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Abstract—This paper investigates the integration of drone
(aka UAV)-assisted networks with a reconfigurable intelligent
surface (RIS) to enhance energy efficiency in near- and far-field
communication scenarios. The coexistence of near-field and far-
field communications introduces unique challenges in ensuring
efficient resource allocation, managing interference, and meeting
quality of service requirements for users. Primary users in
the near-field areas have stronger signal links, while secondary
users and primary far-field users face increased path loss and
interference, necessitating sophisticated optimisation strategies
to balance their performance. To address these challenges,
we propose a joint optimisation framework for transmission
power allocation and RIS phase-shift design. The framework
aims to maximise energy efficiency while maintaining reliable
communication for all user groups, leveraging the complementary
characteristics of UAV and RIS technologies. The low-complexity
optimisation approach is developed, leveraging advanced succes-
sive convex approximation techniques and iterative algorithms.
The framework consists of the Dinkelbach algorithm for the
outer loop and a combination of linear and convex optimisation
algorithms for the inner loop. Linear programming is employed
to handle the large number of variables, such as phase-reflecting
coefficients, while convex programming is used to optimise power
allocation in UAVs, with convergence guaranteed. Simulation
results reveal significant energy efficiency gains compared to
baseline methods, demonstrating the effectiveness of the proposed
framework in managing the coexistence of near- and far-field
communications. The findings underscore the importance of
energy-efficient design in enabling scalable and sustainable UAV-
assisted networks, offering valuable insights for the development
of high-performance next-generation communication systems.

Index Terms—Extremely large RIS, near-and far-field commu-
nications, UAV networks.
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I. INTRODUCTION

Drone (aka UAV)-assisted communications have emerged
as a promising enabler for enhancing the capacity, coverage,
and efficiency of next-generation wireless networks, including
the fifth generation (5G) and the sixth generation of networks.
UAVs, with their high mobility and flexible deployment capa-
bilities, can be utilised as aerial base stations, relays, or user
equipment to provide seamless connectivity in diverse scenar-
ios such as urban environments, remote areas, and emergency
situations. The inherent advantages of UAVs, including their
ability to establish line-of-sight (LoS) links, agile mobility,
and rapid deployment, make them ideal for applications in
dynamic and complex network environments [1]–[3]. These
benefits are especially critical for supporting ultra-reliable
low-latency communications (URLLC), massive machine-type
communications (mMTC), and enhanced mobile broadband
(eMBB), which are the key components of beyond 5G and
6G systems.

Despite their potentials, UAV-assisted networks also present
unique challenges that demand innovative solutions. Issues
such as limited energy resources, dynamic channel conditions,
and efficient resource allocation remain critical barriers to
their full-scale deployment. Research efforts have been di-
rected toward addressing these challenges, including exploring
clustering and reinforcement learning for resource manage-
ment [4], optimising channel allocation and data delivery in
cooperative communication scenarios [5], and leveraging deep
reinforcement learning for resource scheduling in emergency
communication networks [6]. Furthermore, energy-efficient
designs for multi-UAV and vehicular network scenarios have
gained attention, considering the stringent energy budgets and
spectral efficiency requirements of beyond 5G systems [7], [8].
These research directions highlight the ongoing advancements
and critical open problems in realising the full potential of
UAV-assisted communications for future wireless networks.

The integration of UAVs with reconfigurable intelligent
surface (RIS) has emerged as a promising approach to enhance
the performance of next-generation wireless networks. This
combination leverages the high mobility of UAVs and the
wave manipulation capabilities of RIS to improve coverage,
capacity, and energy efficiency (EE). Recent studies have
investigated various aspects of this integration. For instance,
one study explored resource allocation and three-dimensional
(3D) trajectory design for power-efficient RIS-assisted UAVs
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under non-orthogonal multiple access (NOMA) communica-
tions, demonstrating the potential to minimise system energy
consumption through joint optimisation strategies [9]. Another
research effort focused on power minimisation in RIS-assisted
multi-UAV networks with NOMA, developing resource allo-
cation schemes that jointly optimise UAV positioning, RIS
reflecting coefficients, and transmit power [10]. Furthermore,
investigations into UAV-assisted and RIS-supported terahertz
communications highlighted the effectiveness of this integra-
tion in enhancing communication performance in the terahertz
band [11]. These studies highlight the potential of UAV and
RIS integration in achieving power-efficient, high-capacity,
and flexible wireless communication systems, while also ad-
dressing the complex optimisation challenges involved in their
deployment.

Near-field communications have gained considerable atten-
tion as a transformative technology for 6G networks, offering
unique opportunities to enhance spectral efficiency, spatial res-
olution, and EE. Unlike traditional far-field communications,
near-field communication leverages the spherical wavefront
characteristics of electromagnetic waves, which become sig-
nificant with extremely large-scale arrays and RIS. Recent
studies have explored the fundamentals, challenges, and po-
tentials of near-field multiple-input multiple-output (MIMO)
communications, emphasising their suitability for ultra-dense
networks and high-capacity systems [12]. Further advance-
ments have investigated mixed near- and far-field commu-
nications in extremely large-scale array systems, addressing
interference management and optimisation challenges in such
hybrid settings [13]. Moreover, location-driven beamforming
techniques for RIS-assisted near-field communications have
been proposed, enabling precise control of beam directionality
and significantly improving communication reliability and
efficiency [14]. Additionally, research on the achievable rate
optimisation of RIS-aided near-field wideband uplink systems
has highlighted the critical role of RIS in expanding capacity
and overcoming bandwidth limitations in near-field scenarios
[15]. These advancements emphasise the significant potential
of near-field communications to meet the stringent perfor-
mance demands of 6G networks, while also highlighting the
need for innovative solutions to tackle associated interference,
beamforming, and hardware design challenges.

