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Abstract—Efficient task information interaction is the key to
unmanned aerial vehicle (UAV) swarm collaboration. However,
the driving force of both the spatial-temporal correlation and
physical-virtual interaction has not been fully considered in
existing works. In this paper, we aim to utilize the advanced
digital twin technology to realize the efficient information inter-
action between the physical and virtual layers for UAV swarm
collaboratively performing various tasks. Considering the driving
force of both task correlation and transmission timeliness, the
physical-virtual interaction link selection problem is formulated
under uncertain estimation deviations in the form of interval
number. To address this challenging problem, we first utilize the
interval optimization for transforming the uncertain utility values
to the certain preference orderings in matching theory, and then
propose an interval rank-maximal matching algorithm to make
predictive link selection based on unilateral preference informa-
tion. Simulation results confirm that our proposed method can
improve the interaction efficiency significantly under uncertainty.

Index Terms—Digital twin, unmanned aerial vehicle, matching
theory, physical-virtual interaction, uncertain interval number.

I. INTRODUCTION

W ITH the ability to adapt to complex terrain environ-
ments, unmanned aerial vehicle (UAV) swarm has

been widely applied in various areas, such as environmental
monitoring and emergency response [1]–[3]. To improve the
efficiency of UAV swarm collaboratively performing complex
tasks, it is crucial to facilitate the task-based information
interaction. In [4], the authors utilized the Jaccard’s coefficient
to model the relevance of task types among UAVs. Based
on the Tobler’s First Law of Geography, the spatial-temporal
correlation between the data extracted from the performed task
and the task to be performed reflects the data availability [5].
Hence, how to leverage the spatial-temporal features of various
tasks to drive the interaction remains to be explored.
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When the interaction direction is determined by task corre-
lation, the transmission timeliness determines the feasibility.
Considering the highly dynamic nature of network status, the
direct transmission link between two UAVs may be intermit-
tently connected [6]. To tackle this problem, both the real-
time relay and data ferrying modes are utilized to improve
the transmission performance [7]. However, due to the delay
caused by waiting for UAV arriving at the appropriate position,
the timeliness requirement is difficult to meet. By exploiting
the rich computing resource at edge or cloud, the digital twin
(DT) can help its physical object for raw data processing and
analysis. In [8], the authors introduced three DT communi-
cation modes containing physical-to-physical (P2P), physical-
to-virtual (P2V), and virtual-to-virtual (V2V) communications.
Considering that the task information is simultaneously stored
in the physical object and its DT, a natural question is
raised, i.e., can we exploit the collaborative DTs for relaying
the P2P communication through the high-rate physical-virtual
interaction links?

With the above ideas in mind, the main challenge comes
from the uncertain correlation and delay estimation deviations
caused by trajectory offset, network variation, and data noise,
etc. It is worthy mentioning that the probability distribution
of delay or correlation parameter is usually difficult to obtain
with small samples, while the fluctuation range depicted by the
interval number is relatively easy to obtain through historical
data [9]. With its ability to model uncertainty under unknown
distribution and small samples, the interval optimization can
transform the uncertain optimization problem containing inter-
val parameters to a deterministic problem and solve it through
heuristic algorithms [9]. However, the lack of performance
guarantee restricts its application in uncertain environments.

As a powerful tool to model the beneficial relations among
agents, matching theory has been widely applied to solve
user selection problem in UAV communication networks [4],
[7]. However, it is unrealistic to assume accurately predicted
utility values in uncertain environments. In [10], the authors
firstly transformed the uncertain utility values to the interval
preference orders, and then used their expected values for
bilateral matching. Due to lack of partial information after
indirect transformation, it is difficult to compare any two
intervals based solely on the expected preference values [9].
Based on the mean-variance criterion, we have proposed the
stable matching model for solving the DT-enabled compu-
tation offloading problem under uncertainty [11]. However,
the achieved ex-ante stability may be invalidated due to the
bilateral uncertainty. In [12], the authors first proposed the
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Fig. 1: Task-driven UAV physical-virtual interaction model.
The blue icon represents the P2P interaction link. The black
dashed line represents the V2V link through the I/O link when
two DTs run on the same server, i.e., within the blue box,
or otherwise through the wired link, i.e., between two purple
boxes. The red line with arrow represents the P2V or V2P
links in different transmission directions.

unilateral rank-maximal matching model that matches the
maximum number of agents to their top-rank choice, second
choice and so on, which offers a new way for circumventing
the bilateral uncertainty. Considering that the assumption in
[10] and our previous work [11] for the probability distribution
of preference ordering values is difficult to satisfy in realistic
scenarios, how to handle the unilateral matching without
any prior knowledge about the uncertainty still needs to be
explored.

