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Abstract—Satellite imagery plays a crucial role in integrated
satellite-ground remote sensing (SGRS), particularly in appli-
cations such as disaster management and military intelligence,
where real-time monitoring and forecasting are essential for
effective decision-making. However, narrow artificial intelligence
(AI) models often face challenges in processing large-scale high-
dimensional data efficiently while maintaining the required ac-
curacy and speed, limiting their effectiveness in time-sensitive
scenarios. To address these challenges, we explore the integration
of satellite remote sensing with large AI, quantum computing,
and quantum communication technologies, focusing on enhancing
computational efficiency and data security in integrated SGRS
systems. Specifically, we put forth an integrated quantum SGRS
framework, which combines quantum fusion intelligence (QFI)
with quantum anonymous communication (QAC). By integrating
quantum and large AI, the QFI models enhance the efficiency,
accuracy, and security of satellite imagery analysis while ensuring
that the extracted information is transmitted to ground stations
in a privacy-preserving manner using QAC. This approach is
particularly effective in time- and privacy-sensitive scenarios. To
demonstrate the effectiveness of QFI computing, we present case
studies in disaster detection and environmental monitoring. This
research highlights the transformative potential of quantum-large
AI integration in SGRS and its implications for nonterrestrial-
terrestrial quantum networks.

Index Terms—Large AI, quantum anonymity, quantum com-
puting, quantum security, satellite-ground remote sensing.

I. INTRODUCTION

REMOTE SENSING with satellite imagery has revolu-
tionized the monitoring and analysis of critical activities

in geographically inaccessible locations [1], [2]. Integrated
satellite-ground remote sensing (SGRS) systems, in particular,
combine satellite-derived data with ground-based observations
to offer comprehensive perspectives on a wide range of
phenomena, from environmental changes and natural resource
management to security threats and climate forecasting [3].
Satellites equipped with advanced processing units can assess
remote locations, analyze data in real time, and transmit the
results to ground stations for further interpretation [4]. This
integration is invaluable for time-sensitive applications such
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as disaster response and military intelligence, enabling rapid
and reliable data-driven decision-making [5]. However, the
enormous amount of image data generated by multi-spectral
and high-resolution sensors requires advanced processing tech-
niques to efficiently extract semantically meaningful insights
in real time [6].

Narrow artificial intelligence (AI) techniques have signifi-
cantly improved the capabilities of integrated SGRS systems to
classify scenarios, detect anomalies, and predict disasters from
satellite imagery, enhancing outcomes in disaster management,
environmental conservation, and geopolitical monitoring [7].
Despite these advancements, conventional AI models face lim-
itations in computational capacity, latency, and data security
[8]. In real-time applications such as war forecasting and
rapid-response disaster management, these AI models often
face challenges in processing large-scale high-dimensional
data efficiently while maintaining the required accuracy and
speed, limiting their effectiveness in critical and time-sensitive
scenarios [9], [10]. Security concerns are equally important,
especially in sensitive or conflict-prone regions, where the
secure transmission and processing of classified satellite data
are essential [11]. Therefore, ensuring data integrity and pre-
venting unauthorized access are vital to protecting strategic
information and preserving operational reliability in such high-
risk conditions.

Quantum fusion intelligence (QFI) has emerged as a cutting-
edge solution, comprising quantum AI, large AI, and hybrid
quantum-large AI, to address the security and computational
challenges faced by intelligent integrated SGRS systems [12].
By leveraging quantum principles such as superposition and
entanglement, QFI enables faster and more efficient pro-
cessing of complex satellite imagery. This quantum parallel
approach improves the scalability of fusion models, allow-
ing for the real-time integration of diverse data sources,
which is crucial for applications such as disaster prediction
and security surveillance [13]. In addition to the quantum-
enhanced processing power and speed, which help reduce
computing latency, quantum systems ensure unconditional
security, making them a primary choice for integrated SGRS
over its classical counterparts [14]. Moreover, satellite systems
transmit application-specific or semantically relevant insights
from remote sensing data to ground nodes over integrated
satellite-ground quantum networks, ensuring privacy and secu-
rity throughout the process. In particular, quantum anonymous
communication (QAC) protocols leverage the unique proper-
ties of multipartite quantum entanglement to ensure participant
anonymity by concealing the identities of communicating
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Fig. 1. An integrated SGRS framework combining QFI and QAC. The framework exploits satellite onboard processors (central and quantum processing
units) for application-specific satellite imagery analysis in remote sensing. This involves utilizing advanced QFI models to extract semantically rich insights
from captured satellite imagery, thereby enhancing tasks such as disaster detection and environmental monitoring. Moreover, satellites generate the entangled
photons and distribute them to recipients across the integrated satellite-ground quantum network using optical downlink transmissions. This entanglement
network is utilized to anonymously notify the ground station in case of an emergency or actionable situation at remotely sensed inaccessible locations. Herein,
S, G, and R denote satellite nodes, ground stations, and remote nodes in areas of interest sensed by the satellites. The model SVM, CNN, VAE, GAN, RNN,
LSTM, SwinT, and ViT stand for support vector machine, convolutional neural network, variational autoencoder, generative adversarial network, recurrent
neural network, long short-term memory, swin transformer, and vision transformer, respectively.

parties while safeguarding sensitive information by inherently
enhancing communication security through quantum princi-
ples [15]. This dual functionality addresses critical privacy
and security concerns in sensitive communication scenarios
by protecting both the identities of the participants and the
integrity of the transmitted information.

