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Multi-rate Selection and Power Allocation Assisted
Probabilistic Edge Caching for Cooperative Video

Transmission in Dense D2D Networks
Thuong C. Lam, Nguyen-Son Vo∗, Viet V. Lam, Trang Hoang, Minh-Phung Bui, and Trung Q. Duong

Abstract—In this paper, we consider a cooperative transmission
model for video applications and services (VASs) in dense device-
to-device (D2D) networks. The model enables the mobile users
(MUs) to flexibly receive the videos from macro base station
(MBS) and D2D networks with mobile edge caching. Particularly,
we formulate a multi-rate selection and power allocation assisted
probabilistic edge caching (MPC) optimisation problem under
the resource constraints on storage, bandwidth, and power.
This problem is solved for the optimal caching probabilities of
requested videos corresponding to proper encoding rates selected.
The optimal powers of caching MUs and MBS for transmitting
the videos are also found to maximise the playback quality,
while utilising the system resources. The MPC optimisation
problem, which is complicated due to the presence of binary
and real variables and various constraints, is feasibly solved by
genetic algorithms (GA) with penalty function and truncated
chromosome. Simulation results are shown to demonstrate the
benefits of both GA and MPC methods compared to other
benchmarks. Detailed analyses and interesting findings provide
useful insights into the mobile edge caching design of dense D2D
networks for VASs.

Keywords—Cooperative video transmission, dense D2D networks,
multi-rate encoding, power allocation, probabilistic edge caching.

I. INTRODUCTION

A. General Context
According to the startling statistics reported by Statista

Research Department, it is anticipated that in 2033, there will
be about 32 billion Internet of Things (IoT) devices making
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the global data traffic exponentially increased [1]. In the 6G
era, wireless networks will be equipped with an ever powerful
capability based on communication, sensing, computing, and
intelligence [2], [3]. 6G technologies for IoT (6G-enabled
IoT) can provide not only new spectrum utilising THz bands;
extreme massive connectivity boosting the latency to sub-
millisecond level, the density to 10 times higher than 5G,
and the peak and experienced rates to Tbit/s and Gbit/s, re-
spectively; but also emerging network architecture integrating
with non-terrestrial networks of low-earth orbit (LEO) and very
LEO satellites, digital twins, and deep edge intelligence [4]–
[7].

In 6G-enabled IoT networks, numerous mobile users (MUs)
request the high data rate traffic of video applications and
services (VASs), e.g., 360o videos, video gaming, 4K/8K/12K
video streaming, virtual reality, augmented reality, and mixed
reality. The VASs, which occupy up to 79% of mobile data
traffic [8], are therefore the main focus of the Internet service
providers (ISPs) and content providers (CTPs). The prolifera-
tion of demand for VASs requires commercial platforms based
on emerging 6G technologies to provide the MUs with greater
visual and realistic sensations. While the system resources are
inherently limited, the numerous MUs requesting high data
rate of VASs for greater visual and realistic sensations may
cause a serious congestion situation at the backhaul links of
6G networks.

In this context, the most technical challenge to both ISPs
and CTPs is how to provide the MUs with high user-perceived
quality (UPQ) of VASs at a low cost and in a flexible and
quick deployment [9]. It is certain that developing high-
speed backhaul links with new network architectures and
technologies is costly. Alternately, optimisation designs for
VASs can be utilised flexibly and quickly by placing a higher
priority on software-defined edge (SDE) techniques [10]. This
way, the ISPs and CTPs can further satisfy the high demand
of MUs with better UPQ and conserve the system resources
(storage, throughput/bandwidth, power, and spectrum), but do
not introduce any changes to the network architectures and
technologies, thereby remaining low cost.

B. Related Works

One of the most efficient SDE techniques, which has drawn
a huge amount of attention from academic and industrial
circles, is edge caching. Edge caching technique provides the
MUs with local VASs in vicinity for high UPQ. Typical edge
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TABLE I. COMPARISON OF THE MOST IMPORTANT RELATED WORKS.

Ref. Size Rate awareness (RA) Resource allocation Transmission mode Objectives

[23] Different RA with matching N/A D2D with fixed clustering radius Playback quality (dB)
[24] Different RA with matching N/A D2D with optimal clustering radius Playback quality (dB)
[25] Different N/A N/A Cooperative Delay
[26] Different RA with matching N/A D2D Delay
[27] Different RA without matching N/A D2D Playback quality (dB)
[28] Different RA without matching N/A D2D System utility
[29] Different N/A PA D2D Capacity
[30] Different N/A N/A Cooperative Offloading probability
[31] Different N/A PA Cooperative Capacity
[32] Different RA without matching N/A Cooperative Cache hit
Our work Different RA with matching PA Cooperative Playback quality (dB)

caching designs fall into deterministic caching and proba-
bilistic caching. Deterministic caching deploys the contents in
stable placements like terrestrial base stations [11]. Meanwhile,
probabilistic caching prefers to deploy in dynamic and mobile
placements, e.g., device-to-device (D2D) networks, where the
MUs can join/leave the caching networks randomly [12].
Thanks to the ease of deployment in dynamic and mobile
environments, probabilistic edge caching for content offloading
over D2D networks has attracted increasing research interest
in the literature [12]–[20].