A. Literature Review

The integration of near- and far-field communications with
extremely large RIS-aided UAV networks has been extensively
studied for its potential to improve system performance in
terms of capacity, spectral efficiency, and reliability. Recent
research has provided key insights and solutions to address
associated challenges.

Detailed near-field channel models have been introduced to
characterise spherical wavefront propagation and air-ground
communication effects in large-scale RIS-enabled networks.
These models offer valuable insights into path loss, phase
shifts, and spatial correlation, forming a basis for system-level
optimisation [16]. Spatial correlation analyses for extremely
large-scale array communications have provided guidelines for

designing array configurations and optimally positioning RIS
elements to maximise system performance [17].

Advancements in beamforming and beam training are crit-
ical for optimising the performance of RIS-aided near-field
communications. A multi-beam framework has been proposed
to serve multiple users simultaneously by exploiting the spatial
resolution of near-field propagation, enhancing communication
efficiency through effective beam management and interfer-
ence reduction [18]. Efficient codebook and beam training
strategies have also been developed for RIS-aided near-field
MIMO systems, addressing challenges in accurately aligning
beams under near-field conditions and significantly reducing
training overhead [19].

Optimising achievable rates in RIS-aided near-field com-
munications has been a focal point, especially in wideband
systems. Algorithms designed for joint optimisation of beam-
forming and power allocation have demonstrated significant
improvements in spectral efficiency by addressing frequency-
selective fading and maximising rates in wideband uplink
scenarios [15]. A beamforming approach leveraging Fresnel
zone characteristics has further enhanced spectral efficiency,
using the unique propagation features of near-field wideband
communications to support robust and high-capacity links
[20].

Furthermore, the integration of UAVs with near-field com-
munication technologies has led to significant advancements
in both antenna measurement systems and mobile edge com-
puting (MEC) networks. In MEC networks, UAVs have been
utilised to enhance computational offloading in NOMA sys-
tems, particularly in scenarios where near-field and far-field
communications coexist. Research has focused on optimising
task offloading to minimise latency by efficiently managing
communication and computing resources, such as user as-
sociation, capacity allocation, and transmit power. Given the
complexity of these mixed-integer programming problems, it-
erative algorithms employing block coordinate descent, convex
transformation, and relaxation techniques have been proposed
[21].

Collectively, these advancements in beamforming, rate opti-
misation, and channel modelling have significantly contributed
to the understanding and practical implementation of near- and
far-field communications in RIS-aided UAV networks, paving
the way for more efficient and scalable solutions in next-
generation wireless systems.

B. Motivation and Contributions

The rapid advancements in near-field communications and
RIS technology have opened new possibilities for improving
the performance of UAV-assisted networks, particularly in
mixed primary-secondary user systems. However, significant
challenges remain in integrating UAVs with RIS to address
the complex requirements of serving both near-field and far-
field users efficiently. Traditional approaches often focus on
independent optimisation of UAV and RIS parameters, which
neglects the intricate interplay between transmission power
allocation and RIS phase design. Moreover, the coexistence
of primary and secondary users introduces additional com-
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plexities, such as interference management and ensuring EE,
which are critical for sustainable network operations.

Motivated by these challenges, this paper investigates the
integration of UAV-assisted networks with RIS, focusing on
a scenario where primary users are served directly by UAVs,
and secondary users are served by RIS. The integration of
UAVs into wireless communication networks offers several
key advantages. Firstly, UAVs enable dynamic eavesdropping
mitigation by optimising secure communication links in real-
time, adapting to potential security threats in ways stationary
base stations cannot. Secondly, UAVs provide on-demand
deployment, particularly beneficial in higher-frequency com-
munications where near-field areas are wider. Their flexibil-
ity allows them to deliver high-quality service to primary
near-field users while ensuring connectivity for far-field and
secondary near-field users, supported by RIS. Thirdly, UAVs
enhance line-of-sight communications and interference mitiga-
tion by flying at higher altitudes, increasing the likelihood of
clear links. They also mitigate interference in high-frequency
communications by moving to optimal locations, addressing
the challenges of shorter base station distances. Finally, UAVs
enable rapid deployment and scalability, making them ideal
for disaster response, remote areas, or temporary events, while
offering a cost-effective solution for scaling networks based on
demand. Notably, the system considers near-field effects for
users in primary networks and for RIS-to-secondary user links,
necessitating precise modelling and optimisation techniques to
fully exploit the benefits of near-field communications. The
main contributions of this paper are as follows:

• We propose a practical system model for UAV-assisted
networks with the support RIS that incorporates primary
and secondary users. The model considers near- and
far-field communication for primary users and near-field
links for secondary users, capturing the unique character-
istics of spherical wavefront propagation.

• To enhance the sustainability of the network, we jointly
optimise transmission powers and RIS phase reflecting
coefficients. The objective is to maximise EE while
satisfying the quality of service (QoS) requirements for
both primary and secondary users.

• We develop a comprehensive optimisation framework to
tackle the formulated non-convex problem of EE maximi-
sation. Advanced techniques, including successive convex
approximation (SCA) framework and iterative algorithms,
are employed to ensure computational efficiency and
solution feasibility.