In this article, we explore the transformative shift from
narrow AI to QFI, highlighting quantum potentials in security,
privacy, and computation in lieu of the integrated SGRS (see
Fig. 1). The main contributions are outlined as follows.

• We present an integrated SGRS framework that combines
QFI with QAC. Specifically, we explore the transition
from classical narrow AI models to quantum AI, large AI,
and hybrid quantum-large AI models for remote sensing
with satellite imagery.

• We provide the quantum anonymous notification protocol
for privacy-preserving nonterrestrial-terrestrial communi-
cation. Two case studies are given to demonstrate various
QFI models for remote sensing scenarios involving dis-
aster detection and environmental monitoring.

II. QFI COMPUTING FOR INTEGRATED SGRS

Narrow AI models have significantly improved the inte-
grated SGRS systems by enabling satellite imagery analysis
directly on the satellite’s onboard central processing unit
(CPU), facilitating tasks such as environmental monitoring and

predictive analytics. Table I reviews diverse narrow AI models
and their limitations in remote sensing with satellite imagery.
In this section, we prototype an integrated SGRS system with
QFI computing and QAC, which is designed to support well-
informed decision-making in time-sensitive applications. For
integrated SGRS tasks, we outline quantum AI, large AI,
and hybrid quantum-large AI models for efficiently extracting
semantically relevant sensitive information.

A. QFI-QAC SGRS Framework

As depicted in Fig. 1, the proposed framework leverages
QFI and QAC to enhance real-time decision-making in time-
and privacy-sensitive applications, even under challenging
conditions concerning signal-to-noise ratios (SNRs) and quan-
tum noise. Specifically, QFI includes quantum AI, large AI,
and hybrid quantum-large AI models to efficiently extract
semantically relevant and sensitive information from satellite
imagery for disaster management, security, and other critical
use cases. For this task, satellites are equipped with onboard
processors, including classical CPUs and quantum processing
units (QPUs), to perform real-time analysis of application-
specific remote sensing image data. The QFI framework em-
ploys a hybrid approach, combining classical large AI models,
such as transformers, to extract intermediate semantic features
from satellite imagery—for example, analyzing pre-disaster
and post-disaster images separately for disaster detection tasks
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TABLE I
NARROW AI MODELS AND THEIR LIMITATIONS IN REMOTE SENSING WITH SATELLITE IMAGERY

Classification
Task

Convolutional
Neural Network

(CNN)

CNNs classify satellite images by extracting spatial features (edges, textures) using multi-spectral data
(RGB, infrared). Techniques like data augmentation, dropout, pooling, and fully connected layers enhance
robustness, preventing overfitting and improving land cover classification.

Support Vector
Machine
(SVM)

SVMs classify satellite imagery by finding optimal hyperplanes, using texture features or principal
component analysis to reduce dimensionality. Kernel functions handle nonlinear separations, improving
accuracy. Hybrid SVMs with CNNs enhance performance, especially for large datasets.

Localization
Task

Faster Region-
Based CNN

(R-CNN)

Faster R-CNN is widely used for satellite imagery localization, detecting objects like roads and buildings
using region proposal networks to generate bounding boxes. It reduces computational overhead and
utilizes anchor boxes of various sizes to handle objects of different scales, improving accuracy.

You Only
Look Once

(YOLO)

YOLO excels in real-time object detection for satellite imagery, predicting bounding boxes and classes in
a single pass. It divides images into grids, detecting multiple objects efficiently and handling varying object
scales using anchor boxes, making it robust for large-scale satellite data.

Semantic
Segmentation

Task

Mask R-CNN
Mask R-CNN is a CNN-based semantic segmentation model used for pixel-level classification in
satellite imagery, detecting and outlining object boundaries. It employs a segmentation branch within
Faster R-CNN and uses RoIAlign for spatial accuracy, handling complex cases like overlapping objects.

U-Net
U-Net is a deep learning architecture for semantic segmentation of satellite data, performing pixel-level
classification for land cover types like forests and urban areas. Its encoder-decoder structure with skip
connections preserves spatial information, ensuring precise boundary delineation for large and small objects.

Environmental
Monitoring

Task

Siamese
CNN

Siamese CNNs detect changes in satellite imagery by comparing feature representations from two images
taken at different times, tracking land cover changes, deforestation, and natural disasters. The model
excels in temporal analysis and handles multi-resolution data effectively by leveraging shared weights to
ensure consistent feature extraction and precise detection of subtle changes in satellite imagery.

Recurrent
Neural Network

(RNN)

RNNs are effective for analyzing time-series satellite data, tracking changes like deforestation and glacier
melting. Long short-term memory (LSTM) units capture long-term dependencies, while CNN-RNN hybrids
combine spatial and temporal features, enhancing performance. RNNs also handle multi-sensor data, aiding
in environmental monitoring, disaster relief, and predicting future trends using historical data.