The probabilistic edge caching in D2D networks is either
purely to find the optimal caching policy or caching proba-
bility (CP) [12], [13], [19], [21], [22] or to be assisted by
other solutions, e.g., spectrum management, channel access
control, cooperative transmission with mode selection, clus-
tering, and energy harvesting [14]–[18], [20]. However, these
studies mostly consider the quality of service (QoS) based
performance metrics, for example, cache hit probability, delay,
offloading gain, and cache-added throughput and successful
transmission probability for common contents, rather than
visual UPQ for VASs [23]. In addition, the works [12]–[20]
induce four major concerns about designing an edge caching
network including: 1) contents with the same unit size, 2)
regardless of matching the capacity of system (represented by
the throughput) to the statistical playback resolution of mobile
devices, and thus not efficiently applying the rate-distortion
model (RDM) to multi-rate encoding adaption/selection for
caching, 3) no power allocation (PA), and 4) without the role
of macro base station (MBS) for cooperative transmission.

It is certain that the lack of addressing all the aforementioned
major concerns makes the conventional methods not take
full advantages of system resources, characteristics of videos,
diverse capacities of mobile devices, and additional techniques
to satisfy the MUs. In fact, there also have a number of studies
on probabilistic edge caching in D2D networks addressing
some of the concerns such as our previous work in [23], [24]
and the other ones in [25]–[32]. The detailed comparison of
these most important related works is presented in Table I.
We can see that none of them completely address the four
major concerns to gain the highest visual UPQ of VASs and
efficiently utilise the system resources.

C. Main Contributions and Organisation
In this paper, we fully address all aforementioned major

concerns by which the main contributions are summarised as

below.
• We propose a multi-rate selection and power allocation

assisted probabilistic edge caching (MPC) method for
cooperative video transmission in dense D2D networks
to satisfy the MUs and benefit the ISPs and CTPs by
utilising the storage, throughput, and power resources,
without any changes to the network architectures and
technologies.

• The MPC method applies not only the multi-rate prob-
abilistic edge caching (MRC) [23] but also the PA
to enhance the performance of MRC. Particularly, we
deploy a two-mode PA for transmitting the videos by 1)
the mobile devices in D2D offloading (DOL) mode of
MRC and 2) the MBS in normal cellular transmission
(NCT) mode. And then, the MRC and the NCT are
synthesised into a cooperative (COP) mode in which
an MPC optimisation problem is formulated and solved
for the optimal results of each video, i.e., CP, multi-
rate encoding selection (RS), and two-mode PA, so as
to maximise the playback quality of VASs.

• We modify the genetic algorithms (GA) to feasibly
solve the MPC optimisation problem with respect to
binary variables for the RS and real variables for the
CP and two-mode PA, under complicated constraints on
the system resources of storage, throughput, and power.

• Simulation results demonstrate that the GA is feasible
and the proposed MPC method outperforms the other
conventional ones. In addition, we present the detailed
analyses and interesting findings which provide valuable
insights into the mobile edge caching design of dense
D2D networks for VASs.

The rest of this paper is organised as follows. In Section II,
we propose a system model of cooperative video transmission
in dense D2D networks with MPC method, introduce the
primary notations, definitions, and concepts of the system
model, and then describe how it works. Section III is dedicated
to deriving the system formulations which enable us to present
the MPC optimisation problem and the GA solution in Section
IV. The performance evaluations of GA and proposed MPC
method in comparison with other conventional ones are shown
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

The system model of cooperative video transmission in
dense D2D networks with MPC method is illustrated in Fig. 1.
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Fig. 1. System model for cooperative video transmission in dense D2D
networks with MPC method.

TABLE II. NOTATIONS

Symbols Descriptions
I Number of videos
Ji Number of encoding rates (versions) of video i, i = 1, 2, ..., I
Ri,j Encoding rate (Kbps) of the version j of video i (namely vi,j ), j =

1, 2, ..., Ji

Si,j Size (Mbits) of vi,j
Di,j Reconstructed distortion of vi,j encoded at rate Ri,j , measured in

mean squared error, by following rate-distortion model (RDM)
wi,j Multi-rate encoding selection (RS) index, wi,j = 1 means that the

vi,j is selected for caching, otherwise wi,j = 0
ρ Probability that an MU serves as a sharing user (SU), otherwise (1−ρ)

is the probability that an MU serves as a requesting user (RU)
qi Probability that an SU serves as a video sharing user (VS) who caches

the video i, otherwise (1−qi) is the probability that an SU serves as a
spectrum sharing user (SS) who shares its downlink spectrum resource
for D2D offloading (DOL)

λMU Density of MUs
ri Access rate or popularity of video i following Zipf-like distribution
α Skewed popularity coefficient among different videos
RDOL DOL cluster radius
RNCT Transmission radius covered by MBS
W System bandwidth
PM Transmission power of MBS to the SSs who share their downlink

spectrum resources to establish the DOL mode
PNCT

i Transmission power of MBS to the DOL requesting users (DRs) in
NCT mode for video i

PDOL
i Transmission power of mobile devices in DOL mode for video i

N0 Power of additive white Gaussian noise
η Path loss exponent

The main notations used for the system are described in Table
II. The system includes one MBS, a dense number of MUs,
and I videos. We define ρ or (1−ρ) as the probability that an
MU is probable to be a sharing user (SU) or a requesting user
(RU). An SU can act as a video sharing user (VS) who caches
the video i with probability qi or a spectrum sharing user (SS)
who shares its downlink spectrum resource with probability
(1 − qi) for DOL mode, i = 1, 2, ..., I . There also have two
types of RUs that are 1) the RU requesting the video i but it
has already cached this requested video, and thus it is served
by itself, i.e., self-offloading requesting user (SR), and 2) the
RU requesting the video i and it has not cached this one yet,
thus it, namely DOL requesting user (DR), is served by either

the VSs via DOL mode or the MBS via NCT mode.
Assume that the spatial distribution of MUs is formulated

by a homogeneous Poisson point process (PPP) ΦMU with
density λMU, the distributions of VSs, SSs, SRs, and DRs
also follow the homogeneous PPPs ΦVS

i , ΦSS
i , ΦSR

i , and ΦDR
i

with densities λVS
i , λSS

i , λSR
i , and λDR

i , respectively given by

λVS
i = ρqiλMU, (1)
λSS
i = ρ(1− qi)λMU, (2)

