. Energy Consumption Models

To execute local processing and task offloading through
wireless connections, IoT devices consume energy for these
operations. Hence, the total energy consumption (measured in
joules) of the m-th UE comprises the energy expended on
local processing (Ecp

m) and the wireless transmission (Ecm
m),

expressed as:

Em(αm,p, f) = Ecp
m(αm, fm) + Ecm

m (αm,p)

= θm(1− αm)Cm(fm + f̂m)2 +
pmαmSm

Rm(p)
, (7)

5

where θm is the parameter for computation energy consump-
tion of the m-th IoT (Watt.s3/cycle3).

Similarly, the energy consumption for computation at the
MEC is given by

E0
m(αm, f) = θ0αmCm(f0

m + f̂0
m)2, (8)

where θ0 is the parameter for computation energy consumption
of the MEC server.

E. CO2 Emissions Model

As IoT devices and edge servers actively participate in
computing and communication tasks, the energy expended
during these operations translates into CO2 emissions, con-
tributing to environmental impact. The environmental impact
of computing and communication technologies is multifaceted,
encompassing not only the direct emissions from energy usage
but also the indirect impacts stemming from manufacturing,
infrastructure, and electronic waste. Deriving the carbon emis-
sion amount involves navigating through various complex
processes, yet a broad estimation can be attained by [13].

ξm(αm,p, f) = ηCIE

[
Em(αm,p, f) + E0

m(αm, f)
]
, (9)

where ξm is carbon emission (kg CO2), CIE is carbon in-
tensity of electricity (kgCO2/kWh), and η is used for energy
conversion. The amount of CIE differs across regions, and for
the purposes of this paper, it stands at 182 gCO2/kWh for the
London area [13].

F. Optimisation Problem Formulation

This paper focuses on minimising the maximum potential
CO2 emissions associated with processing computational tasks
within the network, taking into account specified delay require-
ments, energy constraints for IoT devices, and the computing
capacity of the edge server. Consequently, the optimisation
problem addressed in this study is formulated as follows.

min
α,p,f

max
∀m
{ξm(α,p, f)},

s.t. Dm(αm,p, f) ≤ Dmax
m ,∀m

Em(αm,p, f) ≤ Emax
m ,∀m,

Rm(p) ≥ Rmin
m ,∀m,

M∑
m=1

αmf0
m ≤ Fmax,

αm ∈ {0, 1},∀m.

(10a)

(10b)
(10c)

(10d)

(10e)

(10f)

As outlined in (10), constraint (10b) represents the delay
requirement for each computational task. Constraints (10c) and
(10e) define the energy budget allocated to IoT devices and the
computing capacity available at the edge server, respectively.
The quality of service (QoS) requirement for the wireless
transmission link is specified in constraint (10d). Lastly, con-
straint (10f) pertains to the binary decision regarding task
offloading.

III. PROPOSED SCA-BASED OPTIMISATION SOLUTION

The problem (10) is evidently a mixed-integer nonlinear
programming (MINLP) problem, posing significant computa-
tional challenges for direct solution. Compounding the com-
plexity are the strong coupling between binary and continuous
variables, exemplified by Em(αm,p, f), Tm(αm,p, f), and
non-convex constraints such as (10b) and (10c). To address
these complexities, we introduce an alternating optimisation
approach based on the SCA framework tailored to tackle this
challenging problem [31]. In order to solve the problem (10)
with the alternating approach, we consider three subproblems,
including optimal transmit power control, optimal the esti-
mated processing rate, and optimal task offloading decisions.
The subsequent subsections detail the development of our
proposed solution.

A. Optimal Transmit Power Control

To begin, we address the optimal transmit power problem.
In order to find the most efficient power control for wireless
transmissions from the m-th IoT devices to the BS, we
establish the following optimisation problem.

min
p|f (i),α(i)

max
∀m
{ξm(α(i),p, f (i))},

s.t. Dm(α(i)
m ,p, f (i)) ≤ Dmax

m ,∀m
Em(α(i)

m ,p, f (i)) ≤ Emax
m ,∀m,

Rm(p) ≥ Rmin
m ,∀m.

(11a)

(11b)

(11c)

(11d)

As we can see from (11), the objective function and
constraints (11b), (11c), (11d) are non-convex. Therefore, we
process these constraints by convexifying the transmission rate
function, the delay and the energy expressions. Firstly, we
address the non-convex transmission rate function because it
is the main component of transmission latency as well as
energy computation of communications. To do this, we apply
the following inequality [32], [33]:

ln(1 +
x

y
) ≥ u− v

x
− wy, (12)

where u = ln
(
1 + x̄

ȳ

)
+ 2 x̄

x̄+ȳ > 0, v = x̄2

x̄+ȳ > 0, and
w = x̄

(x̄+ȳ)ȳ > 0. with x > 0, y >, and (x̄, ȳ) are the feasible

point of (x, y) into (2) with x = pm∥hm∥2, x̄ = p
(i)
m ∥hm∥2,

y = Im(p) + N0, and ȳ = Im(p(i)) + N0. As a results, the
transmission rate Rm(p) can be approximated as follows