Semantic
Analysis

Task

Recursive
CNN

Recursive CNNs improve satellite image resolution by iteratively applying convolutional layers, refining
details and correcting errors. Combined with residual learning, they enhance high-frequency features
and learn hierarchical characteristics, making them effective for large-scale satellite data processing.

Deep Residual
Network (ResNet)

Deep ResNet models handle super-resolution tasks and semantic analysis by using skip connections
and residual learning. This allows training deep networks without vanishing gradients, improving image
resolution, capturing fine textures, and integrating multi-spectral data for accurate classification.

Anomaly
Detection

Task

Convolutional
Autoencoders

Convolutional autoencoders detect anomalies in satellite imagery by learning typical data patterns and
identifying deviations. The model processes multi-spectral data through an encoder-decoder structure,
where larger reconstruction errors indicate anomalies like irregular land use or environmental changes. Its
ability to reconstruct expected patterns highlights subtle and hard-to-detect anomalies in complex imagery.

Isolation
Forests

The Isolation Forest algorithm is ideal for detecting anomalies in satellite imagery by isolating observations
using an ensemble of random trees. It excels in handling high-dimensional data, identifying anomalies based
on shorter isolation paths. This method is highly efficient, scalable, and suitable for large-scale, real-time
anomaly detection, requiring no prior knowledge of data distribution.

Computational
Limitation

Computing
Power

Satellite onboard systems often struggle with narrow AI tasks like deep learning, limiting real-time data
processing crucial for applications such as disaster monitoring and war predictions.

Resource
Overhead

Narrow AI models like deep neural networks need significant computing power, but satellites’ limited
resources make real-time image segmentation and anomaly detection challenging to implement efficiently.

Training Time Training AI models, especially deep learning, require significant time and resources, posing challenges for
satellites. Longer training times delay deploying updated, more accurate models in operational systems.

Energy Efficiency Satellite’s limited resources restrict continuous AI algorithm use. Real-time processing of high-resolution
images consumes significant energy, causing insufficient and inefficient analysis with narrow AI models.

Computational
Latency

Narrow AI systems face delays in processing large, high-dimensional satellite datasets, struggling to
balance accuracy and speed for rapid decision-making in emergency situations.

Security
Limitation

Model Poisoning Narrow AI systems risk model poisoning from biased or corrupted data, making them unreliable for
critical applications like disaster management and military surveillance.

Encryption
Capacity

Narrow AI models require substantial processing power for encrypting high-resolution satellite images,
making real-time data protection challenging in conflict-prone areas, risking eavesdropping and exploitation.

Insecure Channel Satellite-to-ground data transmission is vulnerable to security breaches, with narrow AI systems often
lacking strong encryption, risking interception of sensitive information with geopolitical consequences.

Privacy Breach Narrow AI models struggle with privacy-preserving data analysis in remote sensing, making them vulnerable
to breaches, whereas quantum-enhanced models offer superior privacy protection for secure applications.

Data Corruption Integrated SGRS systems using narrow AI face tampering and data corruption risks due to continuous
transmission, lacking sufficient security measures to ensure data integrity and analytical accuracy.
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(see Fig. 2). These intermediate semantic features are then
merged and passed through a parametrized quantum circuit
(PQC), which utilizes PQC gates to map the combined se-
mantic features into a complex quantum Hilbert space, thereby
enhancing pattern recognition. Such PQC-processed features
are subsequently fed into a classical classifier, which analyzes
them to identify the type of disaster. The outcome of this
analysis constitutes the semantic information derived from the
satellite imagery in the form of disaster classification. This
critical semantic information is then securely transmitted to
ground stations using QAC, ensuring participant anonymity
and data integrity throughout the transmission process. The
QAC framework involves an integrated satellite-ground quan-
tum entanglement network wherein satellites generate and
distribute entangled photons to terrestrial nodes by virtue
of optical downlinks. The established entanglement enables
secure and anonymous communication, ensuring that ground
stations receive emergency alerts or actionable insights in a
privacy-preserving manner. In essence, satellite nodes sense
and process data from remote locations, while ground stations
receive quantum-encrypted notifications, facilitating rapid re-
sponses to critical events in inaccessible high-risk areas.

B. Quantum AI Models
Quantum AI models represent a significant leap beyond

traditional narrow AI by leveraging the principles of quantum
computing to overcome limitations in both processing power
and data security.

1) Quantum Classification Models: Quantum classification
models, including quantum convolutional neural networks
(CNNs) and quantum support vector machines (SVMs), har-
ness quantum principles to enhance classification accuracy
and efficiency, particularly in the analysis of high-dimensional
satellite imagery.

• Quantum CNNs: Quantum CNN models are equipped
with quanvolutional layers that make them an effective
tool for tackling complicated object recognition problems
for satellite imagery classification. Specifically, these
models process high-dimensional spatial data, allowing
for the accurate recognition of buildings, vehicles, and
natural landmarks in satellite images. The quanvolutional
layers enable quantum CNNs to extract detailed patterns
that would be difficult to recognize with classical con-
volutional layers, providing a considerable advantage in
detecting minute variations across vast geographic areas.
This extended feature extraction improves accuracy in
tasks such as land use mapping, infrastructure monitoring,
and environmental change detection.

