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Abstract—Physical activity energy expenditure (PAEE) offers
significant benefits for general healthcare monitoring and has the
potential to promote healthy and active aging for elderly indi-
viduals. With recent advancements in quantum information and
computation, quantum machine learning (QML) has emerged as
a tool capable of improving upon the measurement of PAEE. In
this paper, we propose a hybrid QML model to predict PAEE
which consists of a classical long short-term memory (LSTM)
model integrated with a variational quantum circuit (VQC).
This model, which we refer to as the enhanced quantum long
short-term memory linear (eQLSTML), was subsequently trained
and tested using the publicly available GOTOV Human Physical
Activity and Energy Expenditure Dataset for Older Individuals.
In particular, we study the proposed eQLSTML model with
different gate choices in the quantum circuit along with various
embedding and layering techniques. Our results indicate our
model to be superior in both performance comparisons and pre-
diction when compared to traditional machine learning methods
currently employed. Our findings indicate that combining QML
approaches with wearable IoT healthcare devices provides a new
avenue for personalized healthcare monitoring and an effective
method for promoting healthy aging.

Index Terms—Internet-of-Things (IoT), IoT Healthcare, Quan-
tum Machine Learning, eHealth.

I. INTRODUCTION

Preserving health and functional mobility is paramount
for maintaining a high quality of life, especially from the
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perspective of healthy aging. This principle has garnered much
attention and has since led to the establishment of the Institute
of Aging by the Canadian Institution of Health Research
as a part of the Government of Canada’s commitment to
promoting healthy and independent lives for senior citizens
while preserving the quality of life in all health statuses.
Similarly, the UN Decade of Healthy Aging is an international
initiative established to improve the lives of older individuals
through strategies that promote age-friendly environments,
combat ageism, and ensure access to quality healthcare
tailored to the needs of the aging population. While these are
just two of many efforts aimed at addressing the challenges
associated with an aging population, several obstacles remain
persistent in achieving healthy aging [1]–[3]. For example,
a significant challenge is the prevalence of multimorbidity,
the coexistence of multiple chronic conditions, among
older adults, which complicates health management and
the maintenance of functional mobility. Recent studies have
indicated that multimorbidity affects physical function and
further complicates health management in older populations,
leading to higher rates of functional disability and additional
challenges to mobility and independence [4], [5].

To date, there have been an increasing number of studies
demonstrating how regular moderate-intensity exercise in older
populations can significantly reduce the risk of infectious
and cardiovascular diseases, as well as mortality [6]–[8]. One
of the key factors shown to promote physical activity of
individuals is the quantification and monitoring of physical
activity energy expenditure (PAEE) [9]–[11]. Previous work
has indicated that indirect calorimetry, measured through
wearable accelerometer sensors, is an effective method for
estimating PAEE [12]. More specifically, the combination
of accelerometer data with physiological measurements (i.e.,
heart monitoring) can provide reasonable estimations on PAEE
through linear and non-linear modeling methods such as ran-
dom forest regressors and deep learning methods like artificial
and convolutional neural networks [13], [14].

Interestingly, estimating PAEE from accelerometer data
has been primarily performed on young and middle-aged
populations [13], [15], making existing methods less
suitable for older populations who have different energy
requirements, expenditure patterns, and activity levels [16]–
[19]. Additionally, older adults are on average more sedentary
in comparison to younger individuals [20], resulting in the
need for a simpler PAEE model that is less computationally
intensive but sufficient enough to make accurate predictions.
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In recent years, the fields of quantum technology and
information have seen significant developments in hardware
and algorithms [21], [22]. One such development has been
the emergence of quantum machine learning (QML), which
leverages properties of quantum systems like superposition
and entanglement to solve complex computational problems
that were previously deemed intractable. One technique within
QML of particular value is the variational quantum circuit
(VQC) [23], which is a hybrid algorithm with tunable parame-
ters optimized through classical algorithms. This approach has
since been applied to various problems, some of which include
energy time-series forecasting [24], [25], DNA classification
[26], and predictions in electroencephalogram abnormalities
[27]. Notably, there has been a recent development of a
quantum-based Long Short-Term Memory (QLSTM) model
for time-series data with variational quantum circuits (VQCs)
replacing classical neural layers; introduced first in 2022 by
Chen et al. [28]. Similarly, Ceschini et al. presented a fully
quantum implementation of LSTM cells on quantum hardware,
aiming at accelerating computation and enhancing scalability
for quantum neural networks [29]. Additionally, Yu et al.
demonstrated a hybrid QLSTM approach incorporating VQCs
for solar irradiance prediction, achieving superior accuracy
compared to classical forecasting methods [25]. Another study
by Lin et al. showed that their Quantum-Train LSTM signif-
icantly reduces the number of trainable parameters in flood
prediction tasks, highlighting the viability of quantum methods
for large-scale parameter reduction, albeit with a noted trade-
off in predictive accuracy [30]. Furthermore, Chehimi et al. ex-
plored federated QLSTM (FedQLSTM) frameworks, enabling
distributed quantum learning for temporal data and substan-
tially reducing communication overhead, thereby paving the
way for scalable and privacy-preserving quantum machine
learning applications [31].
These pioneering studies have significantly influenced this
research as they demonstrate foundational insights into the
potential and practical implementation strategies of quantum-
enhanced LSTM models. Inspired by these advancements,
quantum computing is particularly suitable for modeling subtle
temporal variations and intricate feature interactions often
present in healthcare sensor data, specifically in the context of
physical activity energy expenditure (PAEE) estimation. While
classical deep learning methods are powerful, they probably
encounter challenges in accurately capturing nuanced data
patterns critical for precise predictions in older populations.
In contrast, quantum-enhanced machine learning leverages
quantum properties such as entanglement and interference to
better represent and explore these complex temporal corre-
lations [32], [33], thus positioning quantum computing as
a compelling approach to enhance predictive accuracy and
computational efficiency in PAEE monitoring for older adults.
Motivated by these promising findings, this paper aims to ex-
plore the potential of QLSTM methodologies in the healthcare
domain, which can leverage advantages to improve predictive
performance on healthcare-related time-series data, such as
forecasting physical activity energy expenditure (PAEE). In
this work, we propose a novel hybrid linear quantum long

short-term memory model and explore different embedding
techniques and VQC configurations to optimally forecast
PAEE in older individuals. The main contributions of this
paper include:

• The design of an enhanced-quantum Long Short-Term
Memory model with a linear embedding layer, which we
refer to as eQLSTML, which utilizes data preprocessing
to predict the PAEE for older individuals.

• Exploration and implementation of different quantum en-
coding techniques and associated discussion surrounding
the implementation of QML for processing raw time
series biosignal sensor data.

• Investigation of VQCs with strongly entangled CRX
gates and circuit block connectivity patterns for better
expressibility and stronger entanglement.

• Application of a separate embedding layer before and
after each VQC block to improve the learning ability for
non-linear problems.