Rm(p) ≥ B

ln 2

[
u− v

x
− wy

]
≜ R(i)

m (p(i)), (13)

where

u = ln

(
1 +

p
(i)
m ∥hm∥2

Im(p(i)) +N0

)
+

2p
(i)
m ∥hm∥2

p
(i)
m ∥hm∥2 + Im(p(i)) +N0

,

v =

(
p
(i)
m ∥hm∥2

)2
p
(i)
m ∥hm∥2 + Im(p(i)) +N0

,

w =
p
(i)
m ∥hm∥2

(p
(i)
m ∥hm∥2 + Im(p(i)) +N0)

(
Im(p(i)) +N0

) .
Consequently, the constraint (11d) is now equivalent to the

6

following constraint

R(i)
m (p(i)) ≥ Rmin

m ,∀m, i. (14)

To deal with (11b), we introduce variables r = {rm}∀m ≥
1/R

(i)
m (p(i)). At the i-th iteration, the constraint (11b) can be

expressed as follows.

(1− α
(i)
m)Cm

f
(i)
m + f̂m

+ αmSmrm +
α
(i)
m Cm

f
0(i)
m + f̂0

m

≤ Dmax
m , (15)

which is a convex constraint under the variables of p.
Similarly, we apply the introduced variables r to approxi-

mate Em(α
(i),p,f (i)

m) in (10c) as follows.

θm(1− α(i)
m)Cm(f (i)

m ++f̂m)2 + pmrmα(i)
m Sm ≤ Emax

m . (16)

However, (16) is still not a convex constraint. Therefore, we
apply the following inequality to convexify (16).

xy ≤ 1

2

(
ȳ

x̄
x2 +

x̄

ȳ
y2
)
. (17)

By substituting x = pm, x̄ = p
(i)
m , y = rm, ȳ = r

(i)
m , we can

equivalently express (16) as the following convex constraint.

E(i)
m (α(i),p, f (i)) = θm(1− α(i)

m)Cm(f (i)
m + f̂m)2

+
α
(i)
m Sm

2

(
r
(i)
m

p
(i)
m

p2m +
p
(i)
m

r
(i)
m

r2m,

)
≤ Emax

m . (18)

Consequently, we have successfully transformed the prob-
lem (11) into a convex problem to solve at the i-th iteration
as follows.

min
p,r|f (i),α(i)

max
∀m
{ξ(i)m (α(i),p, f (i))},

s.t. (15), (18), (14),

(19a)

(19b)

where ξ
(i)
m (α(i),p, f (i)) = E

(i)
m (αm,p, f)ηCIE. The problem

is now can be solved efficiently with the well known CVX
package.

B. Processing Rate Optimisation

The second subproblem solved in the alternating-based
solution is the processing rate optimisation problem. In this
subproblem, we solve for the optimal adjusting of the comput-
ing resource of the IoT devices and the edge server to execute
the computational tasks. Given (p(i),α(i)), this subproblem
finds the optimal processing rate, (i.e., f). The optimisation
problem is expressed as follows.

min
f |p(i),α(i)

max
∀m
{ξm(α(i),p(i), f)},

s.t. Dm(α(i),p(i), f) ≤ Dmax
m ,∀m

Em(α(i),p(i), f) ≤ Emax
m ,∀m,

(10e), (10f).

(20a)

(20b)

(20c)
(20d)

As observed in problem (20), the energy consumption expres-
sion is quadratic in terms of f , while the e2e delay expression
is a combination of reciprocal functions involving the variables
f . Consequently, problem (20) is a convex program with

respect to the variables (fm, f0
m,∀m), rendering it solvable

using the CVX package.

C. Task Offloading Decisions Optimisation

Lastly, the optimisation of task offloading decisions ad-
dressed. Given p(i), f (i), this subproblem aims to identify
the optimal task offloading decisions, represented by α. The
optimisation problem can be expressed as follows.

min
α|p(i),f (i)

max
∀m
{ξm(α,p(i), f (i))},

s.t. Dm(α,p(i), f (i)) ≤ Dmax
m ,∀m.

Em(α(i),p(i), f) ≤ Emax
m ,∀m,

M∑
m=1

αmf0(i)
m ≤ Fmax,

(10f).

(21a)

(21b)

(21c)

(21d)

(21e)

This problem poses a mixed-integer (binary) programming
challenge, known for its computational complexity. Fortu-
nately, the MOSEK solver integrated into CVX is adept at
handling such problems efficiently. Hence, we can determine
optimal task offloading decisions by solving (21) with the
given (p(i), f (i)) parameters at the i-th iteration.

D. Proposed SCA-based Algorithm

Building upon the aforementioned progress, we introduce
an alternating-based optimisation algorithm designed to tackle
(10), as outlined in Algorithm 1. The algorithm commences
with an initialisation step, during which initial feasible points
are derived using the formulations of the subproblems (19),
(20), and (21). The sequence of the solving procedure is
outlined as follows. First, the algorithm computes the optimal
transmit power given the current values of the processing rate
and offloading variables. Next, the processing rate optimisation
is performed using the new transmit power solutions and the
current offloading decisions. Finally, the algorithm determines
the offloading decisions before commencing the next iteration.

