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Abstract—This work explores a cell-free integrated sensing
and communication (CF-ISAC) framework in which distributed
access points work together to support communication users
(UEs) with assistance from multiple reconfigurable intelligent
surfaces (RISs) while simultaneously performing target sensing.
An effective strategy is introduced for the joint optimization of
communication parameters, sensing beamforming designs, and
reflecting coefficients, with the goal of enhancing the minimum
signal-to-interference-plus-noise ratio (SINR) among all UEs. To
address the complexity of this non-convex optimization problem,
a robust alternating optimization method is designed. The nu-
merical results confirm that the proposed approach significantly
boosts the minimum SINR in CF-ISAC systems, demonstrating
the advantages of utilizing RISs.

Index Terms—Integrated sensing and communication (ISAC),
joint optimization, reconfigurable intelligent surface (RIS).

I. INTRODUCTION

As the demand for faster, more efficient wireless networks
grows, the integration of advanced technologies becomes cru-
cial. With the emergence of sixth-generation (6G), wireless
systems are expected to deliver significantly higher efficiency
and performance, addressing the increasing need for faster data
transfer and lower latency [1], [2]. One promising development
in this domain is the integrated sensing and communication
(ISAC) paradigm, which enables simultaneous communication
and environmental sensing.

A major breakthrough in wireless communications is the
advent of reconfigurable intelligent surface (RIS) technology,
integrated with ISAC, marks a significant milestone in wireless
communications by enabling dynamic control of the radio
environment, improving signal quality, mitigating interference,
and enhancing spectrum efficiency in challenging propagation
environments [3]. Several studies have examined the capability
of RIS to enhance the efficiency and effectiveness of wireless
networks. For example, the authors in [4] demonstrated how
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RIS beamforming improves the signal-to-interference-plus-
noise ratio (SINR) and expands sensing range. Similarly, the
work in [5] focused on jointly optimizing RIS beamforming
and access point (AP) precoding, aiming to achieve the highest
possible minimum beampattern gain in the targeted sensing
directions.

Alongside RIS, the concept of cell-free (CF) networks has
gained significant attention as an innovative architecture for fu-
ture wireless systems, where multiple distributed APs provide
seamless coverage across large areas, eliminating traditional
cell boundaries [6]. This ensures seamless coverage and high
data rates, particularly at the edges of the network, where con-
ventional cellular systems struggle [7]. Integrating RIS into CF
networks further enhances their performance by dynamically
shaping the wireless propagation environment. Through the
integration of RIS, the system can achieve improved signal
quality, interference mitigation, and better spectral efficiency
[8], [9]. The combined system leverages spatial diversity and
cooperative transmission, enabling more reliable and efficient
communication. Furthermore, the inherent adaptability of RIS
in such networks allows for precise control of beamforming
and interference patterns, ensuring enhanced network perfor-
mance, even in dense or challenging environments [10], [11].

Recent studies have explored various optimization tech-
niques to enhance the performance of these advanced technolo-
gies. For instance, the authors in [12] investigated a scenario
with multiple transmitting APs and a single sensing AP, aiming
to optimize the sensing signal-to-noise ratio (SNR) while
ensuring that the communication SINR satisfied. Furthermore,
the authors in [13] explored the scalability of these systems
by considering configurations with multiple transmitting and
receiving APs. Moreover, the authors in [14] examined a
scenario involving multiple targets.

Despite these advancements, the integration of RIS, ISAC,
and CF systems for joint resource optimization remains an
underexplored area. RIS and ISAC can considerably improve
cell-free networks by enhancing signal coverage, energy effi-
ciency, and interference management through intelligent signal
reflection and environmental sensing. Together, they enable
more efficient resource allocation, precise user localization,
and better overall network performance, reducing the need
for extensive infrastructure. However, the challenges associ-
ated with combining these technologies, especially in terms
of joint communication and sensing beamforming, have yet
to be comprehensively addressed. In this paper, we present
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Fig. 1: RIS-aided CF-ISAC system model.

an approach for efficiently optimizing communication and
sensing beamforming, along with RIS’s reflecting coefficients,
to max-min SINR of all communication users (UEs) while
meeting sensing SINR requirements. To address this non-
convex problem, we employ an alternating optimization (AO)
algorithm, which significantly enhances the performance of
the integrated system.