λSR
i = (1− ρ)qiλMU, (3)

λDR
i = (1− ρ)(1− qi)λMU. (4)

To meet the diverse playback resolutions of mobile devices,
the video i is encoded into Ji rates representing different
quality versions, each, namely vi,j , j = 1, 2, ..., Ji, is of rate
Ri,j (Kbps) and of size Si,j (Mbits). Furthermore, the video i
has its own popularity ri following Zipf-like distribution [33],
[34], given by

ri =
i−α∑I
i=1 i

−α
, (5)

where α ≥ 0, which is the skewed popularity coefficient
among different videos, reflects the popularity pattern of videos
in accordance with the access behavior of MUs. For example,
α = 0 represents a special pattern when all the videos are of
equal popularity of 1/I . Meanwhile, increasing α makes the
popularity pattern more skewed between the higher popular
videos and the lower popular ones.

In this system, given the spatial distributions of all types
of MUs, the popularity pattern of videos, the caching stor-
age limit, the system throughput requirement depending on
the diverse playback resolutions of mobile devices, and the
transmission power limit, the problem is how to serve the
RUs the highest playback quality of the received videos.
To do so, the MBS is in charge of collecting the system
parameters to formulate the MPC optimisation problem. The
MPC optimisation problem is then solved for the optimal
results of 1) CP (qi), 2) RS index (wi,j ∈ {0, 1}), and 3) two-
mode PA, i.e., powers transmitted by the VSs in DOL mode
(PDOL

i ) and by the MBS in NCT mode (PNCT
i ), for the video

i. Here, wi,j = 1 means that vi,j is selected for caching with
probability qi. Otherwise, if wi,j = 0, it is not cached with
probability (1− qi). Then, given a particular density of MUs,
the MBS finds the optimal cluster radius to group the MUs
into different clusters. Finally, when the videos are requested
by the RUs in any cluster, the system serves the RUs by the
COP mode between MRC and NCT as follows:
• MRC: The RUs are served by either themselves, namely

self-offloading (SOL) mode, or the VSs in DOL mode.
In SOL mode, the RUs are served by themselves because
they have cached the requested videos. Meanwhile, in
DOL mode, the RUs have not cached the requested
videos yet, but at least one of the nearby VSs within
a given DOL cluster radius has already cached them.
The videos are offloaded from the VSs to the RUs via
D2D communications which are established by reusing
the same downlink spectrum resources of the SSs.
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• NCT: In case the channels for DOL mode cannot be
established since the achievable rate probability is lower
than a pre-defined threshold, the RUs are served by the
MBS via NCT mode.

III. SYSTEM FORMULATIONS

In this section, we derive the formulations of cooperative
video transmission system in dense D2D networks with MPC
method. These formulations enable us to compute the objective
function and the system resource constraints on caching stor-
age, throughput, and power of the MPC optimisation problem.

A. Cache, Spectrum Sharing, and Requesting Hit Probabilities
As aforementioned, there are four types of MUs including

VSs, SSs, SRs and DRs, each type has its own hit probability.
The VSs provide cache hit probability which consists of self-
cache hit and D2D-cache hit. The self-cache hit probability is
simply defined by qi, meanwhile the D2D-cache hit probability
is the probability that the video i is cached by at least one
VS within a given DOL cluster radius RDOL. To compute the
D2D-cache hit probability, we follow the homogeneous PPP
ΦMU with density λMU in which the prerequisite probability
of having N MUs within RDOL is expressed as [12]

Pr(N,RDOL, λMU) =
(πR2

DOLλMU)
N

N !
e−πR2

DOLλMU . (6)

Based on (6), the D2D-cache hit probability is given by

pVS
i = 1− Pr(N = 0, RDOL, λ

VS
i ) = 1− e−πR2

DOLλ
VS
i . (7)

Similar to (7), the SUs covered by the MBS within a
given radius RNCT provide spectrum sharing hit probability,
expressed as

pSSi = 1− e−πR2
NCTλSS

i , (8)

and the SRs and DRs provide SOL and DOL requesting hit
probabilities within RDOL which are respectively given by

pSRi = 1− e−πR2
DOLλ

SR
i , (9)

pDR
i = 1− e−πR2

DOLλ
DR
i . (10)

B. Achievable Rate Probabilities
1) Achievable Rate Probability in MRC: In SOL mode, the

SRs request the video i, and then they are served by them-
selves at rate Ri,j . In this case, obviously, the achievable rate
probability of SOL mode is pSOL

i,j = 1. Meanwhile, in DOL
mode, the video i is transmitted from the VS n (n ∈ ΦVS

i )
to the DR m (m ∈ ΦDR

i ) over D2D communications. The
capacity of the wireless channel from the VS n to the DR m
used for transmitting the video i is given by

C(i)
n,m = W log2

(
1 +

PDOL
i gn,m

N0 + PMgM,m + Ii

)
, (11)

where W is the system bandwidth; PDOL
i , which is optimally

found, is the power consumption for transmitting the video i

in DOL mode; PM is the power consumption of the MBS
transmitted to the SSs who share their downlink spectrum
resources to establish the DOL mode between a pair of VS
n and DR m; N0 is the power of additive white Gaussian
noise; and by utilising the underlay D2D communications, the
DR m suffers from the interference Ii caused by the other pairs
who reuse the same downlink spectrum resource to transmit
the video i, expressed as

Ii =
∑

k∈ΦVS
i \{n}

∑
l∈ΦDR

i \{m}
PDOL
i gk,l, (12)

and the channel gain gx,m, x ∈ {VS n, MBS identified by M},
which is defined as a Rayleigh fading coefficient following an
independent and identical exponential distribution with unit
mean hx,m and a standard power law path loss model with
exponent η, is given by

gx,m = hx,m ∥ dx,m ∥−η, (13)

where ∥ . ∥ is the Euclidean norm and dx,m is the distance
from x to the DR m.