The paper is organized as follows: Section I presents the
introduction, motivation, and main contributions of this study.
Section II reviews related works relevant to this research.
Section III describes the dataset, including an overview of the
data, details about data collection procedures, and specifica-
tions of devices and locations involved. Section IV outlines
the feature engineering process, specifically focusing on data
transformation and sequential data preparation. Section V
provides comprehensive background knowledge about quan-
tum computing and the classical LSTM model as a basis
for subsequent discussions. Section VI details the proposed
model’s framework, introduces the linear embedding layer
with adjustments made for our implementation, explains the
rationale behind our selected configuration, and describes the
proposed model architecture, implementation details, opti-
mization methods, evaluation metrics, and training approaches.
Section VII presents experimental results along with detailed
analyses, comparisons, and discussions. Finally, the paper
concludes with Section VIII.

II. RELATED WORKS

In recent years, various methods for estimating PAEE in
younger populations have been developed, with models rang-
ing from simple linear regression to more complex machine-
learning approaches. Montoye et al. [13] presented a compre-
hensive comparison of multiple methods which included linear
regression, linear mixed models, and artificial neural networks
(ANNs) using data from 40 participants, aged between 18
and 44 years old, who wore sets of four accelerometers while
performing various physical activities. The measurements were
recorded by a portable metabolic analyzer connected to a
breathing mask. It was found that the ANN models generally
outperformed the studied linear models in terms of correla-
tion and root mean squared error (RMSE), particularly when
accelerometers were placed on the wrists.

Similarly, Ellis et al. [34] developed a random forest
regressor (RFr), which involved using data, collected from
wearable accelerometers and a portable indirect calorimeter,
from 40 participants (average age 35.8) performing household
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and locomotion activities during a six minute period. RFr was
compared to a previously developed ANN model created in
[35] and was shown to perform favorably by producing a
lower RMSE, which was further amplified when including data
associated with participant heart rate and data from wrist and
hip accelerometers. An additional study by Zhu et al. [36]
introduced a convolutional neural network (CNN) for PAEE
estimation using data from a cohort of 30 participants with
an average age of 27.8 years old. Throughout a time period
of 30 minutes, each participant performed six activities of
various intensity both inside and outside while equipped with
a triaxial accelerometer device on the waist and a portable
indirect calorimetry device to record participant’s heart rate.
This model, which automatically extracted features from the
accelerometer data, yielded the best results when compared to
the previously mentioned linear regression and ANN models
in terms of RMSE across several activity types, however,
still struggled in capturing the long-term dependencies in
sequential data, which is essential for accurately modeling
PAEE from triaxial accelerometer data.

Although QML approaches have not yet been applied to
PAEE data, their use in time series data in healthcare fields has
increased dramatically in recent years due to their effectiveness
in processing large, high-dimensional datasets, which classi-
cal techniques commonly struggle with. For instance, VQCs
and quantum neural networks (QNNs) have been employed
to predict states of mind based on electroencephalogram
(EEG) signals during neuromarketing experiments involving
like/dislike decisions [37]. Moreover, the quantum k-means
algorithm was applied to cluster groups based on demographic
and laboratory measurement data to predict heart disease [38].
In terms of treatment effectiveness, QNNs have been used
to forecast knee arthroplasty outcomes, leveraging clinico-
demographic data from more than 150 patients over two years
of treatment. Additionally, different types of QNNs, including
continuous-variable models, have been applied to COVID-19
time series data to optimize population-level measurements
[39]. These models, although demonstrated the success of
quantum approaches in processing complex time series data,
are primarily focused on classification tasks and do not fully
address the complexities of sequential data found in PAEE
estimation.

III. DATASET

In this work, we analyze sensor-based experimental data
from wearable technology obtained from the Growing Old
Together Validation (GOTOV) study accessible through the
4TU data repository [40], [41]. The data includes both indirect
calorimetry measurements and accelerometer data collected
from various body locations, such as the ankle and wrist.

A. Overview

The GOTOV study consists of 35 individuals (14 females,
21 males), mainly from Leiden, Netherlands, aged between 60
and 85 years old. The statistical overview of participant-level
data is shown in Table I.

In total, participants engaged in 16 different indoor and
outdoor activities over a timeframe of 90 minutes. Indoor
activities included resting postures (i.e., sitting and standing),
stair climbing, and household chores, while outdoor activities
included a variety of exertion levels, such as walking at
different paces and cycling. It is noted that only 25 participants
were involved in outdoor activities due to weather limitations.

TABLE I: Statistical information collected from participants
while performing 16 different activities. SD - standard devi-
ation, EEm - energy expenditure measurement, BMI - body
mass index, BR - breathing rate.

Mean SD
Age (years) 65.7 5.0
Height (cm) 174.5 7.9
Weight (kg) 83.1 11.5
BMI (kg/m) 27.2 2.7
EEm (Kcal) 3.8 1.1

BR (s) 0.31 0.04

B. Devices and locations

Fig. 1 presents the set of devices used and their relative
placement on each participant of the study. As shown in the
figure, this included an accelerometer and additional sensors
to measure physiological signals like oxygen consumption,
carbon dioxide production, breathing rate, and heart rate. We
note that in this paper, we restrict our focus to data coming
from accelerometers and indirect calorimetry.

Fig. 1: Depiction of device placement for participants in the
study. In total, four different devices were used in six body
locations including the face, torso, chest, wrist, ankle, and
upper leg.

Ankle and wrist-worn GENEActiv accelerometers captured
the activity levels and movement patterns of the participants.
These accelerometers recorded triaxial acceleration data within
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an expected uncertainty of ±8 g and a sampling rate of 83 Hz.
Sample data from each accelerometer axis (ankle and wrist)
is shown in Figure 2.

Fig. 2: Example showing raw data measured from ankle and
wrist devices for household and walking.

Indirect calorimetry measurements were performed using
a COSMED K4b2 system [42] which measured breath-by-
breath volumes of oxygen (O2) and carbon dioxide (CO2)
throughout the performed activities. The system included
a mask connected to a portable unit that housed O2 and
CO2 analyzers, barometric sensors, and processing electronics.
These analyzers produced the measurement for O2, and CO2

exchange, allowing for the calculation of the energy expen-
diture measurement (EEm), along with metabolic equivalents.
The EEm output served as our target variable for our PAEE
modeling in the model training and testing sections. Notably,
the sampling rate of this signal matched participant breathing
rates, resulting in a variable sampling rate averaging around
0.3 Hz.

IV. FEATURE ENGINEERING

To construct our model for PAEE estimation, it is es-
sential to transform the predictor (accelerometer) and target
(EEm) data. Specifically, the transformations normalize the
data through the use of a downsampling rate for target and
input data, followed by the construction of an appropriate
sequence for model training and evaluation.

A. Target downsampling

As mentioned previously, the COSMED system measures
energy expenditure per breath, which resulted in a variable

sampling rate that reflects the participant’s breathing patterns
(see Fig. 2). Therefore, to address this variability and create
a fixed sampling rate suitable for training machine learning
models, the downsampled COSMED signal is assumed to
be an effective resolution. The chosen target sampling rate
is 0.1 Hz, meaning within each window we could calculate
the mean EEm value to create a new data point representing
the average energy expenditure over that 10-second interval.
This downsampling approach avoids generating more training
data during periods of higher breathing, while also smoothing
out occasional outlier EEm values measured by the COSMED
system.