• Extensive simulations are conducted to evaluate the pro-
posed optimisation framework. The results demonstrate
significant improvements in EE compared to baseline
methods, highlighting the effectiveness of the joint op-
timisation of UAV and RIS parameters in mixed near-
and far-field communication environments.

By addressing the interplay between UAVs, RIS, and near-
field communications in a mixed user network, this paper
provides a foundation for future research and practical im-
plementations in energy-efficient UAV-assisted systems.

C. Paper Structure and Notations

The remainder of the paper is structured as follows. Sec-
tion II presents the system model and formulates the EE opti-
misation problem, detailing the interactions between UAVs,
RIS, and users in the mixed primary-secondary network.
Section III introduces the proposed solution, including the joint
optimisation framework for transmission power allocation and
RIS phase reflecting coefficients, alongside the algorithmic
approach to solve the non-convex problem. Section IV pro-
vides simulation results, showcasing the performance of the
proposed solution and comparing it with baseline methods to
highlight its effectiveness in improving EE. Finally, Section V
concludes the paper, summarising the key findings and dis-
cussing potential directions for future research.

The mathematical notations used in this paper are as fol-
lows. The Kronecker product is denoted by ⊗. The Euclidean
norm of a vector is denoted by ∥x∥. The logarithm with base
2 is represented by log2(·), while the base 10 logarithm is
denoted by log(·). The function diag(x) represents a diagonal
matrix with the elements of vector x on its main diagonal. For
complex numbers, ℜ(·) and ℑ(·) denote the real and imaginary
parts, respectively. The trace of a matrix X is denoted by
trace(X), and the determinant is represented by det(X). The
transpose and conjugate transpose (Hermitian) of a matrix X
are denoted by XT and XH , respectively. Finally, E[·] denotes
the expectation operator, and | · | represents the absolute value
for scalars or the cardinality for sets.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Near Field Near Field

  Extremely large
aperture array RIS

Far Field

Fig. 1. An illustration of the considered system model.

The system model considers a set of UAVs, denoted as
U = {1, . . . , U}, each equipped with NU antennas. Addi-
tionally, a RIS is employed, which is configured as a uniform
planar array consisting of NR1 reflecting elements per row
and NR2 reflecting elements per column, resulting in a total
of NR = NR1 ×NR2 reflecting elements. The primary users,
represented by the set K = {1, . . . ,K}, are directly served
by the UAVs, while the secondary users, represented by the
set M = {1, . . . ,M}, are served via the UAVs through the
RIS. We assume that primary users are located in both near-
and far-field areas of UAVs while secondary users are in
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near-field areas of the RIS. All users are assumed to have
a single omnidirectional antenna. The location of each user k,
UAV, and RIS are denoted by qk, qu, and qRIS , respectively.
Meanwhile, the positions of antenna i in the antenna array
equipped in UAV u and the RIS are represented by qu,i and
qRIS,i, respectively.

A. Channel Model

Since the locations of UAVs and the RIS are in the high
altitudes, the LoS paths dominate the others. Therefore, we
assume that signals are transmitted directly on one path from
UAVs to the RIS without any scatters, causing the channel
matrix from UAV u to the RIS [22]:

Hu,RIS =

√
1

PLu,RIS
βu,RISb(ϕ

(in)
u , φ(in)

u )aH
u (γu) (1)

where PLu,RIS =
(

4π||qu−qRIS,0||
λ

)2
, βu,RIS denote the path-

loss and the complex gain from UAV u to the RIS, respec-
tively. ϕ(in)

u , φ
(in)
u , γu are the azimuth angle of arrival (AoA),

elevation AoA at the RIS, and the azimuth angle of departure
(AoD) at UAV u, respectively. Due to far-field communication
between UAVs and RIS, the far-field array steering vectors of
UAV u and the RIS can be expressed respectively as follows
[18]

au(γu) =
1√
NU

[
e−j

2πnudU
λ sin γu

]T
nu=0,...,NU−1

, (2)

b(ϕ(in)
u , φ(in)

u ) =
1√
NR

[
e−j

2πn1dR
λ sinϕ(in)

u cosφ(in)
u

]T
n1=0,NR1−1

⊗
[
ej

2πn2dR
λ sinφ(in)

u

]T
n2=0,NR2−1

. (3)

The distinction between near-field and far-field channel
models arises from the nature of the received waveform:
near-field users experience a spherical waveform, while far-
field users receive a planar waveform. Consequently, the
key modeling parameters differ significantly. For near-field
communication, the locations of antennas are the primary
focus, whereas for far-field communication, the angle of arrival
becomes the central parameter.

Near- and far-field areas are commonly separated by the
Rayleigh distance with the formulation as dR = 2(N−1)2d2

λ
where N , d, and λ are the number of antennas, antenna
spacing, and carrier wavelength. Channel from UAV u to far-
field user k is modelled as

hNF
u,k =

λe−j 2π
λ ||qk−qu,1||

4π||qk − qu,0||

[
e−j

2πdU
λ sin θk,u

]T
n=0,NU−1

. (4)

Channel from UAV u to near-field user k is modelled as

hFF
u,k =

λ

4π||qk − qu,0||
[
e−j 2π

λ ||qk−qu,n||
]T
n=0,NU−1

. (5)

Channel from the RIS to near-field user m is modelled as

hNF
RIS,m =gNF

RIS,k[e
−j 2π

λ ||qm−q1,n2
||, ..., e−j 2π

λ ||qm−q1,NR2
||, ...,

e−j 2π
λ ||qm−qNR1,1||, ..., e−j 2π

λ ||qm−qNR1,NR2
||], (6)

where the large-scale path loss gNF
RIS,k = λ/(4π||qm −

qRIS,0||), qRIS,0 is the coordinate of the centre of the RIS.