• Quantum SVMs: Quantum SVM models employ quan-
tum computing to augment the classical SVMs, result-
ing in substantial advances in computational efficiency
and scalability for satellite imagery classification. By
encoding satellite image data into quantum states and
manipulating it using quantum gates, the quantum SVMs
utilize the quantum kernel approach to categorize data in
high-dimensional feature spaces, efficiently handling the
complex patterns observed in satellite images. This quan-
tum kernel technique minimizes computing complexity

and the number of required qubits, allowing for faster
processing and analysis of massive satellite datasets. The
quantum SVMs are particularly useful for discriminating
between modest land cover types, detecting changes over
time and tracking anomalies such as deforestation or
urban growth.

2) Quantum Generative Models: Quantum generative mod-
els, including generative adversarial networks (GANs) and
variational autoencoders (VAEs), produce high-fidelity sam-
ples from complex data distributions to improve data synthesis
in satellite imagery.

• Quantum VAEs: Quantum VAE models use quantum cir-
cuits to improve the learning of latent representations for
satellite imagery. These models are especially well-suited
to anomaly identification in remote sensing applications,
where detecting minuscule and uncommon changes over
large geographic areas is critical. Such models efficiently
simulate the complex and high-dimensional data distribu-
tions apparent in satellite images, leveraging quantum cir-
cuits to identify detailed patterns and anomalies that clas-
sical VAEs might ignore. The incorporation of quantum
Boltzmann machines further enhances their capability to
generate synthetic images and identify deviations such as
deforestation, urban growth, and infrastructure damage by
effectively modeling the inherent data distributions.

• Quantum GANs: Quantum GAN models functionally
operate similarly to classical GANs, containing a gener-
ator and discriminator that adversarially work in tandem,
with components implemented as parameterized quantum
circuits. The underlying superposition and entangling
gates further advance quantum GANs in generating high-
resolution satellite images. In this context, these models
provide fine-grained details by efficiently acquiring and
modeling complex data distributions, thereby delimiting
the scope of classical GANs. The quantum advantage in-
vokes faster convergence and more accurate extraction of
high-resolution features such as urban structures, disaster
patterns, and landform details.

3) Quantum Sequential Models: Quantum sequential mod-
els, including quantum recurrent neural networks (RNNs) and
quantum long short-term memory (LSTM) networks, leverage
quantum computing to improve performance in satellite im-
agery analysis and time series prediction.

• Quantum RNNs: Quantum RNN models, the quantum
counterparts of classical RNNs, are specifically designed
for sequence modeling and assessing temporal depen-
dencies in satellite imagery. These models can process
data over multiple time steps using parametrized quantum
circuits. This allows them to effectively handle intricate
temporal correlations in instances including variations
in climate patterns and land cover over time. Owing to
the inherent quantum advantage in processing correlated
and high-dimensional time-series data, these models are
especially well-suited for time-series analysis in remote
sensing applications. Some noteworthy scenarios involve
preventing deforestation, tracking urban growth, timely
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Fig. 2. An exemplary quantum-large AI fusion architecture for disaster image classification. Herein, pre-event and post-event images are processed through an
encoder utilizing swin (shifted window) transformer blocks for multi-stage feature extraction, with patch merging to refine spatial and feature resolutions. The
outputs from both images are flattened and combined before being passed into a classifier that integrates both quantum and classical computing layers. The
classifier uses a hybrid quantum-classical kernel for amplitude embedding, followed by a basic entangling circuit layer and combined with residual connections
from previous layers. The final combination is down-sampled to generate the final classification output.

predicting catastrophes, and examining seasonal crop
growth patterns.

• Quantum LSTM Networks: Quantum LSTM networks
are quantum-enhanced versions of classical LSTM net-
works designed to handle long-term dependencies in
satellite imagery time-series data. Herein, the compo-
nent quantum circuits handle the input, forget, and out-
put gates, efficiently maintaining and updating memory
across time steps, thus rendering them appropriate for
forecasting tasks in remote sensing. The quantum advan-
tage empowers these models to capture complex temporal
patterns, particularly in multi-spectral data and nonlinear
interactions, thereby outperforming classical counterparts
in predictive applications. The quantum gate-based ar-
chitecture improves real-time environmental monitoring,
disaster risk prediction, and long-term climate forecast-
ing, resulting in higher accuracy and speed for large-scale
satellite imagery.

C. Large AI Models
Large AI models leverage vast datasets and advanced deep

architectures to efficiently process high-dimensional satellite
imagery for environmental monitoring and disaster detection.

1) Transformer Models: Transformer-based models such as
swin (shifted window) transformers (SwinTs) and vision trans-
formers (ViTs) employ self-attention mechanisms to enhance
the representation of high-dimensional satellite imagery for
improved decision-making.

• SwinTs: SwinT models are hierarchical ViTs optimized
for satellite imagery in remote sensing applications. By
partitioning images into non-overlapping local windows
and applying self-attention within these windows, SwinTs
efficiently capture local contextual information. The shift-
ing window mechanism between layers enables interac-
tions across different regions of the image, allowing the
models to integrate both local and global features. This
architecture enhances computational efficiency and scala-
bility, making these models particularly suitable for high-
resolution satellite imagery analysis. In remote sensing
tasks, such as disaster scene classification, SwinTs excel
by accurately detecting finer details and broader scene
context, ultimately improving classification performance.