B. Standardize input data

As a first step, the target and numeric predictor data were
z-normalized to have zero mean and a standard deviation
of 1. This ensures both data consistency and quality while
removing any inconsistencies. Furthermore, this ensures these
features are on a comparable scale, leading to a more robust
and interpretable model, resulting in a fairer evaluation of
model performance [43], [44]. In addition, data normalization
can mitigate potential bias arising from features with vastly
different scales, resulting in an improved convergence rate and
enhancing the stability of the model [45]. It also facilitates
more effective comparisons between predictive targets by
ensuring each contributes equally to the analysis, thereby
enhancing interpretability [46].

C. Building sequence

The training process of general recurrent neural network
(RNN) modeling requires sequence data, and the LSTM
technique is a special type of RNN. Therefore, the input data
from the accelerometers will be transformed into sequences,
where each sequence is linked to a single EEm value. In this
study, each sequence captures the sensor data measured at the
moment leading up to a given EEm value in a specific window
time with a defined length of the sequence (i.e., the number
of inputs) and resolution (i.e., sampling rate), therefore, the
training process of the RNN model used in this study requires
transforming accelerometer signal data into specific sequences.
This involves the determination of three key factors:

• The sequence length (Ls): the number of data points
included in each sequence that will be used during the
training and testing process (i.e., RNN sequence size).

• The window length (Lw): defines the actual time duration
that the sequence represents.

• Resolution/sampling rate (R): this determines the fre-
quency that data captures within the window, and is equal
to the ratio between Ls and Lw.

In simple terms, within the same window size, the more data
points used in the sequence (i.e., longer sequence size), the
lower the sampling rate needed to maintain. Crucially, Lw

needs to be long enough to capture the influence of past
activities on energy expenditure. In this work, we use the most
optimal combination of sequence length of 50 for the window
length of 2 minutes with a down-sampling rate of 0.417 Hz.
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To synchronize predictor data to the expected sequence and
window lengths, we downsample the accelerometer data to a
specific sample rate. This downsampling aggregates multiple
data points into a single value. While several aggregation
approaches exist, such as using the mean or other statistical
disperation aggregations, in this work we employ the standard
deviation method. The standard deviation has been shown to
effectively capture the variation in movement within the GO-
TOV dataset [14], making it the optimal choice for aggregation
in our preprocessing stage.

V. FOUNDATIONS OF QUANTUM COMPUTING

A. Quantum bits, Gates and Circuits

In classical computation, the fundamental unit of informa-
tion that is manipulated, operated, and stored is called a bit
and is assigned a state of either 0 or 1. Quantum computation,
however, relies on a quantum bit (i.e., qubit) and can exist in
both of these states simultaneously via a superposition [47].
This general state can be defined as

|ψ⟩ = α|0⟩+ β|1⟩ (1)
where α and β are the probability amplitudes of the |0⟩ and
|1⟩ states, respectively, such that |α2|+ |β|2 = 1. Furthermore,
quantum gates are used to perform basic operations on these
qubits and are defined as unitary matrices. Below we introduce
the specific gates used in this work:
Rotation gates: are operators that rotate the state of a given
qubit around the x-, y-, or z-axis of the Bloch sphere. Thus,
these rotation gates are angle (ϕ) dependent and are repre-
sented as:

Rx(ϕ) =


cos(ϕ2 ) −i sin(ϕ2 )

−i sin(ϕ2 ) cos(ϕ2 )

 , (2)

Ry(ϕ) =


cos

(
ϕ
2

)
− sin

(
ϕ
2

)
sin

(
ϕ
2

)
cos

(
ϕ
2

)
 , (3)

Rz(ϕ) =

e−iϕ
2 0

0 ei
ϕ
2

 . (4)

Controlled-not (CNOT) gate: is a basic two-qubit quantum
gate widely used in quantum computing to generate quantum
entanglement. It operates on a pair of qubits, where one qubit
acts as the control and the other as a target. The function of
the CNOT gate is to flip the state of the target qubit, and its
matrix representation can be defined as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (5)

where the first two rows correspond to the control qubit in
state |0⟩ while the last two rows correspond to it in the
state |1⟩. This means that if the control qubit is in |1⟩, the
target qubit flips its state (i.e., 0 becomes 1 and vice-versa).

Otherwise, the target qubit remains unchanged. We note that
while the CNOT gate is an effective and simple technique
to create entanglement, it also has limitations. Since CNOT
gates do not allow for full connection between all pairs of
qubits, the resulting entanglement between qubits is relatively
weak. Consequently, this limited entanglement leads to the
reduction of the circuit’s ability to fully exploit quantum cor-
relations, hence hindering model learning ability. The absence
of sufficient qubit interactions impairs the model’s capacity
to explore complex quantum states, ultimately affecting its
overall expressibility.
CRZ gate: To enhance the expressibility of the quantum cir-
cuit, a more advanced rotational gate controlled-Z gate was
applied by Cao et al [25], which offered a better ability to
control state evolution in their QLSTM model. The CRZ gate
is a two-qubit gate that applies a rotation around the z-axis
of the target qubit if the control qubit is in the |1⟩ state. The
CRZ gate is defined as:

CRZ(θ) =


1 0 0 0
0 1 0 0

0 0 e−i θ
2 0

0 0 0 ei
θ
2

 (6)

The most significant drawback of the CRZ gate is commuta-
tive, limiting its ability to explore diverse quantum state space
[48].
CRX gate: Similar to the CRZ gate, the CRX gate is a two-
qubit operation that applies an x-axis rotation on the target
qubit if the control qubit is in the |1⟩ state. This introduces
significantly better flexibility in quantum state manipulation
in comparison to the CRZ gate, as unlike the CRZ gate, it is
not commutative. Additionally, CRX gates allow for a broader
exploration of the quantum state space, improving both the
expressibility and the entangling capability of the quantum
circuit [48], [49]. The CRX gate is mathematically expressed
as

CRX(θ) =


1 0 0 0
0 1 0 0

0 0 cos
(

θ
2

)
−i sin

(
θ
2

)
0 0 −i sin

(
θ
2

)
cos

(
θ
2

)
 (7)

The rotation angle θ allows for fine-tuned state transitions,
which when combined with its ability to entangle qubits more
effectively than the CRZ and CNOT gates, makes the CRX
gate the optimal choice for variational layers in a quantum
circuit [48]

B. VQCs

VQCs are quantum circuits with adjustable parameters that
can be optimized iteratively through parametrized quantum
gates [50]. In recent years, VQCs have gained growing at-
tention due to their robustness against quantum noise in the
ever-growing noisy immediate-scale quantum (NISQ) era [51].
To date, VQCs have been implemented in solving problems
for a diverse range of areas, such as function approximation
[23], quantum chemistry [52], generative modeling [53], and
optimization [54]. Furthermore, other work has shown stronger
expressive power of VQCs in comparison to classical neural
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networks. Some noteworthy examples include the usage of
a multi-parameterized quantum circuit as a simulator for
probability distribution [55] and quantum annealing strategies
coupled with entanglement methods in intractable classical
problems [56]. More details surrounding VQC functionality
and layer structure will be discussed in the following section.