B. Communication model

The received signal at primary user k which is served by
UAV u can be expressed as

yk = hu,kfu,kxu,k

+
∑
u′∈U

∑
k′∈K∪M\k

π
(1)
u′,k′hu′,kfu′,k′xu′,k′ + nk, (7)

where nk ∼ CN(0, σ2
k) denotes the additive white Gaussian

noise (AWGN) at primary user k, xu,k is the transmitted
symbol from UAV u to user k, and π(1) is the association
matrix for primary users to UAVs. If the value of an element
π

(1)
u,k in π(1) is 1, then UAV u serves user k, otherwise UAV

u does not serve user k. Due to lower penetration capabilities
of high-frequency signals through solid obstacles, we assume
that there is no LoS channel from UAVs to secondary users
in the remote area. The received signal at the secondary user
m can be formulated as

ym = hRIS,mΘHu,RISfu,mxu,m + nm (8)

+
∑
u′∈U

∑
m′∈K∪M\m

π
(2)
u′,m′hRIS,mΘHu′,RISfu′,m′xu′,m′ ,

where the diagonal matrix Θ = diag(θ) ∈ CNR×NR repre-
sents the beamforming matrix controlled by phase reflecting
coefficients, θ = [ejθ1 , . . . , ejθNR ] ∈ CNR is the vector con-
sisting of reflecting coefficients with each element θi ∈ [0, 2π).
π(2) is the association matrix for secondary users to UAVs. If
the value of an element π(2)

u,m in π(2) is 1, then UAV u serves
secondary user m, otherwise UAV u does not serve user m.

The upper bound of the data rate of primary user k can be
expressed as

Rk = B log2

(
1 +

|hu,kfu,k|2pu,k∑
u′∈U

k′∈K∪M
k′ ̸=k

π
(1)

u′,k′ |hu′,kfu′,k′ |2pu′,k′ + σ2
k

)
. (9)

In (9), due to the long distance between the RIS and the
primary area, the interference from RIS received at primary
users is minor compared to the one from UAVs. In addition,
we assume that there are many obstacles between UAVs and
the secondary users. Therefore, direct interference from UAVs
to the secondary users is neglected. The upper bound of the
data rate of secondary user m can be expressed as

Rm = B log2

(
1 +

|hRIS,mΘHu,RISfu,m|2pu,m
Im + σ2

m

)
, (10)

where Im =
∑
u′∈U

m′∈K∪M
m′ ̸=m

π
(2)
u′,m′ |hRIS,mΘHu′,RISfu′,m′ |2pu′,m′

is the interference received at user m.
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C. Optimisation Problem Formulation

EE plays a pivotal role in the design and operation of UAV-
assisted networks, particularly due to the inherent limitations
in active time and battery capacity of UAVs. The finite energy
reserves of UAVs impose strict constraints on their operational
lifespan, making efficient energy utilisation essential to ensure
sustainable and uninterrupted network performance. Moreover,
as UAVs are often deployed in dynamic and resource-intensive
environments, such as those involving near- and far-field
communications, optimising EE becomes critical for balancing
power consumption with the QoS requirements of users. In this
context, investigating and enhancing EE is not only a technical
necessity but also a key enabler for scalable, robust, and future-
proof UAV-assisted communication systems.

The primary objective is to maximise the EE of the system,
defined as the ratio of the total throughput to the total energy
consumption. Mathematically, the problem is formulated as
follows

max
P,Θ

K∑
k=1

Rk(P) +

M∑
m=1

Rm(P,Θ)

UPcc +

U∑
u=1

 K∑
k=1

π
(1)
u,kPu,k +

M∑
m=1

π(2)
u,mPu,m


(11a)

s.t.
K∑

k=1

π
(1)
u,kPu,k +

M∑
m=1

π(2)
u,mPu,m ≤ Pmax,∀u ∈ U , (11b)

Rk(P) ≥ R
(1)
min,∀k ∈ K, (11c)

Rm(P,Θ) ≥ R
(2)
min,∀m ∈ M, (11d)

P ≥ 0, (11e)
0 ≤ θi ≤ 2π,∀i, (11f)

where Pcc is the active circuit power of an UAV, Rk(P) is the
data rate of the primary user k, Rm(P,Θ) is the data rate of
the secondary user m, and Pu,k is the transmit power of UAV
u allocated to serve user k. The constraints include:

• (11b) limits the maximum transmit power of UAVs.
• (11c), (11d) guarantee the minimum data rate of primary

users and secondary users, respectively.
• (11e), (11f) guarantee the values of power and phase-shift

value in the feasible sets.