Algorithm 1 : Proposed SCA-based algorithm for solving
(10).

1: Initialisation: Set i = 1, maximum number of iteration,
Imax; generate the initial feasible points, and choose the
initial parameters for (10).

2: repeat
3: Solve (19) with the given f (i),α(i) to find next solutions

of the transmission power;
4: Solve (20) with the given p(i),α(i) to find next solu-

tions of the processing rate variables;
5: Solve (21) with the given p(i), f (i) to find next solutions

of the offloading decision variables;
6: until (meet convergence or i > Imax)
7: Solution: optimal solutions of {p∗, f∗,α∗}.

7

Discussions of feasible points initialisation and the algo-
rithm’s complexity: It is important to note that the initialisation
of feasible points plays a crucial role in the optimisation
process. To achieve this, we set the transmission power and
processing rate equally for all UEs, i.e., pm = Pmin,∀m,
fm = Fmin

m ,∀m, f0
m = Fmax/M , and assign the offloading

decision of the first half of the UEs to 1. To ensure that all
constraints in (10) are satisfied at the first iteration, we imple-
ment a helper function to verify that none of the constraints
are violated before starting the optimisation process.

Regarding the complexity of Algorithm 1, the major compu-
tational load arises from solving the power control problem in
(19). As presented in (19), this convex program involves 2M
scalar variables and 3M constraints, resulting in a per-iteration
complexity of O

(√
3M(2M)2

)
[34]. Consequently, consid-

ering the number of iterations I , the worst-case complexity of
the proposed Algorithm 1 is O

(
I
√
3M(2M)2

)
.

IV. PROPOSED DRL-BASED SOLUTION FOR ADAPTIVE
CONFIGURATION IN DT-ENABLED EDGE NETWORKS

In this section, we proposed a DRL-based solution for
solving the problem (10) with the concept of DT technology.
We assume that DT system fully replicates the physical
systems, obtains necessary information to perform adaptive
configuration on the transmit power, the processing rate, and
the task offloading decisions.

A. Reinforcement Learning Representation

To solve the problem (10) with DRL-based solution, we
must represent the problem as a Markov decisions process,
consisting of state space (S), action space (A), and the reward
function(R).

1) State space: At the time slot t, the state St captures
all necessary environment information including system pa-
rameters, required CPU cycles of the tasks (Cm), and channel
conditions h(t). Base on these information of the environment
and the current selected action of the agent, we calculate the
current value of the emission amount at the time slot t to
present the state ξm(t).

2) Action space: The DT agent make decisions to configure
the system by optimising the transmission power, the process-
ing rate, and the offloading decisions. Thus, the action at the
time slot t is expressed as a(t) = {pt, ft,αt}.

3) Reward function: The reward function is designed to
reflex the objective function of the formulated problem, which
aims at minimising the worst-case of CO2 emission amount
for task processing of the IoT devices. To do this, we design
the reward function for the proposed DRL-based solution as
follows.

rt = −(λ1ξt + λ2ρ
D
m + λ3ρ

E
m + λ4ρ

F
m + λ5ρ

R
m), (22)

where ξt = max{ξm}∀m at timeslot t; λ1, λ2, λ3, λ4, λ5 are
the weight factors to balance the objectives; ρDm, ρEm, ρEm, and
ρRm are the penalty for violating constraints of delay tolerance
(21b), energy budget (21c), computing capacity of edge server
(10e), and minimum transmission rate (10d), respectively.

B. Proposed DDPG-based Algorithm for DTCAEC

Based on the above transformation and the characteristic of
the addressed optimisation, we propose a deep deterministic
policy gradient (DDPG) based algorithm as presented in
Algorithm 2 to solve the problem. Detailed implementation
of this algorithm is provided in the following subsection.

Algorithm 2 : Proposed DDPG-based algorithm for solving
(10) in DTCAEC.

1: Initialise actor µ(s|θµ) and critic Q(s, a|θQ) networks
with weights θµ, θQ, respectively.

2: Initialise target networks µ′ and Q′ with weights θµ
′
, θQ

′
,

respectively.
3: Initialise replay buffer B and exploration noise process N

using the Ornstein-Uhlenbeck (OU) process.
4: for episode = 1 to K do
5: The agent receives initial state s1 from the environment;
6: for step t = 1 to T do
7: Policy Execution: Get action at = µ(st|θµ) +Nt;
8: Execute at, observe reward rt and next state st+1;
9: Store transition (st, at, rt, st+1) in B;

10: Experience Replay: Sample minibatch
{(si, ai, ri, si+1)}Nb

i=1 from B
11: Compute target:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
12: Update the critic network by minimising loss:

L =
1

Nb

∑
i

(
yi −Q(si, ai|θQ)

)2
13: Update the actor network by using policy gradient:

∇θµJ ≈ 1

Nb

∑
i

∇aQ(s, a|θQ)|a=µ(si)∇θµµ(s|θµ)|si

14: Target Network Update:

θQ
′
← τθQ +(1− τ)θQ

′
, θµ

′
← τθµ +(1− τ)θµ

′

15: Update state: st ← st+1

16: end for
17: end for

Discussions of complexity and settings of penalty parame-
ters: The complexity of the proposed DDPG algorithm pri-
marily stems from the forward and backward passes of the
actor and critic networks, and replay buffer operations. At
each training step, the critic network updates its parameters
by minimising the temporal difference (TD) error, while the
actor network is updated using the policy gradient. These
operations have complexities of O(Na) and O(Nc), where
Na and Nc are the numbers of parameters in the actor and
critic networks, respectively. Sampling a minibatch of size Nb

from the replay buffer adds O(Nb). Soft updates of the target
networks contribute an additional cost of O(Na + Nc). The
total per-step complexity is approximately O

(
Nb(Na +Nc)

)
.

For T time steps per episode and K episodes, the overall
complexity becomes O

(
TKNb(Na +Nc)

)
.

The choice of penalty parameters in the reward function, de-
noted as λ1, λ2, λ3, λ4, λ5, is crucial for balancing competing

8

objectives, such as CO2 emissions, delay, energy consumption,
transmission rate, and resource usage. Each parameter reflects
the relative importance of its corresponding term. Proper
tuning ensures the agent prioritises objectives effectively while
respecting system constraints, such as Dmaxm , Rminm , and
Fmax. A well-tuned reward function encourages the agent
to find optimal trade-offs across objectives without violating
resource limits.

C. Implementation of the DDPG-based Algorithm 2

The implementation of DDPG-based solution is constructed
based on the actor-critic framework. The workflow involves
interactions between multiple components, including the envi-
ronment, actor network, critic network, relay buffer, and their
respective target networks, as illustrated in Fig. 2.

Fig. 2. An illustration of DDPG-based solution for solving the problem (10).

The environment encapsulates the system dynamics, includ-
ing parameters such as ht (channel state), Cm (computation
requirements), Sm (data size), Dmax

m (maximum delay), Emax
m

(maximum energy), Fmax
m (maximum CPU frequency), and

Rmin
m (minimum rate). At each timestep t, the agent interacts

with the environment, receiving the current state st. Based
on this state, the actor network generates an action at, which
is executed in the environment to transition to the next state
st+1. The environment also provides the reward rt associated
with the action at. We note that the offloading decisions are
represented as binary variables. To ensure this, a rounding
operation is applied during the action generation process.

The actor network in the DDPG algorithm is responsible
for representing the policy µ(s|θµ), which maps the current
state st to a deterministic action at. The primary goal of the
actor network is to generate actions that maximise the long-
term expected reward. To achieve this, the actor network is
updated using the policy gradient approach:

∇θµJ = Es∼pπ [∇aQ(s, a|θQ)∇θµµ(s|θµ)]. (23)

This update ensures that the actor improves its policy by lever-
aging the feedback from the critic network. The feedback is a
signal that indicates how the policy should change to maximise

the expected reward, making the actor adapt iteratively to
achieve better performance.

The critic network, on the other hand, evaluates the quality
of the actions produced by the actor using the Q-function
Q(s, a|θQ). It learns to approximate the expected return of
taking a particular action a in a given state s and following
the policy thereafter. The critic is trained by minimising the
TD error:

L =
1

Nb

∑
i

(yi −Q(si, ai|θQ))2, (24)

where:
yi = ri + γQ(si+1, µ(si+1|θµ

′
)|θQ

′
).

The critic’s evaluation is critical for providing a learning
signal to the actor, guiding it toward actions that yield higher
rewards. By continuously refining its Q-value estimates, the
critic ensures accurate feedback, which forms the basis for the
actor’s updates. Together, the actor and critic networks form
a tightly coupled system where the critic guides the actor’s
learning, and the actor refines its policy to align with the
critic’s evaluations.

The relay buffer is a key component of the DDPG al-
gorithm. It stores past experiences in the form of tuples
(st, at, rt, st+1). During training, a minibatch of experiences is
sampled randomly from the relay buffer to compute gradients
and update the parameters of the actor and critic networks.
This mechanism improves training stability by decorrelating
consecutive samples and ensuring efficient reuse of past data.
The use of the replay buffer helps the agent learn more robustly
from diverse samples, rather than relying solely on the most
recent interactions. Mathematically, the experiences stored in
the relay buffer are used to compute the loss functions for the
critic and actor networks, which are subsequently minimised
using gradient descent.

Finally, the target networks play a crucial role in stabilising
the training process. They include the Target Actor µ′(s|θµ′

)
and the Target Critic Q′(s, a|θQ′

). These networks provide sta-
ble targets for updating the primary actor and critic networks.
The parameters of the target networks are updated slowly to
track their respective primary networks using a soft update
mechanism:

θµ
′
← τθµ + (1− τ)θµ

′
,

θQ
′
← τθQ + (1− τ)θQ

′
.