C. Long Short-Term Memory

Long Short-Term Memory (LSTM) networks, introduced by
Hochreiter and Schmidhuber in 1997 [57], is a special type
of Recurrent Neural Network that was designated to tackle
the issue of vanishing or exploding gradient encountered in
traditional RNNs. This enables LSTM to capture and learn
from long-range dependencies in sequential data like text,
audio, and time series. LSTM has gained many achievements
in a wide range of applications, especially in Natural Language
Processing including machine translation [58], sentimental
analysis [59], and time series classification [60]. Within LSTM
architecture, at each time step, each LSTM unit incorporates
an additional state called the cell state (denoted as ct) which
serves as long-term memory reservoir of the LSTM unit,
allowing the gradient to flow unchanged (this is the key
difference of LSTM compared to ordinary RNN that rely
solely on the hidden state (denoted as ht). The LSTM unit
maintains the combination of cell state and hidden state to
control state updates and generates the outputs. Concisely, the
computation at time step t was defined by C.Olah [61] as
follows:

ft = σ(Wf · [ht−1, xt] + bf ) (8)
it = σ(Wi · [ht−1, xt] + bi) (9)

C̃t = tanh(WC · [ht−1, xt] + bC) (10)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (11)
ot = σ(Wo · [ht−1, xt] + bo) (12)
ht = ot ⊗ tanh(Ct) (13)

where: ft, it, C̃t, Ct, ot, and ht are the forget gate, input gate,
cell input, cell state, output gate, and hidden state, respectively,
at time step t. Wf , Wi, WC , Wo are weight matrices, and
bf , bi, bC , bo are bias vectors. xt is the input vector at time
step t.[ht−1, xt] represents the concatenation of the previous
hidden state ht−1 and the current input xt. The σ denotes the
sigmoid activation function, and tanh denotes the hyperbolic
tangent function. And the symbol ⊗ represents an element-
wise product (Hadamard product)

D. Quantum Long Short-Term Memory and linear enhanced
layers

Quantum long-short memory (QLSTM) is a quantum-based
version of the classical LSTM model where the key distin-
guishing factor is the replacement of VQCs in different gates in
the circuit instead of classical neural networks. In QLSTM, the
implementation of VQCs has been shown to play an essential
role in the extraction of feature data and compression of data,
along with accelerated learning ability and enhanced stability
for convergence [28]. Fig. 3 illustrates the QLSTM structure

and the equation below displays its corresponding forward pass
in a solid form:

vt = [ht−1, xt] (14)
ft = σ(V QC1(vt)) (15)
it = σ(V QC2(vt)) (16)
c̃t = tanh(V QC3(vt)) (17)
ct = ft ⊗ ct−1 + it ⊗ c̃t (18)
ot = σ(V QC4(vt)) (19)
ht = V QC5(ot ⊗ tanh(ct)) (20)
yt = V QC6(ht) (21)

where t represents the time step; vt represents the concate-
nation of the previous hidden state ht−1, xt. ft, it, c̃t, ct, ot,
ht, and yt represent the forget gate, input gate, candidate cell
state, cell state, output gate, hidden state, and output of the
LSTM model, respectively. σ denotes the sigmoid and tanh
denotes the hyperbolic tangent, both are activation functions
and ⊗ represents an element-wise product (Hadamard prod-
uct). {V QCn} are Variational Quantum Circuits that replaces
classical neural network layer n = (1, 2, 3, 4, 5, 6)

Fig. 3: Schematic depicting the insertion of VQCs into the
classical LSTM network to form the QLSTM model.

VI. MODEL ARCHITECTURE

A. Framework

In this study, we propose a hybrid quantum-classical frame-
work that utilizes an enhanced quantum long short-term
memory linear (eQLSTML) model for predicting PAEE in
elderly individuals, which we refer to as the eQLSTML model.
Unlike traditional machine learning models, this framework
distributes computational tasks between quantum and classical
components. In this work, we use quantum computation to
offload computationally intensive tasks, while classical compu-
tation is used to manage feature preprocessing, mapping, and
parameter optimization. A dedicated data engineering module
is also included to preprocess and transform accelerometer and
calorimetry data into a form that is suitable for eQLSTML
training.

The framework consists of multiple stages, which are illus-
trated in Fig. 4, including data preprocessing, model training,
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and prediction. Initially, the data engineering module processes
sensor data, such as normalizing and extracting features, and
stores the preprocessed data in a database. During model
training, classical neural networks compress the input features,
which are then fed into VQCs. The VQC output is subse-
quently passed back to classical neural networks for PAEE
prediction. The framework iteratively calculates and minimizes
the error between predicted and true PAEE values using a
gradient-based optimizer, which updates the parameters of
both classical and quantum components until the result is
converged. Once the model is fully trained, it can be used
to provide real-time PAEE predictions to support activity
monitoring and health management in older individuals.

Fig. 4: Hybrid quantum computing based PAEE forecasting
framework

B. Linear Embedding Layer

While QLSTM demonstrates effectiveness in time series
forecasting with regular features, limitations arise due to qubit
usage during the data encoding and compressing process.
QLSTM uses a one-to-one mapping scheme that requires
encoding both hidden states (with p hidden units) and input
features (with q features) to use (p + q) qubits in VQC.
However, the output dimension needs to be matched with the
hidden state of q units, which not only wastes quantum infor-
mation for the remaining qubits during training but also leads
to inefficient qubit usage that can hinder the model’s learning
capability. To combat this issue, a linear-layer embedding
scheme was recently proposed which can significantly improve
the QLSTM performance with effective usage of several qubits
[25]. The linear embedding layer acts as a feature compressor,
transforming input features from n dimensions into a target
of m dimensions using matrix multiplication with m≤n. The
feed-forward pass formulation is shown as

ztf = Lin(qt), zti = Lin(qt) (22)
ztu = Lin(qt), zto = Lin(qt) (23)

ft = σ(L1(V QC1(ztf ))) (24)
it = σ(L2(V QC2(zti))) (25)

c̃t = tanh(L3(V QC3(ztu))) (26)

ct = ft ⊗ ct−1 + it ⊗ c̃t (27)

ot = σ(L4(V QC4(zto))) (28)

ht = ot ⊗ tanh(ct) (29)

yt = Lf (ht) (30)
where Lin is the linear embedding layer applied to the
concatenated vector qt = [ht−1, xt], where ht−1 is the hidden
state from the previous time step and xt is the input at the
current time step. The outputs of Lin, denoted as ztn in which
n = (f, i, u, o), represent the compressed features for the
forget, input, update, and output gates, respectively. Each ztn
is passed through (V QCn) and a linear transformation layer
(Lm) to produce the gate activations ft, it, ot, and the candi-
date cell state c̃t with {Lm} corresponding to the set of linear
layers applied after VQCs’ output n = (1, 2, 3, 4), Lf is a
representation of the linear layer in the final computation stage
of the model to get the predicted value. Note that all V QCn

from 1 to 4, described here follow an identical conceptual
design, structural logic, and implementation approach, which
will be described in section C below, ensuring consistency
throughout the proposed model.