• ViTs: ViT models adapt the transformer architecture for
satellite imagery in remote sensing by treating image
patches as sequence tokens. Herein, each image is divided
into fixed-size patches, embedded into feature vectors,
and processed using self-attention mechanisms to capture
global dependencies across the image. In contrast to the
conventional convolutional models, ViTs rely entirely
on attention mechanisms, allowing for effective feature
extraction and modeling of relationships between distant
parts of an image. This makes them highly effective
for remote sensing tasks such as disaster classification,
wherein they can identify widespread patterns, capture
long-range dependencies, and enhance scene classifica-
tion accuracy. Despite performing well on large datasets,
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these models require substantial computational resources
due to their high capacity, making them best suited for
complex satellite imagery analysis.

2) Vision Generative Models: Vision generative models aim
to generate realistic images by learning the underlying data
distribution for applications involving data augmentation or
image synthesis.

• U-Net Diffusion Models: U-Net diffusion models are
generative frameworks designed to reverse a diffusion
process, transforming noise into coherent images. The
U-Net architecture captures multi-scale hierarchical fea-
tures, predicting noise residuals at each timestep to itera-
tively refine the image. In remote sensing applications in-
volving satellite imagery, these models can generate high-
resolution images from noisy inputs, offering detailed
reconstructions of geographical features. However, due
to their computational intensity and focus on generation
rather than classification, diffusion models are less suited
for tasks like disaster classification, where discriminative
models excel. Their core strength lies in producing high-
fidelity images, making them particularly relevant for im-
age reconstruction and enhancement in satellite imagery
analysis.

• ViT-GANs: ViT-GAN models integrate ViTs into GAN
frameworks to improve image generation capabilities for
remote sensing. Both the generator and discriminator
use transformer architectures during image synthesis and
evaluation, leveraging self-attention to capture global
relationships and model complex structures and textures.
This allows ViT-GANs to effectively generate detailed
and high-resolution images by modeling long-range de-
pendencies across image patches. In remote sensing, these
models are used for data augmentation by generating
synthetic satellite images for various scenarios, such as
disaster scenes, enhancing the robustness of classification
models. Their ability to produce realistic imagery makes
them especially valuable for enriching training datasets
when annotated satellite images are limited.

3) Foundation Models: Foundation models are large-scale
models trained on extensive datasets, aiming to provide strong
general-purpose representations that can be fine-tuned for
various downstream tasks.

• Self-Supervised Learning Models: Self-supervised
learning models are designed to extract robust feature rep-
resentations from unlabeled satellite imagery by solving
pretext tasks. These tasks involve predicting missing or
corrupted parts of the data, such as reconstructing masked
regions or predicting spatial relationships between image
patches. Further advancements incorporating techniques
like contrastive learning and masked image modeling en-
able these models to capture meaningful patterns without
manual annotations. Once trained, these representations
can be fine-tuned on downstream tasks, such as image
classification, requiring fewer labeled instances. In remote
sensing with satellite imagery, self-supervised models
efficiently leverage vast amounts of unlabeled image data,
improving the detection and classification performance
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Fig. 3. Confusion matrices for various classical AI (SwinT, ViT, Inception,
and ResNet) and their QFI models on the disaster detection (disaster satellite
images) dataset (top four) and the environmental monitoring (EuroSAT)
dataset (bottom four).

by providing rich feature representations, particularly in
situations with limited labeled data.

• Zero-Shot Learning Models: Zero-shot learning models
are designed to recognize unseen classes by leveraging
auxiliary information, making them ideal for remote
sensing with satellite imagery. Models such as contrastive
language-image pre-training, for example, align visual
and textual data in a shared embedding space using
contrastive learning for image recognition tasks. This
allows the models to classify new categories based on
semantic similarities to known classes without requiring
labeled training data for every class. Moreover, zero-
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shot learning models can identify emerging and new
class types without additional training, enabling rapid
recognition and response to new events. This approach
is especially applicable when labeled data for all class
types is either unavailable or impractical to obtain.

D. Quantum-Large AI Models

Quantum-large AI models remark a convergence of quantum
computing and large-scale AI to harness the exponential speed
advantages of quantum computing for faster and more efficient
processing of vast datasets in advanced AI-driven remote
sensing tasks (see Fig. 2 for an exemplary fusion architecture).

1) Quantum Transformer Models: Quantum transformer
models extend classical transformer architectures into the
quantum domain. These models aim to exploit quantum com-
puting principles to improve the efficiency of self-attention
mechanisms and overall model performance.

• Quantum SwinTs: Quantum SwinT models integrate
quantum computing into the SwinT architecture by uti-
lizing parameterized quantum circuits for shifted window
self-attention mechanisms. This approach harnesses quan-
tum parallelism and entanglement, enabling the process-
ing of complex correlations in high-dimensional visual
data that may be challenging for classical models. In
satellite imagery for disaster classification, these models
facilitate faster analysis of high-resolution images, im-
proving both the speed and precision of disaster monitor-
ing and response.