Here, τ is the soft update parameter that determines the rate
at which the target networks adjust to changes in the primary
networks. By providing stable targets, the target networks
mitigate the problem of oscillations during training and help
ensure convergence.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setting

For simulations, we consider a small-scale IoT network,
where all IoT devices are randomly distributed in a space
of 100 m x 100 m. There are totally 6 devices connecting
to the BS in the network. The large-scale fading for the

9

wireless transmission from the m-th UE to the BS is mod-
elled as gmk = 10PL(dmk)/10, where PL(dmk) = −35.3 −
37.6 log10 dmk [32]. The single-sided noise spectral density is
set to −174 dBm/Hz [32]. The task size is set in a range
[1, 4] MB and the delay tolerance of the task is set to 2
seconds. The maximum required CPU cycles of the task is
set in the range of [1000, 2000] megacycles. For the training
of Algorithm 2, we set the discount factor to 0.99 and soft
update parameter to 0.001. The neural networks of the actor
and the critic consist of three fully connected hidden layers
with [512, 256, 128] neurons. Other parameters are provided
in Table I. The implementation of the SCA-based solution
was conducted in the MATLAB environment using the CVX
package, while the DRL-based solution was developed in
Python, leveraging packages such as PyTorch and Gymnasium.

For performance comparisons, we implement several bench-
mark schemes as follows:

• Equal processing rate (EPR-scheme): This scheme con-
siders a typical edge computing system model with joint
task offloading and power control optimisation; however,
it does not account for adaptive computing frequency or
processing rate [35], [36].

• Equal processing rate and equal power (EPR-EP scheme):
This non-optimal scheme is designed as a conventional
benchmark to demonstrate the superiority of the proposed
solutions.

TABLE I
SIMULATION PARAMETERS [10], [24], [32].

Parameters Value

Maximum transmission power of UE Pmax
m = 23 dBm

Number of antennas of BS L = 8

System bandwidth B = 10 MHz
UE’s processing rate range [0.5, 2] GHz
Computing capacity of edge server Fmax

m = 20 GHz
Minimum data rate Rmin = 1 Mbps
Maximum UE’s energy consumption Emax

m = 1 Joule
Energy consumption parameter θm = 10−27 Watt.s3/cycle3

Carbon intensity of electricity CIE = 182 g CO2/kWh
Energy conversion parameter η = 2.77778e−7

B. Numerical Results and Discussions

In this subsection, we present the numerical simulation
results to illustrate the convergence patterns of the proposed
algorithms and to highlight the superiority of the proposed so-
lution in minimising CO2 emissions. Additionally, we analyse
the impact of various system parameters on the resulting CO2

emissions.
1) Convergence pattern of the proposed Algorithm 1: To

illustrate the convergence pattern of the proposed SCA-based
algorithm, we monitor the worst-case CO2 emissions among
User Equipments (UEs) over the duration of its execution. As
depicted in Figure 3, Algorithm 1 demonstrates its effective-
ness in minimising CO2 emissions, achieving a reduction of
nearly 30 times in emissions after just 10 iterations. Notably,

1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

Iteration index

W
o
rs
t-
ca
se

C
O

2
em

is
si
o
n
s
(m

g
)

Cmax
m = 1500

Cmax
m = 1750

Fig. 3. Convergence pattern of Algorithm 1.

0 200 400 600 800 1000
Episode index

0

100

200

300

400

500

600

700

R
ew

ar
d

Actor LR: 3e-5, Critic LR: 1e-4
Actor LR: 5e-6, Critic LR: 1e-5
Actor LR: 5e-6, Critic LR: 3e-5
Actor LR: 5e-4, Critic LR: 1e-4

Fig. 4. Impact of learning rate on the training performance of Algorithm 2
with Cn ∼ U(1000, 1100).

a significant reduction in emissions occurs after the initial
iteration. This phenomenon can be attributed to the algorithm’s
ability to initiate optimisation from points that are considerably
distant from the optimal solutions. Consequently, there is
ample room for improvement during the first iteration. From
the fifth iteration onwards, there is a gradual decrease in CO2

emissions until convergence is reached. This observed trend
underscores the algorithm’s iterative refinement process, where
adjustments are made iteratively to approach the optimal solu-
tion. This convergence behaviour underscores the algorithm’s
potential to significantly enhance the sustainability of edge
computing systems by efficiently managing resource allocation
to minimise carbon emissions.

2) Impact of learning rate on the training performance of
Algorithm 2: Fig. 4 illustrates the impact of varying learning
rate settings on the training performance of Algorithm 2,
measured in terms of the reward progression over 1000
episodes. The results show that the combination of Actor LR:
3× 10−5, Critic LR: 1× 10−4 achieves the best performance,
with the reward converging rapidly and reaching the high-
est values, maintaining stability throughout the training. The
configuration with Actor LR: 5× 10−6, Critic LR: 1× 10−5

follows closely, displaying a slower convergence initially but

10

0 200 400 600 800 1000
Episode index

0

100

200

300

400
R

ew
ar

d

M = 6 UEs
M = 10 UEs

Fig. 5. Training performance of the proposed DDPG-based Algorithm 2 in
the scenarios of 6 UEs and 10 UEs with Cm ∼ U(1500, 2000).