In each cluster covered by the circular radius RDOL, we
assume that the VS nearby (or at) the center is in charge
of transmitting the video i. In the worst case, the video i is
transmitted over the longest distance of dn,m = RDOL. So, the
achievable rate probability to transmit the vi,j in DOL mode is
the probability that the capacity C

(i)
n,m is greater than or equal

to the rate Ri,j , given by [11], [35]

pDOL
i,j = Pr{C(i)

n,m ≥ Ri,j} = e
−ξDOL

i,j

[
λNCT

(
PM

PDOL
i

) 2
η +λi

]
,

(14)

where λNCT is the density of the MBS, ξDOL
i,j and λi are

respectively expressed as

ξDOL
i,j = π(RDOL)

2Γ(1 +
2

η
)Γ(1− 2

η
)(2

Ri,j
W − 1)2/η, (15)

and

λi = max
{
min{λVS

i , λDR
i } − λSS

i , 0
}
. (16)

In (16), λi is the density of the ones that cause the
interference when transmitting the video i.

2) Achievable Rate Probability in NCT: In NCT mode,
the DRs are served by the MBS because the achievable rate
probability in DOL mode (14) does not hold. To derive the
achievable rate probability in NCT mode, it is necessary to
compute the wireless channel capacity from the MBS to the
DR m for transmitting the video i, given by

C
(i)
M,m = W log2

(
1 +

PNCT
i gM,m

N0

)
, (17)

where PNCT
i is the power of the MBS used to transmit the

video i.
Based on (17), we can easily derive the achievable rate prob-

ability in the worst case of NCT mode, i.e., dM,m = RNCT,
as below

pNCT
i,j = Pr{C(i)

M,m ≥ Ri,j} = e
−ξNCT

i,j

(
N0

PNCT
i

)
, (18)
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where ξNCT
i,j is computed as

ξNCT
i,j = (RNCT)

η(2
Ri,j
W − 1). (19)

C. Average Playback Quality

To derive the average playback quality of received videos,
it is prerequisite to compute the reconstructed distortion Di,j

given the rate Ri,j of vi,j . By following [11], the relationship
between Ri,j and Di,j , namely RDM, is modelled by applying
a decaying exponential function, expressed as

Di,j = γi(Ri,j)
βi . (20)

To obtain (20), the video i is analysed to generate its prac-
tical RDM. Then, we select the values of γi and βi that make
(20) agreeable to the practical RDM. For the visual evaluation
of UPQ, the quality of vi,j is measured in dB represented
by peak signal-to-noise ratio. So, the reconstructed distortion,
which is measured in mean squared error is converted into dB
by using the expression below

Qi,j = 10 log10
( L2

Di,j

)
, (21)

where L is the range of the values that an encoded pixel takes.
So far, by utilising the homogeneous PPPs, the RDM and

popularity pattern of videos; the cache, spectrum sharing and
requesting hit probabilities; and the achievable rate probabili-
ties analysed in the previous sections, we can derive the overall
average playback quality of the videos received via the COP
mode, i.e., the cooperative transmission between the SOL and
DOL modes of MRC and the NCT mode, as below

Q =

I∑
i=1

ri

[
qip

SR
i

Ji∑
j=1

wi,jQi,j︸ ︷︷ ︸
SOL mode

+ (22)

(1− qi)p
DR
i

Ji∑
j=1

pCT
i,j wi,jQi,j︸ ︷︷ ︸

DOL mode & NCT mode

]
,

where wi,j is the binary RS index added to make a decision
on selecting the rate Ri,j associated with the quality Qi,j of
vi,j (wi,j = 1) or not (wi,j = 0), and pCT

i,j is the successful
cooperative transmission (CT) probability computed as

pCT
i,j = pSUD

i,j + (1− pSUD
i,j )pNCT

i,j , (23)

and in (23), pSUD
i,j is the successful probability of DOL mode

given by

pSUD
i,j = pVS

i pSSi pDOL
i,j . (24)

It is noted that (22) is the objective function of the MPC
optimisation problem which is maximised by finding wi,j , qi,
PDOL
i , and PNCT

i , regarding the system resources consump-
tion given in the sequel.

D. System Resources Consumption
In this paper, we utilise three types of system resources

consumed including caching storage, throughput, and power.
These resources are computed and then limited in the con-
straints of the MPC optimisation problem. First, the caching
storage consumption can be computed on average as below

S =

I∑
i=1

[
qip

SR
i + (1− qi)p

DR
i pVS

i

]∑Ji

j=1
wi,jSi,j . (25)

Then, the average throughput consumption, which depends
on the demand of SRs and DRs, is computed as

R =

I∑
i=1

ri

[
qip

SR
i

Ji∑
j=1

wi,jRi,j+ (26)

(1− qi)p
DR
i

Ji∑
j=1

pCT
i,j wi,jRi,j

]
.