A. Notations
We denote vectors using bold lowercase letters and matrices

with bold uppercase letters. C𝑁×1 signifies the space of
𝑁 × 1 complex-valued vectors, and C𝐸×𝑁 denotes the set of
𝐸 ×𝑁 complex-valued matrices. W𝐻 and Tr(W) represent the
Hermitian transpose and trace of the matrix W, respectively.
W ⪰ 0 represents that W is a positive semidefinite matrix.
The notation diag(𝜓) refers to a diagonal matrix whose
diagonal entries correspond to the elements of the vector 𝜓.
The symbols ∥ · ∥ and | · | denote the Euclidean norm of a
vector and the magnitude of a complex number, respectively.
Additionally, ℜ{·} extracts the real part of a given expression.
I𝑀 represents the 𝑀 × 𝑀 identity matrix.

II. SYSTEM MODEL

As illustrated in Fig. 1, the study examines a RIS-assisted
CF network, composed of multiple components, including L =

1, 2, . . . , 𝐿 APs, M = 1, 2, . . . , 𝑀 RISs, K = 1, 2, . . . , 𝐾 UEs,
F = 1, 2, . . . , 𝐹 sensing receivers (SRs), along with a single
sensing target. Each AP, UE, and SR are possessing with 𝑁 ,
single, and 𝐷 antennas, respectively. Furthermore, each RIS
consists of 𝐸 passive reflecting elements, denoted as E ≜
{1, 2, · · · , 𝐸}. A central processing unit (CPU) is employed
to oversee control and coordination tasks within the network.
All APs and SRs are connected to the CPU through wired
backhaul links. Additionally, the management of all RISs is
handled either by the CPU or directly by the APs, utilizing
either wired or wireless connections to facilitate flexible and
efficient control.

A. Transmission Model
The complex baseband signal 𝒙𝑙 ∈ C𝑁×1 transmitted by

AP𝑙 is defined as

𝒙𝑙 = 𝒘𝑙,0𝑥0 +
∑︁
𝑘∈K

𝒘𝑙,𝑘𝑥𝑘 , (1)

where 𝑥0 ∼ CN(0, 1) and 𝑥𝑘 ∼ CN(0, 1) denote the sensing
stream and the 𝑘-th UE’s transmitted symbol, respectively.
Here, 𝒘𝑙,0 ∈ C𝑁×1 and 𝒘𝑙,𝑘 ∈ C𝑁×1 represent the beam-
forming vectors for the sensing stream and the 𝑘-th UE,
respectively.

B. Channel Model

The communication channel from each AP to each UE is
characterized by two distinct components, facilitated by 𝑀

RISs: a direct AP-UE link and 𝑀 AP-RIS-UE reflected links.
Each AP-RIS-UE link is further divided into an AP-RIS link
and a RIS-UE link. The equivalent channel ĥ𝐻𝑙,𝑘 ∈ C1×𝑁 from
the AP𝑙 to the 𝑘-th UE, 𝑘 ∈ K, can be written as

ĥ𝐻𝑙,𝑘 (𝝍) = h𝐻𝑙,𝑘 +
∑︁
𝑚∈M

𝝍𝑇𝑚diag
(
g𝐻𝑚,𝑘

)
H𝑙,𝑚, (2)

where the channels from AP𝑙 to the 𝑘-th UE, AP𝑙 to RIS𝑚,
and RIS𝑚 to the 𝑘-th UE are represented by h𝐻

𝑙,𝑘
∈ C1×𝑁 ,

H𝑙,𝑚 ∈ C𝐸×𝑁 , and g𝐻
𝑚,𝑘

∈ C1×𝐸 , respectively. Furthermore,
the phase shift matrix for RIS𝑚 𝚽𝑚 ∈ C𝐸×𝐸 is denoted as
[15]

𝚽𝑚 ≜ diag
(
𝑒 𝑗 𝜃𝑚,1 , 𝑒 𝑗 𝜃𝑚,2 , . . . , 𝑒 𝑗 𝜃𝑚,𝐸

)
, (3)

where the phase shift of the 𝑒-th reflecting element of RIS𝑚
is 𝜃𝑚,𝑒 ∈ [0, 2𝜋). The phase shift matrix 𝚽𝑚 can be rewritten
as 𝚽𝑚 = diag

(
𝜓𝑚,1, 𝜓𝑚,2, . . . , 𝜓𝑚,𝐸

)
, with |𝜓𝑚,𝑒 | = 1, ∀𝑚 ∈

M, ∀𝑒 ∈ E. Defining 𝝍𝑚 =
[
𝜓𝑚,1, 𝜓𝑚,2, . . . , 𝜓𝑚,𝐸

]𝑇 .