By integrating the matching theory with interval optimiza-
tion, the main contribution of this paper is a customized
framework for physical-virtual interaction link selection with
deviation ranges learned by DT. More specifically, we first
propose a task-driven UAV physical-virtual interaction model,
in which both the task correlation and transmission timeliness
are considered as optimization objects while accounting for
the uncertain estimation deviations in the form of interval
numbers. Based on interval optimization, we transform the
original uncertain optimization problem to a matching problem
with certain preference orderings, and then propose an interval
rank-maximal matching algorithm to balance the expected
utility value and risk aversion degree of original optimization
object. Simulation results confirm that our proposed method
can improve the interaction efficiency under uncertainty.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig.1, we consider a task-driven UAV physical-
virtual interaction model, where a set of UAVs mounted with
lightweight sensing and communication modules can collabo-
rate with each other to execute various tasks such as temporary
network recovery in dense hotspot areas, data collection for
three-dimensional (3D) mapping and target detection in disas-
ter areas [3]. Considering the periodic characteristics of these

tasks, the data extracted from the performed tasks such as traf-
fic characteristic, service demand, and topographical features
can improve the execution efficiency of similar tasks with close
spatial-temporal distance. Besides, considering that the long-
range P2P link may violate the timeliness requirement, the
task-based information stored at the provider DT can share it
with the requester DT through the V2V link, and then with the
requester through the virtual-to-physical (V2P) link. Note that
the transmission direction of P2V and V2P links are different,
i.e., the former is from physical to virtual layer while the latter
is in the opposite direction. It seems that the collaborative DTs
constructed in the virtual layer act as relay for information
interaction in the physical layer.

To facilitate the delay estimation in dynamic scenarios, the
time period T ≜ {1, ..., t, ..., T} is divided into cumulative
T slots with sufficiently small length δ, within which the
network status can be regarded as static [6]. In slot t, N
UAVs can be divided into the set of information providers
Up(t) = {up

i }
Np(t)
i=1 and requesters Ur(t) = {ur

j}
Nr(t)
j=1 . For

up
i , its virtual twin dpi contains the completion time tmi and

coverage cmi of the m-th task in the list of executed tasks ιei (t)
before t. Similarly, the virtual twin drj contains the scheduled
execution time tkj and coverage ckj of the k-th task in the list
of unexecuted tasks ιuj (t) before t. Inspired by the relevance
of task types in [4] and the spatial-temporal correlation in [5],
the normalized task correlation can be estimated as

ϕ̃i,j(t) =

∑
m,n∈|ιei (t)∩ιuj (t)|

ϖa|t
m
i −tkj | + (1−ϖ)b

− ln
|cmi ∩ckj |

|cm
i

∪ck
j
|

|ιei (t) ∪ ιuj (t)|
,

(1)

where ϖ, a and b are weight factors ranging from 0 to
1, |tmi − tkj | denotes the time distance, and |cmi ∩ ckj | and
|cmi ∪ ckj | denote the overlap and union coverage of two areas,
respectively. Similarly, |ιei (t)∩ιuj (t)| and |ιei (t)∪ιuj (t)| denotes
the common and total task types, respectively. Considering the
deviations between the scheduled and actual task information,
the real correlation value can be represented by an interval
number ϕi,j(t) = [ϕ̃i,j(t) + ∆ϕL

i,j , ϕ̃i,j(t) + ∆ϕU
i,j ], where

∆ϕU
i,j and ∆ϕL

i,j denote the upper and lower deviations,
respectively.

Considering the physical-virtual interaction opportunities
brought by DT, we respectively introduce the transmission
models of physical and physical-virtual interaction links.