• Quantum ViTs: Quantum ViT models enhance the ViT
architecture with quantum techniques in self-attention.
By employing quantum superposition, these hybrid mod-
els process all image patches simultaneously, efficiently
capturing global dependencies. This integration offers
potential improvements in both computational efficiency
and modeling capabilities. In remote sensing applications,
quantum ViTs invoke real-time analysis of large datasets,
significantly empowering disaster response efforts.

2) Quantum Vision Generative Models: Quantum vision
generative models leverage quantum computing to enhance im-
age generation, thereby enabling high-fidelity image synthesis
while efficiently capturing complex distributions inherent in
satellite imagery.

• Quantum Transformer GANs: Quantum transformer
GAN models integrate quantum computing into tradi-
tional GAN architecture, enhancing their ability to gen-
erate complex data efficiently. By incorporating quantum
circuits within both the generator and discriminator, these
models leverage quantum mechanics—specifically entan-
glement and superposition—to explore a broader state
space, improving the quality and diversity of generated
satellite images. In satellite imagery for disaster predic-
tion scenarios, quantum transformer GANs can synthesize
high-fidelity images of disaster-affected areas, simulating
various scenarios for analysis. Additionally, the quantum
advantage allows for more efficient handling of the vast
and intricate data typical of remote sensing, accelerating
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Fig. 4. Training performance of various classical AI (SwinT, ViT, Inception,
and ResNet) and their QFI models on the disaster detection (disaster satellite
images) dataset (top four) and the environmental monitoring (EuroSAT)
dataset (bottom four).

the generation of realistic satellite imagery under different
disaster conditions.

• Quantum Diffusion Models: Quantum diffusion models
leverage quantum computing to enhance the performance
of diffusion generative models, improving both sampling
efficiency and image quality. By utilizing quantum al-
gorithms, these models simulate the diffusion process
to handle complex probability distributions in high-
dimensional spaces. The quantum enhancement acceler-
ates the reverse diffusion process, enabling faster gen-
eration of high-resolution satellite images with reduced
computational demands. In remote sensing tasks, these
models excel at reconstructing and denoising satellite
imagery affected by noise or incomplete data, providing
more precise and usable images. Therefore, this capabil-
ity comes in handy for accurately identifying disaster-
affected areas, improving real-time monitoring and re-
sponse efforts.

3) Quantum Multimodal Models: Quantum multimodal
models integrate visual and textual information, utilizing quan-
tum computing to enhance the understanding and generation
of complex multimodal datasets. This approach facilitates
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TABLE II
PERFORMANCE OF CLASSICAL AI AND QFI MODELS FOR ENVIRONMENTAL MONITORING (EUROSAT DATASET) AT SNR LEVELS OF 5 dB AND 15 dB

Model SNR = 5 dB SNR = 15 dB

Accuracy F1 Precision Recall Loss Accuracy F1 Precision Recall Loss

SwinT 0.8656 0.7744 0.8125 0.7601 0.4189 0.8679 0.7802 0.8133 0.7635 0.4000
Quantum SwinT 0.8772 0.7984 0.8714 0.7462 0.3859 0.8834 0.8086 0.8701 0.7641 0.3607
ViT-L/32 0.7001 0.1647 0.1400 0.2000 0.9835 0.7001 0.1647 0.1400 0.2000 0.9868
Quantum ViT-L/32 0.6884 0.1733 0.1929 0.2041 1.0190 0.6946 0.1879 0.2789 0.2125 1.0051
Inception-V3 0.8834 0.7895 0.8597 0.7474 0.3457 0.8912 0.8019 0.8562 0.7671 0.3414
Quantum Inception-V3 0.9215 0.8617 0.8649 0.8592 0.2450 0.9347 0.8881 0.8869 0.8914 0.2281
ResNet-50 0.9029 0.8466 0.8636 0.8332 0.3128 0.9044 0.8466 0.8699 0.8283 0.2898
Quantum ResNet-50 0.8936 0.8181 0.8362 0.8099 0.3358 0.8827 0.7959 0.8311 0.7786 0.3574

extracting insightful and relevant contextual information from
satellite imagery.

• Quantum Vision-Language Models: Quantum vision-
language models integrate quantum computing principles
to process both visual and linguistic data simultaneously,
enhancing the interpretation of complex multimodal in-
formation. Leveraging quantum parallelism, these mod-
els capture deep correlations between satellite images
and corresponding text, improving their understanding
of remote sensing application-specific scenarios. In re-
mote sensing for disaster prediction, such models can
analyze satellite imagery and generate detailed textual
descriptions, aiding in rapid assessment and reporting.
This capability facilitates better communication among
decision-makers by automatically highlighting critical
disaster impact zones.

• Quantum Cross-Modal Learning Models: Quantum
cross-modal learning models leverage quantum comput-
ing to integrate and interpret relationships across various
data modalities, including visual, textual, and sensor
data. Using quantum algorithms, these models efficiently
process and fuse heterogeneous data sources, providing
deeper insights into complex datasets. In the context of
satellite imagery for remote sensing, these models link
satellite images with inputs like social media updates,
ground sensor readings, and textual reports. This in-
tegrated approach offers a more comprehensive under-
standing of critical situations, such as disaster response,
security surveillance, and conflict assessments.