C. Signal Processing at the Receivers

The signal 𝑦𝑘 received at the 𝑘-th UE, 𝑘 ∈ K, which can
be formulated as

𝑦𝑘 =
∑︁
𝑙∈L

ĥ𝐻𝑙,𝑘𝒙𝑙 + 𝜖𝑘 , (4)

where additive white Gaussian noise (AWGN) at the 𝑘-th UE
is characterized by 𝜖𝑘 ∼ CN(0, 𝜎2). According to (4), the
received SINR of the 𝑘-th UE can be written as

𝛾𝑘 (𝒘,𝝍) =

���ĥ𝐻𝑘 (𝝍)𝒘𝑘 ���2���ĥ𝐻𝑘 (𝝍)𝒘0

���2 + ∑
𝑗∈K\𝑘

���ĥ𝐻𝑘 (𝝍)𝒘 𝑗

���2 + 𝜎2
, (5)

where 𝒘 ≜ {𝒘𝑙,0, 𝒘𝑙,𝑘}𝑙∈L,𝑘∈K , 𝝍 ≜ {𝜓𝑚,𝑒}𝑚∈M,𝑒∈E , ĥ𝑘 =[
ĥ𝐻1,𝑘 , ĥ

𝐻

2,𝑘 , . . . , ĥ
𝐻

𝐿,𝑘

]𝐻
, 𝒘0 =

[
𝒘𝐻1,0, 𝒘

𝐻
2,0, . . . , 𝒘

𝐻
𝐿,0

]𝐻
, and

𝒘𝑘 =

[
𝒘𝐻1,𝑘 , 𝒘

𝐻
2,𝑘 , . . . , 𝒘

𝐻
𝐿,𝑘

]𝐻
. 𝛾𝑘 (𝒘,𝝍) denotes the SINR

for the 𝑘-th UE.

D. Multi-static Sensing

We consider multi-static sensing, in which the CPU collects
and processes signals received from all 𝐹 SRs for target
detection [16]. The signal received by the 𝑓 -th SR is given
by

𝒚 𝑓 =
∑︁
𝑙∈L

𝜅 𝑓 ,𝑙
√
𝛼 𝑓 ,𝑙𝒃(𝜑 𝑓 )𝒃𝐻 (𝜑𝑙)𝒙𝑙 + 𝝐 𝑓 , (6)
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where 𝜅 𝑓 ,𝑙 ∼ CN(0, 𝜎2
𝑓 ,𝑙
) denotes the radar cross section

(RCS) of the target from AP𝑙 to 𝑓 -th SR, 𝛼 𝑓 ,𝑙 =
𝜆2
𝑐

(4𝜋 )3𝑑2
𝑓 ,𝑠
𝑑2
𝑙,𝑠

means the channel gain from the AP𝑙 to the sensing target
at the distance 𝑑𝑙,𝑠 and from the target to the 𝑓 -th SR at
the distance 𝑑 𝑓 ,𝑠 , 𝜆𝑐 is the carrier wavelength, 𝒃(𝜑) denotes
the array response vector such that 𝜑𝑙/𝜑 𝑓 is the angle of
departure/arrival from the target location to the AP𝑙/ 𝑓 -th SR,
and 𝝐 𝑓 ∼ CN(0, 𝜎2I𝐷) ∈ C𝐷×1 is the receiver noise at the
𝑓 -th SR. By jointly processing the received signal from all
SRs, the joint sensing SNR can be derived as

𝛾𝑠 (𝒘) =

∑
𝑓 ∈F

∑
𝑙∈L

𝜎2
𝑓 ,𝑙
𝛼 𝑓 ,𝑙 | |𝒃𝐻 (𝜑𝑙)𝑾𝑙 | |2

𝐹𝜎2 , (7)

where 𝑾𝑙 =
[
𝒘𝑙,0, 𝒘𝑙,1, . . . , 𝒘𝑙,𝐾

]
∈ C𝑁×(𝐾+1) concatenates

the beamforming vectors of all UEs and the sensing target.