III. PROPOSED SOLUTION

Dinkelbach algorithm is used to transform the fractional
objective function into a sequence of parameterised sub-
problems as

max
P,Θ,µ

K∑
k=1

Rk(P) +

M∑
m=1

Rm(P,Θ)− µL(P) (12a)

s.t. (11b), (11c), (11d), (11e), (11f), (12b)

where µ is the slack variable, and L(P) = UPcc +∑U
u=1

(∑K
k=1 π

(1)
u,kPu,k +

∑M
m=1 π

(2)
u,mPu,m

)
. At the itera-

tion i, the parameter µ is updated using the formula as

µ(i+1) =

K∑
k=1

Rk(P
(i)) +

M∑
m=1

Rm(P(i),Θ(i))

L(P(i))
(13)

To solve problem (12), we fix the parameter µ and solve the
problem using block coordinate descent (BCD). In terms of
BCD approach, the original problem is divided into multiple
sub-problems with multiple separated blocks of variables
P,Θ. The algorithm to solve problem (12) is described in
Alg. 1.

Algorithm 1 Dinkelbach Algorithm

1: Initialize µ(0) > 0, ϵµ > 0, and set i = 0.
2: repeat
3: Solve the phase optimisation problem (14) and update

RIS phase-shift coefficients Θ(i).
4: Solve the power optimisation problem (22) and update

power allocation matrix P(i)

5: Update µ(i+1) using (13).
6: Compute the value of objective function ϕ(µ(i)) in

(12a).
7: Increase i = i+ 1.
8: until |ϕ(µ(i+1))− ϕ(µ(i))|/|ϕ(µ(i))| < ϵµ.

A. RIS Phase Optimisation

To solve RIS phase optimisation, the values of power
allocated at all UAVs and parameter µ are fixed. Since the
variables Θ are only in the data rate of secondary users, the
sub-optimisation problem can be expressed as

max
Θ

M∑
m=1

Rm(Θ) (14a)

s.t. (11d), (11f). (14b)

According to [23], we can approximate the lower bound of
(14a) as

Rm(Θ)

log2(10)
=
∑
k

log

(
1 +

|X|2
Y

)
≥ R̃m(θ;θ)

log2(10)

≜ − |X|2
Y (Y + |X|2)Y + 2ℜ

(
|X|2X
YX

)

+ log

(
1 +

|X|2
Y

)
− |X|2

Y
− |X|2

Y (Y + |X|2) |X|2, (15)

where X and Y are the values from the previous iteration in
terms of θ and are expressed as

X =
√
pu,mfH

u,mHH
u,RISdiag(hRIS,m)∗θH , Y = Im(θ)+σ2

m.

The expressions of X and Y at the current iteration in terms
of θ are defined as

X =
√
pu,mfH

u,mHH
u,RISdiag(hRIS,m)∗θH , Y = Ĩm(θ)+σ2

m,
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where Ĩm(θ) ≥ Im(θ). To find the upper bound of Ĩm(θ), a
tight inequality is used. The interference at secondary user m
can be rewritten as

Im(θ) =
∑
u′∈U

m′∈K∪M
m′ ̸=m

π
(2)
u′,m′pu′,m′θΥu′,m′θH , (16)

where Υu′,m′ = diag(hRIS,m)Hu′,RISfu′,m′fH
u′,m′HH

u′,RIS
diag(hRIS,m)∗. According to [23], given two matrices Υu′,m′ ,
Ξu′,m′ (Ξu′,m′ ⪰ Υu′,m′ ), Υu′,m′ = ξu′,m′ξHu′,m′ ,Ξu′,m′ =
∥ξu′,m′∥22I where ξu′,m′ = diag(hRIS,m)Hu′,RISfu′,m′ . An
true inequation is expressed as follows

θHΥu′,m′θ ≤ θHΞu′,m′θ + 2ℜ
(
θH(Υu′,m′ − Ξu′,m′)θ

)
+ θH(Υu′,m′ − Ξu′,m′)θ. (17)

Inequation (17) can be rewritten as

θΥu′,m′θH ≤ θ∥ξu′,m′∥22IθH + 2ℜ
(
θ(Υu′,m′

− ∥ξu′,m′∥22I)θH

)
+ θ(Υu′,m′ − ∥ξu′,m′∥22I)θH (18)

We have
∣∣[θ]i∣∣ = 1, ∀i = 1, . . . , N and ∥ξu′,m′∥22 =

ξu′,m′ξHu′,m′ = trace(ξu′,m′ξHu′,m′) = trace(Υu′,m′) =

ηu′,m′ . Therefore, the non-concave expression θΥu′,m′θH has
the linear upper bound expressed as

θΥu′,m′θH ≤ηu′,m′ + 2ℜ
(
θ(Υu′,m′ − ηu′,m′I)θH

)
+ θ(Υu′,m′ − ηu′,m′I)θH (19)

The upper bound of interference to secondary user m can be
expressed as follows

Ĩm(θ) ≜
∑
u′∈U

m′∈K∪M
m′ ̸=m

π
(2)
u′,m′pu′,m′

[
ηu′,m′

+ 2ℜ
(
θ(Υu′,m′ − ηu′,m′I)θH

)
+ θ(Υu′,m′ − ηu′,m′I)θH)

]
,

(20)

Overall, after using approximations (15) and (19), we success-
fully convert non-convex problem (14) into linear optimisation
problem that is given as

max
θ

M∑
m=1

R̃m(θ;θ) (21a)

s.t. R̃m(θ;θ) ≥ R
(2)
min,∀m ∈ M, (21b)

0 ≤ θi ≤ 2π,∀i (21c)

Theorem 1: The optimal value in iterations for RIS phase
optimisation is a monotonic increasing function. The conver-
gence of inner loop for solving problem (14) is guaranteed.