E. Case Studies
We present case studies demonstrating the application of

QFI models in integrated SGRS for disaster detection and
environmental monitoring.

1) Disaster Detection: In this case study, we employ the
disaster detection (disaster satellite images) dataset with satel-
lite imagery to detect disasters by comparing pre-disaster and
post-disaster images over affected areas. The dataset includes
10 distinct types of disasters. The QFI approach integrates
both classical and quantum models for feature extraction and
classification, aiming to enhance the accuracy of early warning
systems.

We utilize two distinct feature extraction pipelines: one
using a ViT and the other using a SwinT. Each classical model

is then compared with its quantum-fusion counterpart, namely,
the quantum ViT and quantum SwinT. The features from the
pre-disaster and post-disaster images are extracted separately
using the ViT in the first pipeline and the SwinT in the sec-
ond. After extracting and flattening the features, we combine
them to create a unified feature set. This combined feature
set is then passed through the rectified linear unit (ReLU)
activation function to introduce nonlinearity and improve the
model learning capabilities. Subsequently, we apply amplitude
encoding to convert the activated features into a quantum state,
enabling processing by a quantum circuit, as shown in Fig. 2.
This circuit is designed with parameterized quantum gates and
entangling layers to capture complex correlations between the
features. At the final stage, the quantum circuit performs mea-
surement operations, and the measurement results are fused
with the output from the classical layers via skip connections.
This combined information is then passed through a classifier,
which determines the type of disaster using the processed data.

The system leverages both classical and quantum learning
models to provide a robust mechanism for disaster detection
with satellite imagery. Specifically, it enables early warnings
by analyzing the changes between pre-disaster and post-
disaster images, offering critical information for emergency
alerts and warning systems in real time. This innovative
integration of quantum-large AI within SGRS marks a sig-
nificant step forward in enhancing the capacity of disaster
management platforms. The confusion matrices and training
performance results are depicted for large AI (SwinT and
ViT) and their QFI models in Figs. 3 and 4, respectively.
We utilize a consistent set of hyperparameters to train both
the classical AI and QFI models, ensuring a fair performance
comparison. Specifically, we employ the Adam optimizer
with a learning rate of 0.0001 and cross-entropy loss as
the objective function. The models are trained over 100
epochs to balance convergence and computational efficiency.
This uniform configuration allows for a reliable evaluation
of the performance enhancements introduced by the QFI
models. The training performance results indicate that the QFI
models demonstrate faster convergence, lower final training
loss, and higher training accuracy compared to their classical
counterparts. Similarly, testing performance, evaluated using
confusion matrices, further underscores the superiority of QFI
models, evidently with sharper diagonal dominance and fewer
misclassifications. These improvements highlight the enhanced
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learning capacity and robustness of QFI models for disaster
detection tasks.

2) Environmental Monitoring: In the second case study,
we employ the EuroSAT dataset, designed for environmental
monitoring through real-time satellite imagery. The dataset
consists of 27, 000 labeled and geo-referenced satellite images
sourced from Sentinal-2, part of the Copernicus Earth observa-
tion program. It includes 10 image classes across 13 different
spectral bands. Each image is resized to 64 × 64 pixels after
being extracted from patches standardized to 224×224 pixels.

For model training, we use a 70 : 30 training-testing split
and train both pretrained classical AI and quantum transformer
models. Each model is trained over 100 epochs, employing
the Adam optimizer with a learning-rate adjustment strategy
that reduces the rate to 0.0001 upon plateauing of validation
loss. This refines model parameters optimally over multiple
training cycles. The obtained confusion matrices and training
performance results are again shown for classical AI (Inception
and ResNet) models and their QFI models in Figs. 3 and
4, respectively. Both QFI models demonstrate efficient train-
ing, characterized by faster convergence and lower training
loss. While the quantum Inception model achieves noticeably
higher accuracy, the quantum ResNet performs on par with
its classical version. Moreover, the confusion matrices for the
testing dataset reveal relatively fewer misclassifications by the
QFI models, highlighting their superior capability for accurate
environmental monitoring. In addition, Table II compares the
environmental monitoring performance for various classical AI
(SwinT, ViT, Inception, and ResNet) and their QFI models
trained on the EuroSAT dataset under different SNR condi-
tions. In general, although the QFI models exhibit enhanced
expressiveness at moderate-to-high SNR levels, they tend to be
more sensitive to severe noise, enabling their classical counter-
parts to remain competitive or even superior at very low SNR
levels. Nonetheless, by leveraging optimal network co-design
strategies—jointly developing the quantum processing pipeline
(PQC architecture), classical large AI architectures, and com-
munication protocols—along with effective error mitigation
techniques, quantum-enhanced approaches can still outperform
classical methods when the SNR level is sufficiently high.
Moreover, current QPUs face hardware limitations such as
qubit decoherence, low gate fidelities, and stringent cryogenic
operating requirements, thus amounting to additional com-
plexity and cost to onboard satellite deployment. Therefore,
addressing these challenges, such as improving environmental
resilience and managing high-maintenance conditions, remains
crucial for harnessing the full potential of QFI models in
practical SGRS applications.