E. Problem Formulation

The objective is to maximize the minimum SINR 𝛾𝑘 across
all UEs through the joint optimization of variables (𝒘,𝝍). The
optimization problem is defined as follows:

max
𝒘,𝝍

min
𝑘∈K

𝛾𝑘 (𝒘,𝝍) (8a)

s.t. ∥𝒘𝑙,0∥2 +
∑︁
𝑘∈K

∥𝒘𝑙,𝑘 ∥2 ≤ 𝑃max
𝑙 ,∀𝑙 ∈ L, (8b)

𝛾𝑘 (𝒘,𝝍) ≥ 𝛾min
𝑘 ,∀𝑘 ∈ K, (8c)

𝛾𝑠 (𝒘) ≥ 𝛾min
𝑠 , (8d)

|𝜓𝑚,𝑒 | = 1,∀𝑚 ∈ M,∀𝑒 ∈ E . (8e)

where 𝛾min
𝑘

and 𝛾min
𝑠 are the minimum SINR threshold for

𝑘-th UE and sensing target, respectively, and 𝑃max
𝑙

is the
transmit power limit for the AP𝑙 . The non-concave objective
function (8a), the non-convex constraints (8c) and (8d), the
unit-modulus constraints (8e), and the mutually connected
variables 𝒘 and 𝝍 let problem (8) become a highly challenging
non-convex problem, which is difficult to address.

III. PROPOSED SOLUTION

In each iteration, let (𝝍 (𝜂) , 𝒘 (𝜂) ) denote the feasible so-
lution for problem (8) obtained from the (𝜂 − 1)-th round.
We propose an efficient alternating optimization algorithm to
address (8): at iteration 𝜂 + 1, the algorithm first optimizes
𝒘 by solving (8) with 𝝍 (𝜂) fixed to obtain 𝒘 (𝜂+1) , and then
optimizes 𝝍 by solving (8) with 𝒘 (𝜂+1) fixed to obtain 𝝍 (𝜂+1) .

A. Beamforming Optimization

At the iteration 𝜂 + 1, problem (8) with the given 𝝍 (𝜂) can
be defined as

max
𝒘,𝜏

𝜏 (9a)

s.t. 𝛾𝑘 (𝒘,𝝍 (𝜂) ) ≥ 𝜏,∀𝑘 ∈ K, (9b)

∥𝒘𝑙,0∥2 +
∑︁
𝑘∈K

∥𝒘𝑙,𝑘 ∥2 ≤ 𝑃max
𝑙 ,∀𝑙 ∈ L, (9c)

𝜏 ≥ 𝛾min
𝑘 ,∀𝑘 ∈ K, (9d)

𝛾𝑠 (𝒘) ≥ 𝛾min
𝑠 , (9e)

where 𝜏 is a slack variable. The constraints (9b) and (9e) are
non-convex. To tackle the non-convexity of (9b), we transform
it into a convex counterpart by leveraging an auxiliary variable
ℵ ≜

{
ℵ𝑘

}
∀𝑘 as

𝜏ℵ𝑘 ≤ Tr
(
h𝐻𝑘 (𝝍

(𝜂) )w𝑘w𝐻𝑘 h
𝑘
(𝝍 (𝜂) )

)
, (10a)

ℵ𝑘 ≥
���ĥ𝐻𝑘 (𝝍 (𝜂) )𝒘0

���2 + ∑︁
𝑗∈K\𝑘

���ĥ𝐻𝑘 (𝝍 (𝜂) )𝒘 𝑗

���2 + 𝜎2. (10b)

The upper bound of 𝜏ℵ𝑘 can be expressed as

𝜏ℵ𝑘 ≤
𝜏 (𝜂)