Our proposed model takes into account this well-established
embedding approach, but in different implementations as
shown in Fig. 5. Specifically, our model employs separate fea-
ture embedding layers before and after each variational quan-
tum layer. This contrasts with using a shared embedding layer
before and a separate embedding layer after each VQC. These
embedding layers function as feature maps, transforming the
input data vector qt = [ht− 1, xt], in which ht− 1 represents
the hidden state at the previous time step and xt represents the
current input into the compressed feature representation. This
strategy of employing separate embedding layers allows for
capturing non-linearities effectively and each layer can learn
a distinct mapping specifically tailored to the corresponding
VQC. This ultimately allows the model to better capture the
intricacies of the data relevant to each quantum circuit. After
the VQC layer, another separate embedding layer is used to
map the VQC output to ht. This preference stems from the
analogy between VQCs in our proposed eQLSTML model
gates within traditional LSTM. Similar to how distinct LSTM
gates handle different functions, the implemented VQCs serve
a specific purpose since a single, shared linear embedding
layer would not be able to effectively extract diverse infor-
mation tailored to the unique functionalities of each VQC.
Consequently, employing separate linear embedding layers
after the implementation of the VQCs proves to be a more
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suitable approach, allowing the model to capture the nuances
of the data relevant to each quantum circuit.

Fig. 5: Architecture of eQLSTM with separate embedding
layer before and after each VQCs block.

C. VQC blocks

In this work, our quantum circuit consists of three specific
VQC blocks as follows:

1. The Quantum Embedding Layer: Quantum embedding
refers to the process of encoding classical data into its quantum
representation and is done through a quantum feature map.
This feature map acts as a translator that converts classical
data into a set of gate parameters, which ultimately generate
a corresponding quantum state. In this work, the exploration
of various encoding methods will be conducted in order to
identify the most effective approach. These include 2N rotation
(2Nr) encoding, amplitude encoding, and angle embedding.
[28], [62]

a) 2N Rotation Encoding
In the paper Quantum Long Short-Term Memory model [28],
the encoding scheme transforms classical data input vectors
into quantum states by utilizing a process that involves single-
qubit rotations. Initially, the system uses Hadamard gates
with the initial states to create an unbiased state, this makes
the initial state become a uniform superposition state. The
input is then transformed again into two rotation angles
Ry(θi,1) and Rz(θi,2), where θi,1 = arctan(xi) and θi,2 =
arctan(x2i ) which is applied to guide the corresponding ro-
tation around the y-axis (using the Ry gates) and then later
on buy z-axis (using Rz gates) on the qubits. This encoding
ensures that the classical input data is embedded into the
quantum system as a quantum state, which is ready for
subsequent processing by the quantum circuit. The authors
chose the arctan function as it allows a wider range during
the encoding process.

b) Amplitude Embedding
To further explore more efficient encoding techniques, we
implemented amplitude encoding. Amplitude encoding will
encode data as amplitudes of the quantum state, facilitating
data manipulation more effectively while maintaining a lower
number of qubits required. Specifically, let’s consider a nor-
malized classical data set with N-dimensions consisting of x

data points, which can be represented by the amplitudes of a
qubit quantum state |ψx⟩ in the below expression:

|ψx⟩ =
M∑
j=1

xj |j⟩ (31)

where M = 2n, xi is the j-th element of x, and |i⟩ is the j-th
state of computational basis.
For the dataset with P inputs and Q features, amplitude
encoding encodes these features into a quantum state using
only nqubits = log2 PQ qubits, along with the time of
logarithmic in a number of data points, given an efficient
algorithm. This encoding offers a significant advantage for
quantum machine learning, where the manipulation of high-
dimensional data with fewer qubits is enabled. Additionally,
amplitude encoding also promises to exponentially speed up
the training process because loading data (PQ features) takes
time that grows linearly with the data size [63].
c) Angle Embedding:
In the final consideration, angle embedding is used, which is

the most prevalent encoding approach because of its simplicity
and high efficacy [62], [64]. In this encoding technique,
the encoding process for classical input data x is done by
single qubit rotation gates. Each element within the input
vector determines the rotation angle of its corresponding gate,
for example, Rx, Ry, or Rz rotation gates. This encoding
method requires n qubits or more to encode n input variables.
Mathematically, this relationship can be expressed as:

|ψx⟩ = ⊗i
nRm(xi)|ψ0⟩ (32)

where x is the classical input, Rm is selected rotation matrix
in which m = x, y, z.

2. The Variational Layer: This layer is responsible for qubit
entanglement as well as the rotation of qubits. In this work, we
explore the use of different rotational gates in the variational
layer to compare their efficiency and determine the most ef-
fective one for our model. These gates include those described
above, which include the CNOT, CRX, and CRZ gates.

3. The Connectivity Pattern Layer: The connectivity pat-
tern between qubits is another vital aspect of the VQC
architecture. Although we tested both near-block and all-to-
all connectivity patterns, we chose the former in our final
model as in this configuration the qubits are arranged in a
natural way that forms a closed loop. More precisely, each
circuit block within this structure incorporates sections of
consecutive nearest-neighbor interactions complemented by a
non-local interaction that establishes cyclic connectivity. This
structure strikes a balance between computational efficiency
and expressibility. Hence, establishing increasing connectivity
that can possibly lead to stronger entangling capacity and more
relatively favorable expressibility without the overhead of con-
necting every qubit to every other qubit, maintaining a lower
cost of training in terms of circuit complexity and number
of parameters [48]. In contrast, in all-to-all connectivity, each
qubit can interact with all others in the circuit, maximizing the
entangling capability and expressibility of the quantum circuit.
Nonetheless, this comes at a cost of increased circuit depth,
parameter count, and qubit connectivity requirements, which
makes it more demanding for implementation on near-term
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quantum hardware.
4. The Measurement Layer: In this layer, the measurement

of each VQC block is performed after all other computational
steps. In the proposed model, the measurement to be con-
sidered is computational basis state probabilities. Expectation
values can be computed numerically on classical computers
through quantum simulator software packages that offer zero-
noise quantum computation. However, on real quantum de-
vices, these values are typically estimated statistically through
repeated measurements. The measurement process yields a
fixed-length vector and will be further processed by the
classical computer for prediction purposes.

D. Proposed VQC Architecture For Current Task

As we explore various techniques in both the embedding and
variational layers, we propose a VQC architecture combining
angle embedding and CRX gates. The reason for this selection
is based on comprehensive studies mentioned earlier in Section
VI.C and Section V.A. Angle embedding was selected because
of its proven efficiency and simplicity, providing more effec-
tive quantum state representation, as demonstrated in recent
studies [62], [64]. Furthermore, the choice of CRX gates
was motivated by their superior entangling capabilities and
expressibility compared to CRZ and CNOT gates [48], [49] in
line with previous research highlighting their effectiveness in
quantum circuit learning tasks [25].

This combination is paired with a near-block connectivity
pattern in the variational layer, called strongly entangled
controlled-X, which is illustrated in Fig. 6. These techniques
have been selected based on their demonstrated superior
performance in our preliminary experiments, particularly for
temporal data modeling tasks. The angle embedding allows
for flexible and efficient data encoding, while the presence
of the CRX gates provides enhanced entangling capabilities
and a larger space. Together, these components contribute to a
model that improves upon the original QLSTM and LQSTM
architectures, ultimately offering better expressibility, lower
training costs, and higher accuracy for temporal data mod-
eling tasks. The overall strengths of the proposed model are
comprehensively evaluated and discussed in the next section
of our paper.