Proof: The proof is deferred to Appendix A.
For complexity analysis, problem (21) has NR complex

variables and M +2NR linear constraints. The computational
complexity for solving problem (21) can be expressed as
O((M + 4NR)

3.5L) if using interior-point methods where L

represents the number of bits required to encode the numerical
data of the problem. Compared to other convex programming,
the linear expressions in problems have the mathematical
formulation and computational handling which can be solved
solve highly efficient solvers.

B. Power Optimisation

To solve power allocation optimisation, the phase-shift
coefficieces of the RIS and parameter µ are fixed. The sub-
optimisation problem can be expressed as

max
P

K∑
k=1

Rk(P) +

M∑
m=1

Rm(P)− µL(P) (22a)

s.t. (11b), (11c), (11d), (11e). (22b)

The problem (22) is a non-convex problem due to Rk(P) and
Rm(P). According to [24], the data rate of primary user k in
the current iteration can be approximated as

Rk(P)

B
= log2

(
1 +

Xk

Yk

)
≥ R̂m(P; P̄)

B
≜ ā− b̄

Xk
− c̄Yk,

(23)
where

ā = log2

(
1 +

X̄k

Ȳk

)
+

2X̄k

ln(2)(X̄k + Ȳk)
> 0,

b̄ =
X̄2

k

ln(2)(X̄k + Ȳk)
> 0,

c̄ =
X̄k

ln(2)(X̄k + Ȳk)Ȳk
> 0.

Xk = |hu,kfu,k|2pu,k,

X̄k = |hu,kfu,k|2p̄u,k,

Yk =
∑
u′∈U

k′∈K∪M
k′ ̸=k

π
(1)
u′,k′ |hu′,kfu′,k′ |2pu′,k′ + σ2

k,

Ȳk =
∑
u′∈U

k′∈K∪M
k′ ̸=k

π
(1)
u′,k′ |hu′,kfu′,k′ |2p̄u′,k′ + σ2

k.

The value of any p̄u′,k′ is given in the previous iteration. Using
the same technique in inequation (23) to approximate Rm(P)
by its lower bound R̂m(P; P̄), we can successfully convert
non-convex problem (22) to convex one. CVXPY in PYTHON
can be effectively used to solve these convex problems. The
convex problem at an iteration can be expressed as

max
P

K∑
k=1

R̂k(P) +

M∑
m=1

R̂m(P)− µL(P) (24a)

s.t. (11b), (11e), (24b)

R̂k(P) ≥ R
(1)
min,∀k ∈ K, (24c)

R̂m(P) ≥ R
(2)
min,∀m ∈ M, (24d)
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Theorem 2: The optimal value in iterations for power opti-
misation is a monotonic increasing function. The convergence
of inner loop for solving problem (22) is guaranteed.

Proof: The proof is deferred to Appendix B.
For complexity analysis, problem (24) has K + M real

variables and 2K + 2M + U constraints. The computational
complexity for solving problem (24) can be expressed as
O((K +M)2

√
2K + 2M + U) [25].

IV. SIMULATION RESULTS

The simulation setup is a network configuration consisting
of four UAVs, each equipped with 128 antennas, operating
at an altitude of 75 meters. A RIS with 128 antennas is
also deployed at an altitude of 5 meters. Operating at a
carrier frequency of 28 GHz, the wavelength is approximately
0.0107 meters, and the antenna spacing for both UAVs and
the RIS is set to half the wavelength, approximately 0.00535
meters [21]. The Rayleigh distances for the UAVs and RIS
are determined using their respective configurations based
on antenna spacing and wavelength. The primary user area
is centered at (−500, 0, 0) with a radius of 100 meters for
the coverage of each UAV, while the secondary user area is
centered at (

40,−
√
dRIS

Rayleigh
2 − 52/2, 0

)
.

Fig. 2 shows an example of RIS-aided UAV networks. UAVs
are capable of transmitting at a maximum power of 1 W, with
circuit power consumption set to 20% of the maximum trans-
mit power. The minimum required data rates are 1 Mbps/Hz
for primary users and 0.5 Mbps/Hz for secondary users.
Performance evaluation is conducted over 1000 correlation
times.

To solve the optimisation problems and implement the sim-
ulations, CVXPY and Python are utilised. The simulations are
performed on a computing platform with a 2.1 GHz CPU and
16 GB of RAM, ensuring robust computational capacity for
solving complex optimization tasks and conducting detailed
evaluations. The key parameters used in the simulations are
listed in Table I.

A. Convergence Speed of Optimisation Methods

Fig. 3 illustrates the convergence performance of the Dinkel-
bach algorithm, showing its ability to rapidly achieve near-
optimal EE within the first three iterations. After an initial
improvement, the EE stabilises, demonstrating the algorithm’s
efficiency and reliability in reaching and maintaining an op-
timal solution. Its swift convergence and low computational
overhead make it particularly suitable for real-time applica-
tions in wireless communication networks, where efficient and
timely resource allocation is critical.