1) Physical interaction: If the physical link quality is good
enough, up

i can directly transmit task-based information to
ur
j through the P2P link. Herein, the orthogonal frequency

division multiple access (OFDMA) scheme is utilized to
realize non-interference transmission and each link is equally
allocated with an orthogonal bandwidth B. Besides, we con-
sider the free-space path loss model for the line-of-sight (LoS)
dominant P2P link in air [4] and its predicted transmission rate
in t can be given by

R̃P2P
i,j (t) = B log2(1 +

P p
i g̃i,j(t)

σ2
), (2)

where P p
i denotes the transmission power of the i-th provider,

and the channel gain g̃ij(t) = η0 l̃
−2
i,j (t) contains the power
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gain η0 under unit reference distance. Considering the rate
variation across any two consecutive time slots, the trans-
mission delay τ̃P2P

i,j (t) can be estimated by the number of
occupied slots ni,j if duration is small enough [6], i.e.,∑ni,j

t=1 δR̃
P2P
i,j (t) = si(t) and τ̃P2P

i,j (t) = ni,jδ, where si(t)
denotes the data size.

Due to external factors such as strong winds, the UAV will
deviate from the preset trajectory, which gradually causes the
estimation deviations in path loss, rate, and delay. Similarly,
the real delay in form of interval number can be represented
by τP2P

i,j (t) = [τ̃P2P
i,j (t) + ∆τL,P2P

i,j , τ̃P2P
i,j (t) + ∆τU,P2P

i,j ].
2) Physical-Virtual interaction: If the P2P link quality is

bad, the DT dpi can interact with drj through the V2V link,
and then with the requester ur

j through the V2P link. There
exists two cases for the V2V link establishment: 1) if both dpi
and drj are running on the same edge server, the V2V link can
be established through I/O virtualization, 2) if dpi and drj are
running on the different edge servers [13], the V2V link can
be established through a wired link between two servers [14].
According to [13], [14], the rate of virtual I/O or wired link
remains unchanged in the transmission process, and the esti-
mated V2V delay τ̃V 2V

i,j (t) can be calculated by si(t)/R̃
V
i,j(t)

for case 1, and αsi(t)l
e
i,j/R̃

W
i,j(t) for case 2, where R̃V

i,j(t) and
R̃W

i,j(t) denote the transmission rates of virtual I/O and optical-
fiber link, respectively, lei,j is the distance between two edge
servers, and α is a positive coefficient.

Similar to the P2P link, the delay of the V2P link from
the server constructing drj to its physical object ur

j can be
estimated by

∑nj,j

t=1 δR̃
P2V
j,j (t) = si(t) and τ̃P2V

j,j (t) = nj,jδ,
where the transmission rate of the V2P link can be given by
R̃P2V

j,j (t) = B log2(1 + P v
j g̃j,j(t)/σ

2). Herein, we consider a
practical air-to-ground (A2G) channel model for V2P link,
which is assumed to experience altitude dependent Rician
fading and large-scale path loss [15]. Thus, the channel gain
can be expressed as g̃j,j(t) = η1 l̃

−αj

j,j (t)Ωj , where η1 is
the channel gain parameter depending on average channel
attenuation and antenna characteristics, l̃j is the uncertain
distance between drj to its physical object ur

j , αj is the path
loss exponent, and Ωj represents the altitude dependent Rician
fading following the weighted noncentral-χ2 distribution with
two degrees of freedom and E[|Ωj |2] = 1. Since this channel
model is widely used for characterizing the A2G channel, the
definition and parameter settings of probability distribution
function, Rician factor and the angle-dependent path loss
exponent can be referred to [15] for more details. Due to the
network variation and trajectory offset, the delay of the V2V
and V2P links should also be represented by interval numbers,
namely τV 2V

i,j (t) = [τ̃V 2V
i,j (t)+∆τL,V 2V

i,j , τ̃V 2V
i,j (t)+∆τU,V 2V

i,j ]

and τP2V
i,j (t) = [τ̃P2V

i,j (t) + ∆τL,P2V
i,j , τ̃P2V

i,j (t) + ∆τU,P2V
i,j ].