2ℵ(𝜂)
𝑘

ℵ2
𝑘 +

ℵ(𝜂)
𝑘

2𝜏 (𝜂)
𝜏2,∀𝑘 ∈ K, (11)

where 𝜏 (𝜂) and ℵ(𝜂)
𝑘

, ∀𝑘 ∈ K, are the obtained values at the
𝜂-th iteration. Hence, (10a) can be convexified as

𝜏 (𝜂)

2ℵ(𝜂)
𝑘

ℵ2
𝑘 +

ℵ(𝜂)
𝑘

2𝜏 (𝜂)
𝜏2 ≤ Tr

(
h𝐻𝑘 (𝝍

(𝜂) )w𝑘w𝐻𝑘 h
𝑘
(𝝍 (𝜂) )

)
,∀𝑘 ∈ K .

(12)
To deal with the non-convex constraint (9e), the following

inequality | | 𝒑 | |2 ≥ 2ℜ{( 𝒑 (𝜂) )𝐻 𝒑} − || 𝒑 (𝜂) | |2 is used to
convexify the numerator term of 𝛾𝑠 (𝒘). Thus, 𝛾𝑠 (𝒘) can be
rewritten as (13) at the beginning of the next page, such that

𝛾
(𝜂)
𝑠 (𝒘) ≥ 𝛾min

𝑠 . (14)

Finally, the convex approximation of problem (9) at iteration
𝜂 + 1 is formulated as

max
𝒘,𝜏,ℵ

𝜏 (15a)

s.t. (9c), (9d), (12), (14). (15b)

B. Phase Shift Optimization
At the iteration 𝜂 + 1, for given 𝒘 (𝜂+1) , problem (8) can be

expressed as

max
𝝍,𝜐

𝜐 (16a)

s.t. 𝛾𝑘 (𝒘 (𝜂+1) ,𝝍) ≥ 𝜐,∀𝑘 ∈ K, (16b)

𝜐 ≥ 𝛾min
𝑘 ,∀𝑘 ∈ K, (16c)

|𝜓𝑚,𝑒 | ≤ 1,∀𝑚 ∈ M,∀𝑒 ∈ E, (16d)

where 𝜐 is a slack variable. The non-convex fractional con-
straint (16b) presents significant challenges in solving problem
(16). To address this, we utilize Dinkelbach’s transformation,
which reformulates the constraint into a more manageable
polynomial form [17]. This approach allows efficient handling
of the original fractional constraint. Specifically, the transfor-
mation converts the fractional constraint (16b) into an equiv-
alent but more analytically favorable polynomial expression,
simplifying the optimization process, which is expressed as���h𝐻𝑘 (𝝍)w(𝜂+1)

𝑘

���2 − 𝜁𝑘

( ���h𝐻𝑘 (𝝍)w(𝜂+1)
0

���2 +
∑︁

𝑗∈K\{𝑘}

���h𝐻𝑘 (𝝍)w(𝜂+1)
𝑗

���2
+ 𝜎2

)
≥ 𝜐,∀𝑘 ∈ K,

(17)
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𝛾
(𝜂)
𝑠 (𝒘) :=

∑
𝑓 ∈F

∑
𝑙∈L

𝜎2
𝑓 ,𝑙
𝛼 𝑓 ,𝑙

(
2ℜ{(𝑾 (𝜂)

𝑙
)𝐻𝒃(𝜑𝑙)𝒃𝐻 (𝜑𝑙)𝑾𝑙} − ||𝒃𝐻 (𝜑𝑙)𝑾 (𝜂)

𝑙
| |2

)
𝐹𝜎2 , (13)

where 𝜁𝑘 , ∀𝑘 ∈ K, is the auxiliary variable, whose optimal
values can be determined as follows:

𝜁𝑘 =

���ĥ𝐻𝑘 (𝝍)𝒘 (𝜂+1)
𝑘

���2���ĥ𝐻𝑘 (𝝍)𝒘 (𝜂+1)
0

���2 + ∑
𝑗∈K\𝑘

���ĥ𝐻𝑘 (𝝍)𝒘 (𝜂+1)
𝑗

���2 + 𝜎2
,∀𝑘 ∈ K .