Finally, the average power consumption is separated into
DOL power consumption and NCT power consumption, re-
spectively computed as

PDOL =

I∑
i=1

(1− qi)p
DR
i pVS

i pSSi PDOL
i , (27)

and

PNCT =

I∑
i=1

(1− qi)p
DR
i (1− pVS

i pSSi )PNCT
i . (28)

IV. MPC OPTIMISATION PROBLEM WITH GA SOLUTION

To maximise the overall average playback quality (22) under
the constraints on the caching storage, throughput, and power
resources consumption given in (25), (26), (27), and (28), the
MPC optimisation problem is formulated as below

max
wi,j ,qi,PDOL

i ,PNCT
i

Q, (29a)

s.t. 0 ≤ qi ≤ 1,∀i, (29b)∑Ji

j=1 wi,j ≤ 1,∀i, (29c)

S ≤ S, (29d)

R ≤ R, (29e)

PDOL ≤ PDOL, (29f)

PNCT ≤ PNCT, (29g)

where the constraint (29c) is to guarantee that the video i is
cached by selecting only one proper version vi,j encoded at
rate Ri,j , S is to limit the storage consumed for caching, R is
to limit the system throughput consumption in accordance with
the statistics on the diverse playback resolution of mobile de-
vices, and PDOL and PNCT are to limit the transmission power
consumption for DOL mode and NCT mode, respectively.

Regarding the GA [36] which is applied to solve the
constrained MPC optimisation problem (29), it is able to work
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with only simple constraints like (29b), but not with compli-
cated ones such as (29c), (29d), (29e), (29f), and (29g). This
shortage of GA can be overcome by using penalty function
[34]. To do so, the constrained MPC optimisation problem
is first converted into an unconstrained one by rewriting the
complicated constraints as below

∆wi = 1−
∑Ji

j=1 wi,j ≥ 0,∀i,
∆S = S − S ≥ 0,
∆R = R−R ≥ 0,
∆PDOL = PDOL − PDOL ≥ 0,
∆PNCT = PNCT − PNCT ≥ 0.

(30)

And then, the penalty function is derived as

F =λ1

I∑
i=1

(
min{0,∆wi}

)2
+ λ2

(
min{0,∆S}

)2
+ (31)

λ3

(
min{0,∆R}

)2
+ λ4

(
min{0,∆PDOL}

)2
+

λ5

(
min{0,∆PNCT}

)2
,

where λ1, λ2, λ3, λ4, and λ5 are the constraint violation
degrees used to punish the candidate solutions (namely in-
dividuals) that do not satisfy the constraints.

Taking (31) into account, the unconstrained MPC optimisa-
tion problem is expressed as

max
wi,j ,qi,PDOL

i ,PNCT
i

QF = Q− F. (32)

We can see that the unconstrained MPC optimisation prob-
lem is with respect to both binary variables of RS and real
variables of CP and PA. This problem can be solved by GA
[34], but the diversity and the complexity of one binary vari-
able matrix (wi,j) and three real variable vectors (qi, PDOL

i ,
PNCT
i ) lead to the result that each individual is represented

by a very long chromosome (string). A population of long
strings requires an extremely large number of individuals,
and thus draining much more time and memory to make GA
converged accurately and stably. To overcome this problem,
we divide the original string of each individual into four
substrings, namely GA with truncated strings (GTS) method.
This way, each substring associated with a particular variable is
executed by a different set of GA’s operators and parameters
depending on the characteristic of the variable. As a result,
the GTS converges more accurately and stably compared to
the implementation of GA with a population of very long
strings, namely GA with full strings (GFS). The detailed GTS
for solving the unconstrained MPC optimisation problem is
presented in Algorithm 1. It is noted in Algorithm 1 that TC
is the termination condition of the GTS. The GTS terminates
if it satisfies either Gen = NG or F ≤ 10−3 together with
QF kept unchanged in 10 continuous generations.

V. PERFORMANCE EVALUATION

A. Parameters Setting
In this paper, the parameters of system and GTS are detailed

in Table III and Table IV. We analyse five well-known videos

Algorithm 1 GTS for MPC Optimisation Problem
Input: Parameters of system and GTS in Table III and Table IV

TC: Termination condition
Gen = 1: Generation count

Output: Q
∗
F

(
w∗

i,j , q
∗
i , P

DOL,∗
i , PNCT,∗

i

)
1: Generate NP strings randomly, each has (NB+3×NR×BP) bits,

namely {X(z)
BR}, to represent the individual z, z = 1, 2, ..., NP

2: Separate the string {X(z)
BR} into 1) the substring {X(z)

1 } of NB

bits and 2) the substrings {X(z)
2 }, {X(z)

3 }, and {X(z)
4 }, each of

NR ×BP bits
3: Map {X(z)

1 } into the I×J binary matrix for w(z)
i,j by using b2m

operation and map {X(z)
2 }, {X(z)

3 }, and {X(z)
4 } into the three

real vectors for q(z)i , PDOL,(z)
i , PNCT,(z)

i respectively by using
b2r operation [34], [36], where J = max{Ji} and it is certain
that the redundant (J − Ji) bits do not effect the optimal results

4: Compute NP fitness values based on (32) to have
QF

(
w

(z)
i,j , q

(z)
i , P

DOL,(z)
i , P

NCT,(z)
i

)
5: while TC does not hold do
6: Put {X(z)

BR} = [{X(z)
1 }, {X(z)

2 }, {X(z)
3 }, {X(z)

4 }] associated
with the fitness values QF

(
w

(z)
i,j , q

(z)
i , P

DOL,(z)
i , P

NCT,(z)
i

)
into the mating pool for ranking

7: Select NPG = NP×PG individuals with higher fitness values
for breeding by using stochastic universal sampling operator
[36], so as to obtain {X(t)

BR} = [{X(t)
1 }, {X(t)

2 }, {X(t)
3 },

{X(t)
4 }], t = 1, 2, ..., NPG

8: Choose a pair of parents to create the offsprings by using
single point crossover with probability PCB for {X(t)

1 } and
multiple point crossover with probability PCR for {X(t)

2 },
{X(t)

3 }, and {X(t)
4 }

9: Mutate the offsprings {X(t)
1 } with probability PMB and the

offsprings {X(t)
2 }, {X(t)

3 }, and {X(t)
4 } with probability PMR.