Considering the additivity of interval numbers [9], the trans-
mission delay can be summarized by

τi,j(t) =

{
τP2P
i,j (t), Physical interaction

τV 2V
i,j (t) + τP2V

i,j (t),Physical-virtual interaction.
(3)

As for the UAV energy consumption for executing the m-th
task, we should consider its worst case through the minimum
initial energy Emin

i (t) = Ẽi(t)+∆Emin
i (t) and the maximum

energy consumption Ec,max
i (m) = Ẽc

i (m) + ∆Emax
i (m)

to avoid the energy shortage during missions. Considering
that the energy consumption for communications is orders of
magnitude smaller than that for flight [16], we mainly focus
on the energy consumption for propulsion and hovering, which
can be estimated as Ẽc

i (m) = pPi τ̃
P
i (m)δ+pHi τ̃Hi (m)δ, where

pPi and pHi denote the propulsion power and hover power
[11], τ̃Pi (m) and τ̃Hi (m) denote the durations for propulsion
and hovering. Note that the durations are uncertain due to the
trajectory offset caused by the wind and other physical factors.

To further measure different delay requirements of various
task-based information, the transmission timeliness modeled
by the inverted sigmoid-type function in [7] can be given by
ρi,j(t) = exp{−10 expκ[(τi,j(t) − τ thi,j)]}, where κ denotes
the downward trend of the timeliness before the threshold τ thi,j .
To comprehensively factor the data availability and transmis-
sion timeliness into link selection, the utility value achieved
by establishing an interaction link from up

i to ur
j can be

represented as the weighted sum of ϕi,j(t) and ρi,j(t), i.e.,
νi,j(t) = βϕi,j(t)+(1−β)ρi,j(t), where ω is the weight factor
and νi,j(t) ∈ [νLi,j(t), ν

U
i,j(t)]. Based on the above discussion,

the optimization problem can be formulated as

max
ω

T∑
t=1

Np(t)∑
i=1

Nr(t)∑
j=1

ωi,j,tνi,j(t) (4a)

s.t. ϕi,j(t) ≥ ϕth, ρi,j(t) ≥ ρth, (4b)
N(t)∑
i=1

ωi,j,t ⩽ 1,

M(t)∑
j=1

ωi,j,t ⩽ 1,∀t ∈ T , (4c)

Emin
i (t)− Ec,max

i (m) ≥ Eth
i , (4d)

where the binary variable ωi,j,t determines whether or not to
establish the interaction link between up

i and ur
j , Emin

i (t) −
Ec,max

i (m) is the remaining energy after completing the m-th
task in the worst case and Eth

i is the remaining energy thresh-
old. The constraint (4b) indicates that both availability and
timeliness should exceed the threshold values. The constraint
(4c) indicates that one provider can only share information
with one requester while one requester can only obtain infor-
mation from one provider at a certain time slot due to the
limited transmission capacity of UAVs. The constraint (4d)
ensures that each UAV has sufficient energy to successfully
return to the charging point after completing its mission. Note
that the problem (4) is a NP-hard combinatorial optimization
problem with uncertain interval parameters, and clarifying how
to compare any two interval utility values is the precondition
for solving (4). Next, we integrate the interval optimization
with the matching theory for deterministic problem transfor-
mation and efficient solution.

III. INTERVAL MATCHING-BASED LINK SELECTION

By abstracting requesters and providers as applicants and
posts, problem (4) can be transformed as the classic one-
to-one matching model if the utility values are certain for
preference ordering [12]. Hence, it is crucial to determine the
order relations of utility values for matching.

Based on the interval optimization [9], the order relation
of interval numbers can be determined by the mindpoint
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νmi,j(t) = (νUi,j(t) + νLi,j(t))/2 without any prior knowledge
of the probability distribution, i.e., the expected performance
under uncertainty, and width νwi,j(t) = νUi,j(t) − νLi,j(t), i.e.,
the sensitivity to uncertainty. It means that the order relation
νi,j(t) >mw νi′,j(t) can be determined if the conditions
νmi,j(t) > νmi′,j(t) and νwi,j(t) < νwi′,j(t) are met simultaneously.
However, it is difficult to maximize the expected performance
while minimizing the sensitivity to uncertainty for risk aver-
sion in practical solutions. By transforming the two objective
functions into a single one, we redefine the order relation ≻̃
based on the weighted sum of the mindpoint and width of
the interval utility values, i.e., νsi,j(t) = λνmi,j(t)− (1− λ)νwi,j
with λ as the weighting factor. Then, the relation up

i ≻̃ur
j
up
i′

indicates that ur
j prefers up

i to up
i′ if νsi,j(t) > νsi′,j(t).