Fig. 6: Strongly entangled controlled-X CRX with circuit
block connectivity interaction configuration in the proposed
variational layer.

E. Optimization

Similar to classical machine learning models, the eQLSTML
is trained to work with data-driven tasks. This learning process,

expressed mathematically, involves minimizing the loss func-
tion L(θ), also known as the objective function. In this paper,
we used gradient-based algorithms to iteratively optimize VQC
parameters. In this approach, the parameters are iteratively
adjusted towards the direction that leads to the most significant
decrease in the loss function, which can be expressed as:

θj ← θj − η∇θjL(θ), (33)
where ∇θ is the gradient and η is the learning rate.

The parameter-shift method, a type of forward-mode au-
tomatic differentiation technique [23], was employed in the
optimization procedure to calculate the analytical gradient
of each VQC. The calculation for the gradient of a VQC
following the parameter-shift method can be done via:

∇θf(x, θ) =
1

2
[f(x, θ +

π

2
)− f(x, θ − π

2
)]. (34)

where f(x, θ) is the output function.
The optimization process that minimizes L(θ) can be done

by backpropagating the gradients between the VQCs and the
classical LSTM, resulting in iterative optimization for the
complete hybrid model.

F. Performance metrics

Model performances are evaluated using standard perfor-
mance metrics, which includes the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error
(MAE), with each metric defined by the expressions:

R2 = 1−

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − y)2
, (35)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (36)

MAE =
1

N

N∑
i=1

|yi − ŷi|. (37)

G. Implementation details

The initial hyperparameter to compare the base setup for
models is listed in this section. Firstly, the batch size of
512 was used for the data loader in each batch, the learning
rate η is set to 0.028, the initial depth of 1, and the hidden
size dimension is set to 2. The model was trained with the
sequence length of 50 inputs for a window time of 2 minutes
with a sampling rate chosen is 10s aggregated with standard
deviation functions. All of the models, including classical
LSTM and proposed eQLSTML, will be trained with 50
epochs and use early stopping for the learning process to
avoid overfitting. The number of epochs is decided based on
preliminary experiments which are sufficient training time for
the model to converge within constraint resources and time
as the model will be trained repeatedly for 11 participants.
The loss function for each epoch is the average value of the
total of loss for each mini-batch, divided by the total size of
the batch (512 in this case). Additionally, the loss function is
measured and evaluated every epoch. Lastly, the early stopper
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will discontinue the learning process if the loss decreases by
less than 10−5 for 5 consecutive epochs.

H. Training and evaluation method:

The training and testing process of our model employed
the Leave One Subject Out cross validation (LOSO-CV)
method to assess the generalizability of our model. In this
approach, we train the model using data from all participants
except for one that is reserved for the test set. This process
is repeated to ensure all participants are tested separately.
Moreover, the LOSO-CV is used in order to minimize potential
training set leakage that can occur in standard cross-validation
techniques. Lastly, to monitor the performance of the model
during the training process, a validation set comprising of two
participants was used. These validation sets were randomly
picked for each participant but stayed consistent across all
model configurations to facilitate unbiased comparison.

VII. RESULT AND DISCUSSION

This section will discuss our findings from evaluating our
proposed eQLSTML model on a quantum circuit consisting
of 6 qubits for the LSTM. The performance will be compared
with certain cases to provide comprehensive findings on how
effective our proposed models are for energy expenditure
prediction.

A. Performance of classical LSTM and eQLSTML

Model performances are presented via metrics introduced
in the previous section. In this comparison, test data consisted
of 11 participants which performed all physical activities to
aid in the models ability to focus on core functionality and
overall data efficiency.

TABLE II: Evaluation metrics of 11 participants for all activ-
ities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.77 1.27 0.93
LSTM 0.68 1.49 1.15

Table II presents the performance metric comparison be-
tween the classical LSTM model and our proposed eQL-
STML model. From the scores, our proposed eQLSTML
outperformed classical LSTM in terms of all evaluation met-
rics. Specifically, the proposed model achieved a significantly
higher R2 score of 0.77 compared to the value of R2 = 0.68
from LSTM, representing a 13% improvement. In terms of
RMSE and MAE, the result for LSTMs is 1.49 and 1.27,
while the eQLSTML model accomplished 1.15 and 0.93,
respectively. This indicates enhancements of∼ 15% for RMSE
and 19% for MAE metrics. The overall results show that our
proposed model not only captures the underlying relationships
within the data more effectively but also can make a closer
approximation of actual values.

Figure 7 presents the performed energy expenditure predic-
tions on the data by both eQLSTML and LSTM models and
the testing data of one participant (labeled GOTOV12). From

Fig. 7: True versus predicted values of EEm/breath for partic-
ipant GOTOV12, with indoor and outdoor activities included,
generated by our eQLSTML model (top) and the classical
LSTM model (bottom).

the figure, it is clear that the prediction of the eQLSTML
architecture demonstrates a remarkable capability to capture
the overall trend of both long-term and short-term time-series
behaviors in the unseen (test) data set and outperforms LSTM
technique in predicting trends. This is easily observed when
comparing the predicted and actual EEm curves between the
eQLSTML and LSTM models during the time interval from
19:10:30 to 19:11:00. Furthermore, from the table III, it can
be said that the proposed model also outperforms the classical
architectures in all metrics when evaluated in the test dataset
of GOTOV12

TABLE III: Evaluation metrics of the participant GOTOV12
for all activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.87 0.98 0.77
LSTM 0.74 1.37 1.13

B. Comparative analysis of model performance for indoor and
outdoor activities separately

In order to make a comprehensive comparison of our
eQLSTML model capability in terms of predicting low and
high-intensity activities, we also evaluated the model with a
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test set that includes exclusively indoor or outdoor activities
and compared our results to those obtained from the classical
LSTM. Table IV presents evaluation metrics for indoor ac-
tivities. While the eQLSTML R2 score is reasonably low at
0.43, it is ∼ 59% higher than that obtained from the LSTM
model which scored just 0.27. Additionally, we also report a
favorable decrease of 13% and 18% in the RMSE and MAE
metrics from the eQLSTML model, with respective scores of
0.90 and 0.67.

TABLE IV: Evaluation metrics of 11 participants for indoor
activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.43 0.90 0.67
LSTM 0.27 1.03 0.82

Table V presents the same metric analysis from outdoor spe-
cific activities. From the tabulated data, eQLSTML performs
much better when compared to indoor specific activities, with
an overall R2 of 0.60, which is 33% higher than that from
the classical LSTM. Additionally, similar to the indoor spe-
cific activities, our eQLSTML model again produces smaller
RMSE and MAE scores compared with LSTM, with reported
decreases of ∼ 16% and 18%, respectively.