(18)
Next, for brevity, we define p𝑘, 𝑗 = diag(g𝐻

𝑘
)Hw(𝜂+1)

𝑗
,

q𝑘, 𝑗 = h𝐻
𝑘

w(𝜂+1)
𝑗

, and K̄ = K ∪ {0}, where h𝑘 =[
h𝐻1,𝑘 , h

𝐻
2,𝑘 , . . . , h

𝐻
𝐿,𝑘

]𝐻
, 𝝍 =

[
𝝍𝑇1 ,𝝍

𝑇
2 , . . . ,𝝍

𝑇
𝑀

]𝑇 , g𝑘 =[
g𝐻1,𝑘 , g

𝐻
2,𝑘 , . . . , g

𝐻
𝑀,𝑘

]𝐻
, H𝑙 =

[
H𝐻
𝑙,1,H

𝐻
𝑙,2, . . . ,H

𝐻
𝑙,𝑀

]𝐻
, and

H = [H1,H2, . . . ,H𝐿]. The constraint in (17) is reformulated
as ��𝝍𝑇p𝑘,𝑘 + q𝑘,𝑘

��2 − 𝜁𝑘 ( ∑︁
𝑗∈K̄\{𝑘}

��𝝍𝑇p𝑘, 𝑗 + q𝑘, 𝑗
��2 + 𝜎2

)
≥ 𝜐,∀𝑘 ∈ K .

(19)

The quadratic function
��𝝍𝑇p𝑘,𝑘 + q𝑘,𝑘

��2 in (19) remains
non-convex with respect to 𝝍. To overcome this challenge,
we intend to derive a convex surrogate function that serves
as a local lower bound by employing the majorization-
minimization (MM) technique. At the iteration 𝜂 + 1, the
surrogate function for

��𝝍𝑇p𝑘,𝑘 + q𝑘,𝑘
��2 is derived via the first-

order Taylor expansion, illustrated as��𝝍𝑇p𝑘,𝑘 + q𝑘,𝑘
��2

= 𝝍𝑇p𝑘,𝑘p𝐻𝑘,𝑘𝝍
★ + 2ℜ

{
q𝑘,𝑘p𝐻𝑘,𝑘𝝍

★
}
+

��q𝑘,𝑘 ��2 ≥ 𝝍𝑇𝜂+1p𝑘,𝑘p𝐻𝑘,𝑘
× 𝝍★𝜂+1 + 2ℜ

{
𝝍𝑇𝜂+1p𝑘,𝑘p𝐻𝑘,𝑘 (𝝍

★ − 𝝍★𝜂+1)
}
+ 2ℜ

{
q𝐻𝑘,𝑘p

𝐻
𝑘,𝑘𝝍

★
}

+
��q𝑘,𝑘 ��2 .

(20)
By plugging the result (20) into (19), the constraint (16b)

can be reformulated as

2ℜ
{
𝝍𝑇𝜂+1p𝑘,𝑘p𝐻𝑘,𝑘 (𝝍

★ − 𝝍★𝜂+1)
}
+ 2ℜ

{
q𝑘,𝑘p𝐻𝑘,𝑘𝝍

★
}

− 𝜁𝑘

( ∑︁
𝑗∈K̄\{𝑘}

��𝝍𝑇p𝑘,𝑘 + q𝑘,𝑘
��2 + 𝜎2

)
+ 𝝍𝑇𝜂+1p𝑘,𝑘p𝐻𝑘,𝑘𝝍

★
𝜂+1

+
��q𝑘,𝑘 ��2 ≥ 𝜐,∀𝑘 ∈ K .

(21)
Thus, the convexified form of problem (16) for iteration 𝜂+1

is described as

max
𝝍,𝜐

𝜐 (22a)

s.t. (16c), (16d), (21). (22b)

The proposed alternating optimization algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Alternating Optimization for Problem (8)

Require: Initialize 𝜂 := 0 and compute an initial feasible
point (𝝍 (0) , 𝒘 (0) ).

1: repeat
2: With 𝝍 (𝜂) , solve the convex optimization problem (15)

to obtain the optimal solution 𝒘★; update 𝒘 (𝜂+1) := 𝒘★.
3: repeat
4: With 𝒘 (𝜂+1) , solve the convex optimization problem

(22) to compute the optimal solution 𝝍★; update
𝝍 (𝜂+1) := 𝝍★.