III. QAC FOR INTEGRATED SGRS

For integrated SGRS tasks, the satellites anonymously and
securely communicate with terrestrial network recipients using
QAC. Specifically, we outline the quantum anonymous notifi-
cation protocol for notifying the ground stations of emergency
alerts over satellite-ground quantum networks.

A. Satellite-Ground Anonymous Notification

The QPU-equipped satellite notifies the ground stations in
case of an emergency using the quantum anonymous protocol.
The protocol steps are as follows.

1) Entanglement Preparation: In the first preparation step,
satellites prepare multipartite entangled Greenberger–Horne–
Zeilinger (GHZ) states.

2) Entanglement Distribution: Each recipient is assigned a
set of particles from the entangled states. These particles are
indexed, and each recipient receives their particles, which will
be used in subsequent operations for encoding and decoding
notifications.

3) Phase-Flip Operations: Each network recipient applies
the phase-flip (Pauli-Z) operation on their assigned particles
based on specific preset rules. The notifier (any satellite)
encodes its notification by performing the phase-flip operation
on its respective qubit. The intended recipient (any ground
station) receives this notification based on the outcomes of
these operations. A probability rule governs whether the
notification is encoded or not, preventing collisions between
multiple notifications. Other parties either leave their qubits
unchanged according to the preset protocol rules.

4) Hadamard Operations: All network recipients perform
the Hadamard operation on their respective qubits. This opera-
tion transforms the current state into a superposition of states,
facilitating the propagation of the encoded notification within
the system. The Hadamard operations on the shared GHZ state
create interference effects, which are essential for decoding the
anonymous notification in the final stage.

5) Computational Basis Measurement: After the Hadamard
operation, each recipient measures its respective qubit in the
standard computational basis. This measurement produces a
binary outcome for each qubit, which is then used to decode
the notification in classical post-processing.

6) Classical Communication: Once the measurements are
completed, each recipient announces its measurement outcome
via classical authenticated broadcast channels. This step pre-
vents recipients from directly revealing their own encoded
information while providing the necessary data for collective
processing by the other involved recipients.

7) Anonymous Notification: Finally, each recipient calcu-
lates the binary (modulo 2) sum of the received outcomes. This
value determines whether the intended recipient (the ground
station) has been notified. If the sum matches the encoded
value, the notification has been successfully transmitted to the
ground station without disclosing the satellite’s identity.

B. Advantages

The key security and privacy benefits of satellite-ground
QAC are outlined as follows.

1) Security: Satellite-ground QAC provides robust protec-
tion against quantum-capable adversaries, ensuring the in-
tegrity of integrated nonterrestrial-terrestrial networks.

• Traceless Operations: The satellite-ground anonymous
notification protocol ensures that the encoding operations
cannot be traced back to the notifying satellite, even if an
adversary gains access to all communication data. This
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prevents any entity from linking actions to a specific
network recipient, providing complete untraceability.

• Adversarial Resilience: The protocol is designed to be
resilient against external adversaries, even those with
quantum capabilities and access to all shared network
resources. This guarantees secure and tamper-proof noti-
fication delivery.

• Secure Transmission: The protocol ensures that only the
intended ground station receives the notification without
revealing any details to other recipients. The mechanism
minimizes the risk of interference or manipulation during
transmission.

• Node Integrity Protection: The protocol is designed
to maintain security even if certain network nodes are
compromised. This ultimately prevents those nodes from
gaining any significant advantage in identifying the no-
tifying satellite or the intended ground station, thereby
preserving the overall communication integrity.

2) Privacy: Satellite-ground QAC guarantees complete
anonymity for both the sender and receiver, protecting their
identities and ensuring that privacy-sensitive communications
remain untraceable within the network.

• Sender Anonymity: The protocol guarantees anonymity
for the notifying satellite, preventing any recipient, in-
cluding adversaries, from determining its identity. This
feature makes it impossible to trace back the notification’s
origin.

• Receiver Anonymity: The protocol also protects the
identity of the receiving ground station, ensuring that ad-
versaries cannot determine which ground station is being
notified of the emergency alert, even if the adversaries
control parts of the network.

• Hidden Encoding Mechanism: Encoding operations are
performed anonymously within the network, ensuring no
recipient can identify which station initiated the notifica-
tion. This hidden mechanism keeps the notifier’s actions
private, protecting both their identity and intent.

• Authenticated Access: The use of authenticated classical
channels for communication prevents eavesdropping and
unauthorized access during information exchange. This
guarantees that no external entity can intercept or alter
the communication, therefore preserving privacy.

IV. CONCLUSION

We have explored the fusion of large AI, quantum comput-
ing, and quantum communication to tackle the computation,
security, and privacy challenges in integrated SGRS systems.
First, we have discussed the functionality and limitations
of narrow AI models in remote sensing tasks. Leveraging
quantum advantages, we have put forth an integrated frame-
work that combines QFI computing—to improve scalability,
speed, and accuracy of processing high-dimensional satellite
imagery data—with QAC—for privacy-preserving and uncon-
ditionally secure notification transfer—between satellite and
ground systems in time- and privacy-sensitive scenarios. The
case studies on disaster detection and environmental mon-
itoring demonstrate the practical benefits of this approach,

highlighting performance gains for timely decision-making.
This work emphasizes the growing potential of QFI and QAC
in advancing integrated SGRS systems.
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