This way, the positive genetic features that have been probably
lost in the previous steps can be recovered. As a result, we
obtain {X(t),∗

BR } = [{X(t),∗
1 }, {X(t),∗

2 }, {X(t),∗
3 }, {X(t),∗

4 }]
10: Repeat the step 3 and step 4 to obtain

QF

(
w

(t),∗
i,j , q

(t),∗
i , P

DOL,(t),∗
i , P

NCT,(t),∗
i

)
11: Reinsert {X(t),∗

BR } and QF

(
w

(t),∗
i,j , q

(t),∗
i , P

DOL,(t),∗
i , P

NCT,(t),∗
i

)
into the present generation to have the new sets of {X(z)

BR}
and QF

(
w

(z)
i,j , q

(z)
i , P

DOL,(z)
i , P

NCT,(z)
i

)
12: Gen = Gen+ 1
13: end while
14: Find the highest fitness value Q

∗
F

(
w∗

i,j , q
∗
i , P

DOL,∗
i , PNCT,∗

i

)
∈

QF

(
w

(z)
i,j , q

(z)
i , P

DOL,(z)
i , P

NCT,(z)
i

)
in the last generation

including Basketballdrill, Basketballpass, Foreman, Traffic,
and Racehorses to get their practical RDMs by using HM
reference software version 12.0 [37]. Then, the five pairs of
(γi, βi) that make (20) agreeable to the practical RDMs are
computed. Each video is encoded into three rates, i.e., full
rate, average rate, and lowest rate corresponding to highest
quality, average quality, and lowest quality. The values of
(γi, βi), Ri,j , and Si,j of the five videos are presented in
[38]. The GTS is deployed with {λ1, λ2, λ3, λ4, λ5} =
{102, 10−1, 10−3, 106, 104} selected by applying the method
given in [39]. It is noted that the mutation probabilities can be
ignored, i.e., PMB = 0 and PMR = 0. However, in the MPC
optimisation problem, the mutation operator slightly impacts
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TABLE III. SYSTEM’S PARAMETERS

Symbols Specifications
I 5 videos
Ji 3 versions, ∀i
RNCT 250 m
RDOL 15 m
λNCT 1/(πR2

NCT)
λMU 0.01 MUs/m2

ρ 0.3
η 4
α 1
N0 10−9 W
PM 10 W
W 5 MHz
S 1 Gbits
R 15 Mbps
L 255

TABLE IV. GTS’S PARAMETERS

Symbols Specifications
NP 15,000 individuals, i.e., population size
NB I × J bits in the binary matrix for wi,j , J = max{Ji}
NR I variables for each real vector qi, PDOL

i , or PNCT
i

BP 12 bits representing a real variable
NG 100 generations
PG 0.9, generation gap
PCB 0.6, crossover probability for binary matrices
PCR 0.6, crossover probability for real vectors
PMB 10−12, mutation probability for binary matrices
PMR 10−12, mutation probability for real vectors
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Generation
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1
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it
n

e
s
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106
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Mean

Penalty

3.762227e+01

0

Fig. 2. Convergence rate of GTS.

the convergence of GA, and thus we decrease PMB and PMR

started from 10−3 until the convergence becomes stable at
10−12.

B. GA Evaluation
The convergence rate of GTS is evaluated by deploying

the Algorithm 1 within 100 generations as shown in Fig. 2.
In each generation, we find the best fitness value (Best) and
the mean fitness value (Mean) with respect to all individuals.
Furthermore, to grasp the punishment progress over the gener-
ations, the average penalty value (Penalty) for all individuals is
computed. The results in Fig. 2 indicate that the GTS starts to

1000 5000 10000 15000 20000 25000

(a) Accuracy of GTS vs. N
P
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(b) Stability of GTS and GFS over 100 tries

34
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Elbow

Fig. 3. Accuracy and stability of GTS.

converge from the 50th generation. In convergence situation,
the Mean gets closer to the Best meaning that all individuals
become the best one characterised by the best genetic features.
Meanwhile, the Penalty goes to zero to ensure no punishments,
i.e., all the constraints are satisfied (F = 0).

We further evaluate the accuracy and the stability of GTS
as illustrated in Fig. 3. In Fig. 3(a), the accuracy of GTS is
investigated versus different population sizes by changing NP

from 1,000 to 25,000. For each population size, the Algorithm
1 is repeated 100 tries to yield a set of 100 approximate or
exact optimal results, and then, we compute the maximum
(Max), average (Ave), and minimum (Min) values of this set.
Fig. 3(a) shows that the higher population size we deploy, the
higher accuracy of optimal results we obtain but obviously
requiring higher time and memory complexity. The proper
population size is 15,000 happening at the elbow point of
the Ave. From the elbow point, even though we increase the
population size, the Ave is not significantly improved but
introducing much more time and memory. It is noted that
the Max is equivalent to the exact optimal result held if the
population size is large enough (NP = 5, 000). Regarding
the stability, we compare the GTS with the GFS done at
NP = 15, 000. By repeating 100 tries for both GTS and
GFS, we can see in Fig. 3(b) that the GTS is more stable
than the GFS is. To make the GFS more stable, it requires
a larger population size which must be greater than 15,000
individuals. The benefit of GTS is that it can provide a flexible
selection of crossover and mutation features, i.e., operations
and probabilities, depending on the different characteristics
of optimal variables. In addition, the accuracy and stability
analyses confirm that GTS can escape local convergence and
reach the global optimum. The GTS is therefore a feasible
solution for the complicated MPC optimisation problem.