1000 1100 1200 1300 1400 1500
Required CPU cycles per task

4

6

8

10

12

14

16

W
or

st
-c

as
e

C
O

2
em

is
si

on
s (

m
g)

Algorithm 1
Algorithm 2
Equal processing rate

Fig. 6. Performance comparison of the proposed algorithms.

eventually achieving comparable performance. On the other
hand, Actor LR: 5×10−6, Critic LR: 3×10−5 and Actor LR:
5×10−4, Critic LR: 1×10−4 demonstrate lower performance
and less stability, as seen in their slower convergence rates and
plateauing at lower reward values. This comparison highlights
that carefully tuning the learning rates, particularly for the
actor and critic networks, is essential for achieving both fast
convergence and optimal performance.

3) Training performance of the proposed DDPG-based so-
lution with various of number of UEs: Fig. 5 compares the
training performance of the proposed DDPG-based Algorithm
2 under two scenarios: one with 6 UEs and another with 10
UEs. The reward progression shows that both scenarios con-
verge after approximately 200 episodes. The 6 UEs scenario
achieves a higher reward and stabilises around 400, while the
10 UEs scenario stabilises at a lower reward level, around
350. This performance gap can be attributed to the increased
complexity of managing a higher number of UEs. The results
indicate that the proposed algorithm performs effectively, but
the reward decreases as the system complexity increases.

4) Performance comparison of the proposed algorithms:
Fig. 6 compares the worst-case CO2 emissions for three
schemes: Algorithm 1, Algorithm 2, and a non-optimal com-

1000 1100 1200 1300 1400 1500
Required CPU cycles per task

0

5

10

15

20

25

30

35

W
or

st
-c

as
e

C
O

2
em

is
si

on
s (

m
g)

Optimal scheme
EPR scheme
EPR-EP scheme

Fig. 7. Effectiveness of the proposed solution compared with non-optimal
schemes.

puting rate scheme. Both proposed algorithms consistently
achieve better performance than the non-optimal scheme,
resulting in significantly lower CO2 emissions across all task
requirements. As the complexity of the task increases, reflected
by the rise in required CPU cycles, the CO2 emission amount
steadily increases for all approaches. This trend highlights
the importance of developing optimisation solutions, such as
the proposed algorithms, to effectively reduce CO2 emissions.
Furthermore, the results show that in most cases, the two pro-
posed algorithms achieve approximately optimal values, with
Algorithm 2 closely matching the performance of Algorithm 1.

5) Effectiveness of the proposed solutions: Fig.7 com-
pares the worst-case CO2 emissions (mg) for three
schemes—optimal scheme, EPR scheme, and EPR-EP
scheme—across varying required CPU cycles per task, ranging
from 1000 to 1500. The Optimal scheme consistently achieves
the lowest CO2 emissions, demonstrating its effectiveness.
The EPR scheme, which represents the equal processing rate
scheme, produces higher emissions than the optimal scheme
but performs better than the EPR-EP scheme. The EPR-
EP scheme, representing the equal processing rate and equal
power scheme, consistently yields the highest CO2 emissions
across all CPU cycle values, indicating its inefficiency com-
pared to the other approaches. As the required CPU cycles per
task increase, the CO2 emissions for all schemes rise steadily,
further highlighting the importance of the proposed optimal
solution in mitigating emissions compared to the two non-
optimal schemes.

6) Impacts of DT estimation: Fig. 8 highlights the critical
importance of DT estimation accuracy in achieving optimal re-
sults. The data clearly shows that more precise DT estimations
of processing rates lead to significantly lower CO2 emissions.
This finding demonstrates the essential role of accurate DT
models and latency estimation in refining resource allocation
strategies and reducing environmental impact. Furthermore,
Fig. 8 illustrates the relationship between task complexity,
represented by the required number of CPU cycles, and CO2

emissions. As task complexity increases, CO2 emissions rise
accordingly, emphasising the direct influence of computational
intensity on the environmental footprint. These observations

11

1500 1600 1700 1800 1900 2000
Required CPU cycles per task

20

25

30

35

40

45

50

C
O

2
Em

is
si

on
s (

m
g)

DT Error 0%
DT Error 3%

Fig. 8. Impacts of DT estimations.

1000 1100 1200 1300 1400
Required CPU cycles per task

0

2

4

6

8

10

12

W
or

st
-c

as
e

C
O

2
em

is
si

on
s (

m
g)

Task Size: 1 MB
Task Size: 4 MB

Fig. 9. Impacts of task size and task complexity.

collectively highlight the necessity of improving DT accuracy
to enhance performance and sustainability in system opera-
tions.