Fig. 4 illustrates the convergence of the phase-shift optimi-
sation algorithm for the RIS. The algorithm demonstrates a
steady and smooth increase in the objective value, reaching
near-optimal performance within approximately 10 iterations.
The gradual improvement and eventual stabilisation high-
light the robustness of the algorithm in solving the phase

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of UAVs 4
Number of antennas (UAV) 128
Number of antennas (RIS) 128
UAV altitude 75 m
IRS altitude 5 m
Carrier frequency 28 GHz

Wavelength 3×108

28×109
≈ 0.0107 m

Antenna spacing (UAV and RIS) λ/2 ≈ 0.00535 m
Rayleigh distance (UAV) 2((128− 1)× 0.00535)2/λ
Rayleigh distance (RIS) 2((128− 1)× 0.00535)2/λ
Primary user area center (-500, 0, 0)
Primary user area radius 100 m

Secondary user area center (40,−
√

dRIS
Ray

2 − 52/2, 0)

Number of correlation times 10
Bandwidth 10 MHz
Noise variance -174 dBm/Hz
Maximum UAV transmit power 1 W
Circuit power 20% Pmax W
Minimum rate for primary users, R(1)

min 1 Mbps/Hz
Minimum rate for secondary users, R(2)

min 0.5 Mbps/Hz
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Fig. 2. An example of RIS-aided UAV networks.

optimisation problem efficiently. The convergence behaviour
indicates that the algorithm effectively fine-tunes the phase
shifts of the RIS to maximise the overall system performance.
Additionally, Fig. 5 depicts the convergence of the power
allocation optimisation algorithm for the UAVs. This algorithm
converges more rapidly compared to the phase-shift optimisa-
tion, achieving near-optimal values within the first 5 iterations.
The sharp initial increase in the objective value showcases the
algorithm’s ability to quickly identify optimal power allocation
strategies, followed by stabilisation as it fine-tunes the solu-
tion. The convergence behaviours of both algorithms reflect
their complementary roles in guaranteeing the convergence
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Fig. 3. Convergence speed of the Dinkelbach algorithm.
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Fig. 4. Convergence speed of phase-shift optimisation algorithm.
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Fig. 5. Convergence speed of optimisation algorithm for power allocation.

of Dinkelbach framework. The power allocation algorithm’s
faster convergence supports real-time adaptability, while the
phase-shift optimisation ensures fine-grained control of RIS
parameters for sustained performance improvements. Overall,
these algorithms ensure the overall efficiency and practicality
of the proposed optimisation framework in complex commu-
nication networks.

B. Performance Analysis

To evaluate the performance of the proposed method,
EEPOPA (EE maximisation through phase optimisation and
power allocation), we compare it against three benchmarks.
The first benchmark, EERPPA, employs random phase shifts
while using power optimisation. The second, EEPORP, utilises
phase optimisation combined with random power allocation.
Lastly, EERPRP applies a fully randomised approach with
both random phase shifts and random power allocation. These
benchmarks are designed to assess the individual contributions
of phase optimisation and power allocation to the overall
system performance.
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Fig. 6. The comparison in the total EE with different number of primary
users.

Fig. 6 shows the EE performance of the proposed method,
EEPOPA, compared to the three benchmarks as the number
of users increases. In the simulation, the number of primary
near users and primary far users increases simultaneously,
starting from 4 users each and scaling up to 20 users each,
while the number of secondary users remains constant at 4.
EEPOPA consistently outperforms the benchmarks across all
user configurations, with a significant margin. This highlights
the effectiveness of jointly optimising phase shifts and power
allocation. EERPPA, EEPORP, and EERPRP achieve much
lower EE, demonstrating the limitations of randomised phase
shifts or power allocation. Among the benchmarks, EERPPA
shows slightly better performance, suggesting that power op-
timisation has a greater impact on EE compared to phase
optimisation alone. The results validate the superiority of
the proposed method in maximising EE, particularly as the
network scales with more users. This underscores its practical
applicability for energy-efficient communication in ultra-dense
networks.

Fig. 7 presents the EE performance of the proposed
method, EEPOPA, compared to three benchmarks—EERPPA,
EEPORP, and EERPRP—as the number of secondary near
users increases. The configuration begins with 4 secondary
near users and scales up to 20, while the number of primary
near and primary far users remains constant at 8 each. The
proposed method, EEPOPA, consistently achieves the highest
EE across all configurations, demonstrating its robustness and
efficiency in adapting to changes in the number of secondary
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Fig. 7. The comparison in the total EE with different number of secondary
users.

users. However, as the number of secondary near users in-
creases, a slight decline in EE is observed for EEPOPA,
which can be attributed to the additional resource demands
introduced by the growing number of users. In contrast,
the benchmarks—EERPPA, EEPORP, and EERPRP—show
significantly lower EE, with minimal variation across user
configurations. This suggests that the randomised approaches
employed in the benchmarks fail to efficiently handle the
additional complexity caused by an increasing number of
secondary near users. Notably, EEPOPA exhibits a stable and
scalable performance even as the number of secondary users
increases, reinforcing its suitability for ultra-dense networks
where secondary users play a key role. The figure also high-
lights the superiority of joint phase and power optimisation
over partial or randomised approaches in ensuring high EE
under varying user densities.

C. The Comparison of The EE Between Primary Near- and
Far-field Users

The purpose of this simulation is to investigate the EE
performance of primary near and primary far users under
the proposed method as the number of users increases. By
analysing how EE changes with varying numbers of users, we
can evaluate the scalability and effectiveness of the proposed
method in managing resource allocation for users at different
proximities to the base station.