C. MPC Evaluation
To evaluate the MPC performance, we compare it to

the other four methods including 1) multi-rate probabilistic
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TABLE V. FEATURES OF DIFFERENT METHODS.
````````Methods

Features CP RS CT PA S R PDOL PNCT

MPC ✓ ✓ ✓ ✓ 1 Gbits 15 Mbps P∗∗
DOL P∗

NCT

MRC [23] ✓ ✓ 1 Gbits 15 Mbps No No
MCM [32] ✓ ✓ ✓ 1 Gbits 15 Mbps P∗

DOL No
MPC-FR1 [31] ✓ ✓ ✓ 2 Gbits 20 Mbps 2×P∗∗

DOL 2×P∗
NCT

MPC-FR2 [31] ✓ ✓ ✓ 2 Gbits 25 Mbps 2×P∗∗
DOL 2×P∗

NCT

Note:
1) P ∗

DOL is the actual DOL power consumption of MRC [23] computed by using (27).
2) P ∗∗

DOL is the actual DOL power consumption of MCM computed by using (27).
3) P ∗

NCT is the actual NCT power consumption of MCM computed by using (28).
4) CP = Caching probability, RS = Multi-rate encoding selection, CT = Cooperative transmission,
PA = Power allocation.
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Fig. 4. Playback quality vs. α.

caching (MRC) [23], 2) MRC cooperated with MBS (MCM)
via NCT mode, 3) MPC with fixed maximum encoding rate
and R = 20 Mbps (MPC-FR1), and 4) MPC with fixed
maximum encoding rate and R = 25 Mbps (MPC-FR2).
The summary features of MPC, MRC, MCM, MPC-FR1, and
MPC-FR2 are listed in Table V. Particularly, in MRC, the
multi-rate probabilistic caching for SOL and DOL modes is
deployed. In MCM, the MRC cooperates with the MBS via
NCT mode to serve the RUs. Meanwhile, the MPC-FR1 and
the MPC-FR2 are deployed similarly to the MPC but we force
them to cache the fixed and full encoding rate, i.e., always
caching the highest quality version. Furthermore, we relax 1)
the storage constraint S from 1 Gbits to 2 Gbits and 2) the
throughput constraint R from 15 Mbps to 20 Mbps for MPC-
FR1 and to 25 Mbps for MPC-FR2. In addition, concerning
power consumption constraints, there are no power consump-
tion constraints with MRC, but we can compute the DOL
power consumption of MRC by using (27), namely P ∗

DOL.
Then, the detailed power consumption constraints (PDOL and
PNCT) of MPC, MCM, MPC-FR1, and MPC-FR2 are also
listed in Table V. The performance of MPC is evaluated
with respect to the playback quality and resource consumption
presented below.
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Fig. 5. Playback quality vs. λMU (MUs/m2).

1) Playback quality: We first evaluate the playback quality
performance of MPC, MRC, MCM, MPC-FR1, and MPC-
FR2 versus α as shown in Fig. 4. In comparison, the MPC
outperforms all the other methods because it fully takes
advantages of CP, RS, CT, and PA to serve the RUs. The MCM
is better than the MRC thanks to the cooperative transmission
assisted by the MBS via NCT mode. Regarding MPC-FR1 and
MPC-FR2, the videos are cached at full rates for the highest
resolutions leading to the fact that the wireless channels are
not capable of transmitting them well, i.e., low achievable
rate probabilities. The playback quality of both MPC-FR1
and MPC-FR2 is therefore lower than that of MPC, MRC,
and MCM. However, it is noted that when α is high enough
(α > 2.4 in Fig. 4), MPC-FR2 becomes better than MPC.
The reason is that MPC-FR2 benefits from the caching storage
and throughput constraints relaxed to 2 Gbits and 25 Mbps,
respectively, while serving the RUs a fewer number of popular
videos when α is high. In this case, it is certain that both MPC-
R1 and MPC-FR2 consume a huge amount of storage and
throughput resources compared to MPC, MRC, and MCM, as
shown in Fig. 9.

The playback quality performance is then evaluated versus
the density of MUs (λMU) as shown in Fig. 5. The increase
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of λMU makes the system prefer the SOL and DOL modes to
the NCT mode to serve the RUs. All methods increase to the
saturated situations in dense D2D networks, i.e., λMU > 0.05
MUs/m2, due to the physical limits of storage, throughput, and
power. Inversely, as λMU decreases, it is certain that the NCT
mode is likely to be used rather than the SOL and DOL modes
are. However, due to fewer RUs’ demands for the videos when
decreasing λMU, the system is not dedicated to serving them,
and thus the performance degrades rapidly. In comparison, the
proposed MPC outperforms other methods, especially up to
1.4 dB greater than MRC [23].

Next, Fig. 6 plots the performance of all methods versus
different values of DOL radiuses (RDOL). We can observe that
the system gains the highest performance at a specific value of
RDOL. The reason is that if RDOL decreases, on the one hand,
the transmission distance of DOL mode is shorter for higher
achievable rate probability. On the other hand, the number
of VSs and RUs in both DOL and SOL modes for caching
and requesting the videos becomes extremely low leading
to the fact that the performance of all methods degrades.
If we increase RDOL to the specific value, the DOL mode
and the SOL mode are optimally combined in cooperation
with the NCT mode to provide the RUs with the highest
playback quality. However, if we continue to increase RDOL,
the distance transmission of DOL mode is too long making
itself useless. In this case, the performance degrades to a