TABLE V: Evaluation metrics of 11 participants for outdoor
activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.60 1.61 1.26
LSTM 0.45 1.91 1.54

C. Performance comparison of encoding techniques

We next present the performance metrics of our eQLSTML
model when employing angle, 2Nr, and amplitude embedding
techniques. Table VI presents the comparative results of each
encoding technique using both indoor and outdoor participant
data. In these experiments, the variational layer in each case
incorporated CRX gates and the circuit size was fixed to
include 6 qubits. From the tabulated data, it is clear that
the use of angle embedding consistently outperformed the
other encoding techniques. Collectively, it has the highest
performing values in R2, RMSE and MAE, with respective
values of 0.77, 1.27, and 0.93, which represent a 11%, 14%,
and 16% performance increase when compared to 2Nr, the
second highest performing technique.

TABLE VI: Comparison of performance metrics for our eQL-
STML model utilizing different encoding techniques on a 6
qubit circuit which utilized CRX gates in the variational layer.

Technique R2 RMSE MAE
Angle 0.77 1.27 0.93
2Nr 0.69 1.47 1.11
Amplitude 0.67 1.53 1.15

We also performed experiments comparing the three encod-
ing techniques for specific indoor (i) and outdoor (o) activities

with the resulting performance metrics for each case shown
in Table VII. Interestingly, the use of angle embedding in
indoor activities resulted in a significant improvement in iR2,
with a 37% increase compared to amplitude encoding, the
second highest performance technique, as well as additional
performance improvements of 13% in iRMSE and 14% in
iMAE. For outdoor-specific activities, heightened performance
were again witnessed across all three performance metrics as-
sociated with using angle embedding, however, 2Nr encoding
performed more favorably over amplitude encoding. As seen
in the table, oR2, oRMSE, and oMAE from angle encoding
showed increases of 18%, 12%, and 14%, respectively, when
compared to 2Nr.

TABLE VII: Comparison of performance metrics for dif-
ference encoding techniques for indoor (i) and outdoor (o)
specific activities.

Technique iR2 oR2 iRMSE oRMSE iMAE oMAE
Angle 0.43 0.60 0.90 1.61 0.67 1.26
2Nr 0.19 0.49 1.09 1.82 0.83 1.46
Amplitude 0.27 0.42 1.03 1.96 0.78 1.60

The angle embedding technique is likely more effective than
both 2Nr encoding and amplitude encoding for this specific
dataset due to the way it handles data representation. A possi-
ble explanation for the inferior performance of 2Nr encoding
is its use of the arctan transformation, which compresses larger
data values but distorts the natural range and relationships
in the data. This compression is not ideal for temporal data
modeling, where preserving the variability and dynamics of the
dataset is crucial for performance. On the other hand, ampli-
tude encoding, while efficient for encoding high-dimensional
data (up to 64 features with 6 qubits), may be too complicated
for a dataset with only 6 features. The unused feature space
can introduce inefficiencies and noise, making the encoding
less optimal. In contrast, angle embedding provides a direct
and efficient way to encode each feature into qubit rotations,
preserving the structure and ensuring more effective use of the
quantum circuit’s capacity, which is better suited for smaller
feature sets.

D. Rotational gates comparison analysis

We also conducted experiments comparing the performance
of different entangling gates, namely CNOT, CRZ, and CRX
gates, implemented in the variational layer of our eQLSTML
model. We present the resulting performance metrics in Table
VIII. To make a fair comparison, all experiments were con-
ducted on a 6-qubit circuit and employing angle embedding
based on its superior performance highlighted in the previous
section.

TABLE VIII: Resulting performance metrics from experiments
utilizing different entangling gates.

Gates R2 RMSE MAE
CRX 0.77 1.27 0.93
CRZ 0.74 1.34 0.99
CNOT 0.70 1.47 1.12
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From the data in Table VIII, we see that the implemen-
tation of the CRX gate offers a moderate increase in the
models ability to capture complex temporal dependencies
when compared to the CRZ and CNOT gates, with the latter
showing the lowest performance. Specifically, the CRX gate
implementation achieved the highest R2 of 0.77, and lower
RMSE and MAE values which were found to be 1.27 and
1.61, respectively, indicating its superior accuracy in both
training and testing phases. Furthermore, the implementation
of the CRZ gate, while competitive with R2 = 0.74, slightly
underperforms when compared to CRX implementation, with
higher RMSE and MAE values of 1.34 and 1.69, respectively.

TABLE IX: Comparison of performance metrics across dif-
ferent encoding techniques indoor and outdoor activity per-
formance.

Technique iR2 oR2 iRMSE oRMSE iMAE oMAE
CRX 0.43 0.60 0.90 1.61 0.67 1.26
CRZ 0.37 0.55 0.96 1.69 0.72 1.33
CNOT 0.24 0.47 1.06 1.85 0.82 1.49

We again look at the performance output of each gate
implementation in the variational layer for outdoor and indoor-
specific activities, with metrics presented in Table IX. As seen
in the table, the use of the CRX gate results in the best
performance among the three gate choices we investigated
for both indoor and outdoor activities. Use of the CRZ gate
also performed well, with values for R2, RMSE, and MAE
only approximately 5%− 16% less than those obtained when
using CRX gates in our experiments for both indoor and
outdoor activities. Lastly, the use of the CNOT gate resulted
in the lowest scores for all metrics in both indoor and outdoor
activities, with a particularly low iR2 value of 0.24, 44% lower
than that from using the CRX gates.

Overall, the CRX gate proves to be the optimal choice, offer-
ing the best balance between performance and training speed,
whereas CRZ remains a viable alternative but with slightly
slower training times. CNOT, due to its limited expressibility
as well as its fixed operation, is less suited for use in PAEE
estimation and prediction.

E. Linear embedding layer types

To confirm our expectation that separate linear embedding
before and after each VQC is a better configuration, we
also performed an experiment with two configurations of
the linear embedding layers we called Shared-Separate and
Separate-Separate. The results of these experiments are shown
in Table X and indicate a minor but improved performance in
the Separate-Separate configuration, with 6%, 9%, and 11%
improvements in R2, RMSE, and MAE values, respectively,
compared to the Shared-Separate case. Collectively, these find-
ings imply the Separate-Separate approach is able to handle
larger data variance more efficiently, which suggests a higher
predictive power.

Table XI presents the performance metrics when utiliz-
ing the Shared-Separate and Separate-Separate approaches
for indoor and outdoor-specific activities. From the data,

TABLE X: Overall performance metrics from the Shared-
Separate and Separate-Separate linear embedding approaches.

Types R2 RMSE MAE
Shared-Separate 0.72 1.39 1.04
Separate-Separate 0.77 1.27 0.93

the Separate-Separate approach performs much better than
Shared-Separate for indoor-specific activities, with an impres-
sive 60% increase in R2. Performance using the Separate-
Separate approach also yields smaller, but improvable perfor-
mance metrics for outdoor-specific activities, with 8%-12%
improvement in oR2, oRMSE, and oMAE.

Given these results, the Separate-Separate configuration is
clearly the optimal choice for embedding in PAEE estimation
and prediction. This configuration allows for better handling of
the input and output information within the VQC layers which
leads to an overall improved learning and generalization, as
supported by the performance metrics.

TABLE XI: Comparison of performance metrics across dif-
ferent encoding techniques indoor and outdoor activity per-
formance.