Fig. 8 illustrates the EE performance of primary near and
primary far users as the number of primary users increases
simultaneously, starting from 4 users each and scaling up to
20 users each, while the number of secondary users remains
constant at 4. The results clearly show that the EE of both
user groups improves as the number of users increases. The
total EE for primary near users (EEnear) consistently out-
performs the total EE for primary far users (EEfar) across
all scenarios. For example, in the initial configuration (4,
4, 4), EEnear = 44.39 bits/Joule/Hz and EEfar = 41.83
bits/Joule/Hz. As the user count increases to (20, 20, 4),
these values rise to EEnear = 120.20 bits/Joule/Hz and
EEfar = 82.08 bits/Joule/Hz, respectively. This consistent
gap between EEnear and EEfar highlights the impact of user
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Fig. 8. EE far near bar chart.

proximity to the base station, with near users benefiting more
from the optimised resource allocation. Moreover, the gradual
increase in EE for both groups reflects the scalability of the
proposed method in handling larger user densities. The higher
growth rate in EEnear compared to EEfar further underscores
the method’s ability to prioritise EE for users closer to the base
station, ensuring better performance in ultra-dense networks.
These results validate the efficacy of the proposed method in
managing EE for primary users, regardless of their proximity
to the base station.

V. CONCLUSIONS

This paper has investigated the integration of UAV-assisted
networks with RIS in a mixed primary-secondary user envi-
ronment, focusing on enhancing EE. The proposed system
model has accounted for near-field communications for cer-
tain primary users and RIS-to-secondary user links, reflecting
the specific characteristics of these communication scenarios.
By jointly optimising transmission powers and RIS phase
reflecting coefficients, an advanced optimisation framework
has been developed to maximise EE while ensuring the QoS
requirements of both primary and secondary users. Due to a
ultra high number of variables of phase reflecting coefficients,
linear programming is employed for phase-shift design and
low-complex convex programming is applied to solve power
allocation for UAVs. Simulation results have demonstrated
that the proposed method significantly outperforms baseline
approaches in terms of EE. The results reveal consistent
gains for both primary near and far users, with near users
achieving higher EE due to their closer proximity to the base
station. Additionally, the proposed method exhibits scalabil-
ity and robustness as the number of users increases, main-
taining superior EE performance compared to benchmarks.
The fast convergence of the optimisation algorithms further
demonstrates the practicality of the proposed solution in real-
world deployments. These findings underscore the potential of
combining UAVs and RIS to address the challenges of mixed
near- and far-field communication scenarios in energy-efficient
networks. Future research could explore extending the model
to dynamic multi-UAV deployments, incorporating mobility
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management and real-time adaptation to user demands, thereby
advancing the capabilities of energy-efficient next-generation
communication networks.

APPENDIX A
PROVING THE CONVERGENCE OF RIS PHASE

OPTIMISATION

Lets θ(κ), θ(κ+1) be the solutions of problem (21) in the
(κ− 1)-th and the κ-th loops respectively, we have

R̃m(θ(κ+1);θ(κ)) ≥ R̃m(θ(κ);θ(κ)). (25)

In (15), the equality holds true if θ = θ. Therefore,

R̃m(θ(κ);θ(κ)) = Rm(θ(κ)). (26)

Also, according to (15), we have

Rm(θ(κ+1)) ≥ R̃m(θ(κ+1);θ(κ)). (27)

Combining (25), (26), and (27), we got

M∑
m=1

Rm(θ(κ+1)) ≥
M∑

m=1

Rm(θ(κ)), (28)

with the convergence state is achieved when θ(κ+1) = θ(κ).
Therefore, the inner iterative algorithm for finding the solution
of problem (14) is converged to a location maximum. ■

APPENDIX B
PROVING THE CONVERGENCE OF POWER OPTIMISATION

Lets P(κ), P(κ+1) be the solutions of problem (24) in the
(κ− 1)-th and the κ-th loops respectively. According to (23),
we have

Rk(P
(κ+1)) ≥ R̂k(P

(κ+1);P(κ)) ≥ R̂k(P
(κ);P(κ))

= Rk(P
(κ)), (29)

Rm(P(κ+1)) ≥ R̂m(P(κ+1);P(κ)) ≥ R̂m(P(κ);P(κ))

= Rm(P(κ)), (30)

Combining (29) and (30), we got

K∑
k=1

R̂k(P
(κ+1))) +

M∑
m=1

R̂m(P(κ+1)))− µL(P(κ+1)))

≥
K∑

k=1

R̂k(P
(κ)) +

M∑
m=1

R̂m(P(κ))− µL(P(κ)) (31)

Therefore, the inner iterative algorithm for finding the solution
of problem (22) is converged to a location maximum. ■

APPENDIX C
PROVING THE CONVERGENCE OF DINKELBACH

ALGORITHM

Since the objective values of the inner iterative algorithms
for solving problem (14) and (22) both increase monotonically.
Therefore, after each outer loop, we have

K∑
k=1

Rk(P
(i)) +

M∑
m=1

Rm(P(i),Θ(i))− µ(i)L(P(i)) ≥ (32)

K∑
k=1

Rk(P
(i−1)) +

M∑
m=1

Rm(P(i−1),Θ(i−1))− µ(i)L(P(i−1))

By substituting µ(i) =
∑K

k=1 Rk(P
(i−1))+

∑M
m=1 Rm(P(i−1),Θ(i−1))

L(P(i−1))
,

we obtain

µ(i+1) =

∑K
k=1 Rk(P

(i)) +
∑M

m=1 Rm(P(i),Θ(i))

L(P(i))
≥ (33)∑K

k=1 Rk(P
(i−1)) +

∑M
m=1 Rm(P(i−1),Θ(i−1))

L(P(i−1))
= µ(i)

The sequence µ(i) is monotonically increasing and bounded
above by an optimal value µ∗. ■
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