5: Update 𝜁𝑘 ,∀𝑘 ∈ K by (18).
6: until Convergence
7: Increment 𝜂 := 𝜂 + 1.
8: until Convergence
9: return (𝝍 (𝜂) , 𝒘 (𝜂) )

IV. SIMULATION RESULTS

This section presents simulation results to illustrate the
performance of RIS-aided CF-ISAC systems. We consider
𝐿 = 4 distributed APs, 𝐾 = 3 UEs, 𝑀 = 4 RISs, 𝐹 = 4
SRs, and 𝑇 = 1 sensing target. Both the UEs and the sensing
target are equipped with a single antenna. Both AP and SR
are equipped with 𝑁 = 𝐷 = 5 antennas. Each RIS consists
of 𝐸 = 8 passive reflecting elements. The transmit power
for each AP is limited to 𝑃max

𝑙
= 1 W, 𝜎2 = −80 dBm.

The communication and sensing SINR thresholds are set to
be 𝛾min

𝑘
= 𝛾min

𝑠 = 1. Within a circular area of 1 km radius,
all APs, UEs, RISs, and SRs are uniformly distributed. We
evaluate the performance of Algorithm 1 against two baseline
schemes: i) a CF network without RISs and ii) a collocated
network with RISs. In the collocated network, a single AP
is centrally located within the area to serve all UEs. The AP
is equipped with 𝐿𝑁 antennas and has a maximum transmit
power of 𝐿𝑃max

𝑙
.

Fig. 2 presents the minimum SINR convergence trend of
Algorithm 1. On average, the algorithm converges to the
optimal value within approximately six iterations, with the
minimum SINR stabilizing at 7.38 dB and 8.38 dB for 𝑀 = 2
and 𝑀 = 4, respectively, demonstrating the efficiency of
the proposed method. As expected, increasing the number of
RISs significantly improves the minimum SINR by 13.54%,
thus confirming the advantage of RIS integration in CF-ISAC
systems.

Fig. 3 depicts the relationship between the minimum SINR
and the number of elements in the RIS. Clearly, the minimum
SINR improves significantly with the increase in RIS’s ele-
ments across CF with RIS and collocated with RIS cases, due
to the greater degree of freedom and diversity gain offered by
the additional elements in shaping the wireless environment.
Moreover, the minimum SINR of the CF-ISAC system with
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Fig. 2: Convergence behavior of Algorithm 1.
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Fig. 3: The effect of number of RIS’s elements on the minimum
SINR of UEs.
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Fig. 4: The impact of number of AP’s transmit antennas on the
minimum SINR of UEs.

RISs is notably superior to that of the collocated network with
RISs, showing an improvement of 28.54% when 𝐸 = 8. This
improvement arises because the distributed APs in the CF
network position service antennas nearer to the UEs, reducing
path losses and offering a greater degree of macro-diversity
compared to the collocated network. In addition, the CF-ISAC
system with RISs delivers a 110% higher minimum SINR than
that of the system without RISs. This highlights the role of
RISs in improving the minimum SINR of CF-ISAC system.

Fig. 4 illustrates the effect of the BS’s antennas on the
minimum SINR. As expected, increasing 𝑁 results in a
higher minimum SINR for both CF-ISAC with RISs and CF-
ISAC without RISs schemes. This is because adding more
antennas at the APs provides increased spatial diversity and
greater beamforming gains. Additionally, the proposed scheme
demonstrates a 91% improvement at 𝑁 = 6, considerably

outperforms the CF-ISAC without RISs in terms of minimum
SINR.

V. CONCLUSION

This paper has addressed the problem of maximizing the
minimum SINR of communication UEs in CF-ISAC networks
assisted by multiple RISs. The objective is to simultaneously
optimize the transmit beamformers at APs and the reflection
coefficients at RISs, ensuring that both communication and
sensing SINR constraints are satisfied. This is formulated as
a nonconvex optimization problem, which is tackled using an
efficient alternating optimization algorithm. Numerical anal-
ysis validates the efficiency of the proposed algorithm and
underscores the advantages of CF and RIS when contrasted
with collocated networks.
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