Technique iR2 oR2 iRMSE oRMSE iMAE oMAE
Separate/Separate 0.43 0.60 0.90 1.61 0.67 1.26
Shared/Separate 0.17 0.53 1.10 1.75 0.84 1.38

F. Model performance with lower qubit usage

TABLE XII: Evaluation metrics of overall performance met-
rics for different numbers of qubits using the Separate-Separate
embedding approach.

Number of qubits R2 RMSE MAE
4qubits 0.76 1.30 0.97
6qubits 0.77 1.27 0.93

To assess the model’s performance and verify its robustness
under constrained quantum resources, we conducted a com-
parative analysis by reducing the number of qubits from 6
to 4, with performance metrics for both experiments shown
in Table XII. As shown in the data, reducing the number of
qubits from 6 to 4 results in nearly identical performances,
indicating that fewer qubits still allow our model to effectively
capture variance and retain prediction accuracy. Overall, the
minimal decline in performance highlights the robustness of
the Separate-Separate embedding configuration and its need
for fewer resources.

G. Summary of key findings

• Best Encoding Technique: Among the tested encoding
methods, angle embedding clearly stood out, delivering
significantly better results than 2Nr and amplitude encod-
ing. This is likely because angle embedding effectively
preserves the original structure of the data and fully
leverages the capacity of quantum circuits, making it
particularly suitable for tasks involving relatively small
feature sets.
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• Optimal Gate Choice: We found that using CRX gates
consistently improved performance over CRZ and CNOT
gates. This improvement is mainly due to CRX gates’ en-
hanced ability to create stronger entanglements and more
thoroughly explore quantum states, thereby boosting the
model’s overall capability.

• Embedding Layer Configuration: The Separate-
Separate configuration, using distinct linear embedding
layers before and after each VQC block, provided better
results than sharing embedding layers. This approach
notably enhanced the model’s ability to capture subtle
variations in the data, ultimately improving predictive
accuracy.

• Quantum Resource Efficiency: Interestingly, reducing
the number of qubits from six to four did not significantly
affect performance. This suggests that our proposed
model remains robust even when quantum resources are
limited, highlighting practical feasibility and efficiency.

VIII. CONCLUSION

In this study, we proposed a hybrid quantum-classical
machine learning model, named enhanced Quantum Long
Short-Term Memory Linear (eQLSTML), for predicting
physical activity energy expenditure (PAEE) in older
individuals. By leveraging quantum computing capabilities,
specifically integrating variational quantum circuits (VQCs)
within LSTM frameworks. Our approach has demonstrated
improved predictive accuracy and efficiency compared to
classical LSTM models. The experimental results showed
substantial improvements in predictive accuracy, as evidenced
by superior evaluation metrics, including increased R2 values,
as well as reduced RMSE and MAE scores across various
indoor and outdoor physical activities. The eQLSTML
model’s utilization of angle embedding techniques, separate
linear embedding layers, and variational quantum circuits
with strongly entangled controlled-X (CRX) gates enabled
more effective handling of complex temporal dependencies
and reduced computational demands. Collectively, these
improvements illustrate the significant potential of quantum-
enhanced machine learning methods to provide superior
performance compared to classical methods, particularly
within the healthcare and IoT monitoring domains.

While our findings indicate promising outcomes for
quantum-enhanced prediction and estimation of PAEE in el-
derly healthcare, further research is necessary. Several promis-
ing areas remain open for future work. First, our imme-
diate plan involves integrating the proposed quantum mod-
els with real quantum hardware to validate model perfor-
mance under realistic quantum computing conditions. This
will potentially require upgraded and modified versions of
our proposed framework and eQLSTML model to enable
practical deployment on real quantum hardware, address-
ing challenges related to hardware integration, limited qubit
coherence, and scalability. Additionally, future work should
specifically explore incorporating quantum error correction
and fault-tolerance mechanisms into quantum-enhanced neural

networks to achieve robust and reliable model training and
inference in the presence of quantum noise inherent to noisy
intermediate-scale quantum (NISQ) devices. Moreover, deeper
exploration of advanced hybrid quantum-classical optimization
algorithms may further enhance training efficiency and reduce
computational complexity. This direction could facilitate faster
model convergence and enable efficient training procedures
suitable for large-scale, real-time healthcare applications. Ad-
dressing these future research directions promises consider-
able progress toward practical, reliable, and highly accurate
quantum machine learning implementations. Ultimately, these
advancements will substantially reinforce the application of
quantum machine learning methodologies in healthcare which
fosters significant improvements in personalized health mon-
itoring and predictive healthcare analytics and contributes
meaningfully toward promoting healthy and active aging.
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and functional disability among older adults: The role of inflammation
and glycemic status – an observational longitudinal study,” Gerontology,
vol. 69, no. 7, p. 826–838, Jul. 2023.

[5] W. Ahmed, T. Muhammad, and K. Muneera, “Prevalence of early and
late onset of chronic diseases and multimorbidity and its association
with physical, mental and functional health among older indian adults,”
BMC Geriatrics, vol. 23, p. Article number: 563, 2023.

[6] M. Nystoriak and A. Bhatnagar, “Cardiovascular effects and benefits of
exercise,” Frontiers in Cardiovascular Medicine, vol. 5, p. Article 135,
2018.

[7] S. Chastin, U. Abaraogu, J. Bourgois, P. Dall, J. Darnborough, E. Dun-
can, J. Dumortier, D. J. Pavón, J. McParland, N. Roberts, and M. Hamer,
“Effects of regular physical activity on the immune system, vaccination
and risk of community-acquired infectious disease in the general popu-
lation: Systematic review and meta-analysis,” Sports Medicine, vol. 51,
pp. 1673–1686, 2021.

[8] J. Lacombe, M. Armstrong, F. L. Wright, and C. Foster, “The impact
of physical activity and an additional behavioural risk factor on cardio-
vascular disease, cancer and all-cause mortality: A systematic review,”
BMC Public Health, vol. 19, p. Article 7030, 2019.

[9] T. M. Manini, J. E. Everhart, K. V. Patel, D. A. Schoeller, L. H. Colbert,
M. Visser, F. Tylavsky, D. C. Bauer, B. H. Goodpaster, and T. B. Harris,
“Daily activity energy expenditure and mortality among older adults,”
JAMA, vol. 296, no. 2, pp. 171–179, 2006.



14

[10] A. Chaddad, Y. Wu, and C. Desrosiers, “Federated learning for health-
care applications,” IEEE Internet of Things Journal, vol. 11, no. 5, pp.
7339–7358, 2024.

[11] H. Elayan, M. Aloqaily, and M. Guizani, “Digital twin for intelligent
context-aware IoT healthcare systems,” IEEE Internet of Things Journal,
vol. 8, no. 23, pp. 16 749–16 757, 2021.

[12] W. R. Leonard, “Laboratory and field methods for measuring human
energy expenditure,” American Journal of Human Biology, vol. 24, no. 3,
pp. 372–384, 2012.

[13] A. H. K. Montoye, M. Begum, Z. Henning, and K. A. Pfeiffer,
“Comparison of linear and non-linear models for predicting energy
expenditure from raw accelerometer data,” Physiological Measurement,
vol. 38, no. 2, p. 343, jan 2017.
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