saturated situation in which the system serves the RUs by NCT
mode and SOL mode (without DOL mode).

Furthermore, in Fig. 7, we plot the performance of MPC and
MRC versus RDOL in accordance with different transmission
radiuses covered by MBS (RNCT). The results show that the
RUs in the clusters located near the MBS are seriously affected
by the interference transmission power of the MBS given in
(11), making the performance of MRC degraded. Meanwhile,
MPC exploits the NCT mode well to significantly enhance
the playback quality, and thus increasing the performance gain
between MPC and MRC. When the RUs are allocated too far

5 10 15 20 25 30 35 40 45 50 60 70 80 90 100
15

20

25

30

35

40

P
la

y
b

a
c
k
 q

u
a

lit
y
 (

d
B

)

MRC (R
NCT

 = 200)

MPC (R
NCT

 = 200)

MRC (R
NCT

 = 250)

MPC (R
NCT

 = 250)

MRC (R
NCT

 = 300)

MPC (R
NCT

 = 300)

Fig. 7. Playback quality vs. RDOL (m) and various values of RNCT (m).

5 10 15 20 25 30 35 40 45 50 60 70 80 90 100
10

15

20

25

30

35

40

P
la

y
b

a
c
k
 q

u
a

lit
y
 (

d
B

)

MPC (
MU

 = 0.005)

MPC (
MU

 = 0.01)

MPC (
MU

 = 0.025)

MPC (
MU

 = 0.05)

Peaks

Fig. 8. Playback quality vs. RDOL (m) and various values of λMU

(MUs/m2).

from the MBS, the NCT mode becomes useless and the gap
between MPC and MRC is reduced. In this context, only the
PA for DOL mode in each cluster is utilised to improve the
performance of MPC. It is clear that the performance of MPC
decreases without the NCT mode assisted and gets closer to
the performance of MRC when the RDOL is too long.

Finally, the interesting finding is illustrated in Fig. 8 when
we evaluate the performance of MPC versus RDOL in accor-
dance with different densities of MUs (λMU). To do so, we
set PDOL = 5 mW and PNCT = 7.5 W. The results indicate
that for each density λMU, we derive a corresponding radius
RDOL so that the playback quality can reach its peak. The peak
moves from left to right and becomes lower when increasing
RDOL and decreasing λMU. The peak gets lower because the
increase of RDOL and the decrease of λMU both make the
successful DOL probability degraded. This finding and the
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aforementioned analysis enable the system designers to select
an optimal DOL radius to group the MUs into different clusters
given a specific density of MUs, for the best quality of VASs.

2) Resource consumption: Besides gaining the highest per-
formance of playback quality, the proposed MPC can reason-
ably utilise the system resources of caching storage, through-
put, and power compared to the other methods. The results
in Fig. 9 show that the MPC, MCM, and MRC use the same
caching storage. Regarding the throughput resource, the MPC
consumes a little bit higher than the MRC does, but it is
lower than or equal to the MCM is. Meanwhile, the MPC-FR1
and MPC-FR2 consume the highest storage and throughput
resources as we relax the constraints S = 2 Gbits and R = 25
Mbps, instead of 1 Gbits and 15 Mbps in the MPC, MCM, and
MRC methods. Obviously, the storage and throughput resource
consumption of all methods must satisfy the constraints (29d)
and (29e).

With regard to power consumption, there are two types of
powers including DOL power (mW) and NCT power (W)
as shown in Fig. 10. In Fig. 10(a), it is noted that the
MRC method using SOL and DOL modes does not consume
any NCT powers. The cooperation between SOL, DOL, and
NCT modes further exploits the NCT power to improve the
system performance. Therefore, as we can see in Fig. 10(b), it
makes the DOL power consumption of MPC and MCM lower
than that of MRC. The MPC-FR1 and MPC-FR2 consume
the highest power resource because we double their power
constraints (PDOL and PNCT in Table V) compared to MPC.
Obviously, the power resource consumption of all methods
must satisfy the constraints (29f) and (29g).

VI. CONCLUSION

We have proposed the MPC method for cooperative video
transmission in dense D2D networks. The proposed method
exploits the benefits of many techniques including probabilistic
edge caching, multi-rate encoding, cooperative transmission
between SOL, DOL, and NCT modes, and power allocation to
provide the RUs with VASs. These techniques together with
other aspects of videos, wireless channels, and mobile devices
enable us to formulate the MPC optimisation problem. The
MPC optimisation problem in the form of binary and real
variables under the complicated constraints is efficiently solved
by using GA with penalty function and truncated string (GTS)
method. The optimal results of caching probability, multi-rate
encoding selection, and two-mode power allocation are found
to serve the RUs the maximum playback quality of VASs,
while utilising the system resources of storage, throughput,
and power. Simulation results demonstrate not only the fea-
sibility of GTS in terms of convergence rate, accuracy, and
stability, but also the efficiency of the proposed MPC method,
compared to other conventional ones. The detailed analyses
and interesting findings provide useful insights into the mobile
edge caching design of dense D2D networks for VASs.
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