7) Impacts of task size and task complexity: Fig. 9 illus-
trates the impacts of task size and task complexity on the
worst-case CO2 emissions (mg) as the required CPU cycles per
task increase. Two task sizes, 1 MB and 4 MB, are compared
across CPU cycle values ranging from 1000 to 1400. The
results show that larger task sizes lead to higher CO2 emissions
for all CPU cycle settings. This is attributed to the increased
transmission latency i.e., (3) and energy consumption i.e., (7)
associated with larger task sizes, which contribute significantly
to the overall emissions. Furthermore, as the required CPU
cycles increase, the CO2 emissions steadily rise for both
task sizes. This demonstrates that both task size and task
complexity play crucial roles in influencing CO2 emissions,
with larger tasks and higher computational demands resulting
in greater environmental impact.

VI. CONCLUSION

In summary, this paper has examined sustainable resource
management within edge computing systems, employing the
DT approach. The primary objective has been to reduce CO2

emissions in MEC-aided IoT scenarios by optimising key
factors, such as IoT device transmit power, DT-estimated

processing rates, and task offloading decisions. To address the
complex challenge, we has proposed two solutions: the alter-
nating optimisation algorithm based on the SCA framework
and the DRL-based solution. The DRL-based approach lever-
ages the adaptability of reinforcement learning to manage dy-
namic environments and optimise resource allocation decisions
effectively. Through extensive simulations, the effectiveness of
the proposed solutions has been validated. Both approaches
demonstrated significant reductions in CO2 emissions and
optimised resource allocation. These results highlight the
potential of combining DT and AI-driven methods to en-
hance sustainability in edge computing environments. Looking
ahead, there is a promising avenue for further research, partic-
ularly in scaling these approaches to accommodate large-scale
networks. Future efforts could focus on integrating advanced
machine learning techniques and data-driven algorithms to
meet the evolving demands of modern computing systems
while continuing to minimise their environmental impact.

REFERENCES

[1] D. V. Huynh, S. R. Khosravirad, V. Sharma, B. Canberk, O. A. Dobre,
and T. Q. Duong, “Digital twin-enabled low-carbon sustainable edge
computing for wireless networks,” in Proc. IEEE Global Commun.
Conf., Cape Town, South Africa, Dec. 8–12, 2024.

[2] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.

[3] K.-C. Chen, S.-C. Lin, J.-H. Hsiao, C.-H. Liu, A. F. Molisch, and G. P.
Fettweis, “Wireless networked multirobot systems in smart factories,”
Proc. IEEE, vol. 109, no. 4, pp. 468–494, Apr. 2021.

[4] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge
computing: A survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp.
2131–2165, Fourthquarter 2021.

[5] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584–1607, Aug. 2019.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter
2017.

[7] T. Q. Duong, D. V. Huynh, S. R. Khosravirad, V. Sharma, O. A. Dobre,
and H. Shin, “From digital twin to metaverse: The role of 6G ultra-
reliable and low-latency communications with multi-tier computing,”
IEEE Wireless Commun., vol. 30, no. 3, pp. 140–146, Jun. 2023.

[8] T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, “Digital twin assisted
task offloading based on edge collaboration in the digital twin edge
network,” IEEE Internet Things J., no. 2, pp. 1427–1444, Jan. 2022.

[9] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, “Mobility-aware multiobjective
task offloading for vehicular edge computing in digital twin environ-
ment,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3046–3055,
Oct. 2023.

[10] T. Do-Duy, D. V. Huynh, O. A. Dobre, B. Canberk, and T. Q. Duong,
“Digital twin-aided intelligent offloading with edge selection in mobile
edge computing,” IEEE Wireless Commun. Lett, vol. 11, no. 4, pp. 806–
810, Apr. 2022.

[11] Y. Zhang, J. Hu, and G. Min, “Digital twin-driven intelligent task
offloading for collaborative mobile edge computing,” IEEE J. Sel. Areas
Commun., vol. 41, no. 10, pp. 3034–3045, Oct. 2023.

[12] D. V. Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and
T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency
communications for digital twin-enabled metaverse,” IEEE Wireless
Commun. Lett, vol. 11, no. 8, pp. 1733–1737, Aug. 2022.

[13] M. Golec, S. S. Gill, F. Cuadrado, A. K. Parlikad, M. Xu, H. Wu,
and S. Uhlig, “ATOM: AI-powered sustainable resource management
for serverless edge computing environments,” IEEE Trans. Sustain.
Comput., vol. 9, no. 6, pp. 817–829, Nov.-Dec. 2024.

[14] H. Liao, G. Tang, D. Guo, K. Wu, and L. Luo, “EV-assisted computing
for energy cost saving at edge data centers,” IEEE Trans. Mobile
Comput., vol. 23, no. 9, pp. 9029–9041, Sep. 2024.

12

[15] K. Chen, Y. Sun, S. Zheng, H. Yang, and P. Yu, “Online collabora-
tive energy-network resource scheduling for WPT-enabled green edge
computing,” IEEE Trans. on Green Commun. Netw., vol. 8, no. 2, pp.
601–618, Jun. 2024.

[16] Y. Li, D. V. Huynh, V.-L. Nguyen, D.-B. Ha, H.-J. Zepernick, and T. Q.
Duong, “Multiagent UAV-aided URLLC mobile edge computing sys-
tems: A joint communication and computation optimization approach,”
IEEE Syst. J., vol. 18, no. 4, pp. 1828–1838, Dec. 2024.

[17] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing based
on V2I and V2V modes,” IEEE Trans. on Intell. Transp. Syst., vol. 24,
no. 4, pp. 4277–4292, Apr. 2023.

[18] D. V. Huynh, V.-D. Nguyen, S. R. Khosravirad, K. Wang, G. K. Kara-
giannidis, and T. Q. Duong, “Distributed communication and computa-
tion resource management for digital twin-aided edge computing with
short-packet communications,” IEEE J. Sel. Areas Commun., vol. 41,
no. 10, pp. 3008–3021, Aug. 2023.

[19] L. Zhao, Z. Zhao, E. Zhang, A. Hawbani, A. Al-Dubai, T. Tan,
and A. Hussain, “A digital twin-assisted intelligent partial offloading
approach for vehicular edge computing,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 11, pp. 3386–3400, Nov. 2023.

[20] L. Zhang, H. Wang, H. Xue, H. Zhang, Q. Liu, D. Niyato, and Z. Han,
“Digital twin-assisted edge computation offloading in industrial Internet
of things with NOMA,” IEEE Trans. Veh. Technol., vol. 72, no. 9, pp.
11 935–11 950, Sep. 2023.

[21] J. Li, S. Guo, W. Liang, J. Wang, Q. Chen, Y. Zeng, B. Ye, and
X. Jia, “Digital twin-enabled service provisioning in edge computing
via continual learning,” IEEE Trans. Mobile Comput., vol. 23, no. 6,
pp. 7335–7350, Jun. 2024.

[22] Z. Yu, Y. Zhao, T. Deng, L. You, and D. Yuan, “Less carbon footprint
in edge computing by joint task offloading and energy sharing,” IEEE
Netw. Lett., vol. 5, no. 4, pp. 245–249, Dec. 2023.

[23] H. Ma, Z. Zhou, and X. Z. andXu Chen, “Toward carbon-neutral edge
computing: Greening edge AI by harnessing spot and future carbon
markets,” IEEE Internet of Things J., vol. 10, no. 18, pp. 16 637–16 649,
Sep. 2023.

[24] L. Gu, W. Zhang, Z. Wang, D. Zeng, and H. Jin, “Service management
and energy scheduling toward low-carbon edge computing,” IEEE Trans.
on Sustainable Comput., vol. 8, no. 1, pp. 109–119, 2023.

[25] C.-S. Yang, C.-C. Huang-Fu, and I.-K. Fu, “Carbon-neutralized task
scheduling for green computing networks,” in Proc. 2021 IEEE Glob.
Commun. Conf., Rio de Janeiro, Brazil, Dec. 2022, pp. 4824–4829.

[26] Z. Yu, Y. Zhao, T. Deng, L. You, and D. Yuan, “Less carbon footprint
in edge computing by joint task offloading and energy sharing,” IEEE
Netw. Lett., vol. 5, no. 4, pp. 245–249, Dec. 2023.

[27] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and M. B. Chhetri,
“faasHouse: Sustainable serverless edge computing through energy-
aware resource scheduling,” IEEE Trans. Sustain. Comput., vol. 17,
no. 4, pp. 9029–9041, July-Aug. 2024.

[28] G. Cui, Q. He, X. Xia, F. Chen, and Y. Yang, “Eesaver: Saving energy
dynamically for green multi-access edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 34, no. 7, pp. 2155–2166, Jul. 2023.

[29] W. Sun, H. Zhang, R. Wang, and Y. Zhang, “Reducing offloading latency
for digital twin edge networks in 6G,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, Oct. 2020.

[30] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,”
IEEE Internet Things J., vol. 8, no. 18, pp. 13 789–13 804, Sep. 2021.

[31] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimiza-
tion,” in AFSS international conference on fuzzy systems. Springer,
2002, pp. 288–300.

[32] A. A. Nasir, H. D. Tuan, H. Nguyen, M. Debbah, and H. V. Poor,
“Resource allocation and beamforming design in the short blocklength
regime for URLLC,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp.
1321–1335, Feb. 2021.

[33] H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V.
Poor, “Joint load balancing and interference management for small-cell
heterogeneous networks with limited backhaul capacity,” IEEE Trans.
Commun., vol. 16, no. 2, pp. 872–884, Feb. 2017.

[34] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-
tion. Philadelphia: MPS-SIAM Series on Optimi., SIAM, 2001.

[35] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning
for hybrid 5G services in mobile edge computing systems: Learn from
a digital twin,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp.
4692–4707, Oct. 2019.

[36] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and multi-
agent deep reinforcement learning for vehicular edge computing and

networks,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1405–1413,
Feb. 2022.