In this way, we finally transform the uncertain optimization
problem (4) to the deterministic problem, which can be
represented as maxω

∑T
t=1

∑Np(t)
i=1

∑Nr(t)
j=1 ωi,j,tν

s
i,j(t) with

constraint ϕs
i,j(t) ≥ ϕth, ρsi,j(t) ≥ ρth, and (4c), where

ϕs
i,j(t) and ρsi,j(t) are the weighted sum of the midpoint and

width of ϕi,j(t) and ρi,j(t), respectively. Note that the mode
selection problem coupled into problem (4) can also be solved
by comparing the transformed utility values.

Since ≻̃ is just the ex-ante evaluation for the actual or-
der relation, the bilateral matching, i.e., both providers and
requesters have preference ordering over each other, may
increase the inaccuracy in two-way selection. Hence, the
unilateral matching when only requesters have preferences
over providers would seem to be an effective way to reduce
the bilateral influence. In this case, we redefine the interval
matching model M(t) in slot t as a triple ⟨Up(t),Ur(t), ≻̃Ur ⟩.
Considering that the ex-ante stability must be invalid when re-
vealing the true preferences, focusing on maximizing the rank
of matched provider in each requester’s preference order is a
more reasonable solution with only order relation information.
According to [12], the signature of M(t) can be defined as an
Np(t)-tuple (x1, x2, ..., xNp(t)), where xi denotes the number
of requesters who are matching with their i-th choice in ≻̃Ur ,
and Np(t) is the largest rank that can be used. Then, we can
say that M(t) with signature (x1, x2, ..., xNp(t)) is greater
than M′(t) with signature (y1, y2, ..., yNp(t)), i.e., M(t) ≻
M′(t), if xi ≥ yi and xk < yk for 1 ≤ i < k ≤ Np(t)
while xi > yi at least once. Based on the above discussion,
the interval rank-maximal matching represents the matching
with the maximal signature under the interval order relations.

The key to solving this problem lies in matching as many
requesters as possible to their top-rank, second-rank providers,
etc. By abstracting the order relations as edges, i.e., the edge
of rank i means that the connected provider is the i-th choice
for the connected requester, we can invoke the maximum
matching in the reduced graph with the set of edge of rank
i to ensure that the obtained matching M(t) contains the
most edges with higher ranks. Here, the matching model
can be abstracted as a bipartite graph G(t) = (V(t), E(t)),
where V(t) = Up(t) ∪ Ur(t) denotes the vertex set, and
E(t) = E1∪ ...∪ENp(t) denotes the ranked edge set. The edges
that do not meet constraint (4b) have been deleted from G(t).
Considering that one provider may be connected to more than

one requester from Ei, we have to determine which one should
be retained and then delete from G(t) the useless edges without
prejudice to the final outcome. To this end, we introduce the
concept of even, odd, and unreachable vertices.

Definition 1: If there exists an alternating path with even
(odd) length from an unmatched vertex to v with respect to
the maximum matching M(t), we call v an even (odd) vertex.
Besides, if there are no such even (odd) length alternating path,
we call v an unreachable vertex. In this way, the vertex set
V(t) can be partitioned into the even vertex set E, odd vertex
set O, and unreachable vertex set U .

Based on the graph structure of maximum matching, the
authors in [12] proved a lemma for maximum matching.
Herein, we utilize the lemma for algorithm design and the
readers can refer to [12] for more details about the proof.

Lemma 1( [12]): Some important properties about the sets
E, O and U with respect to the maximum matching M(t) can
be listed as follows: 1) E, O and U are pairwise disjoint and
the same for any maximum matching of G(t), 2) each vertex
in O is matched with the vertex in E and the vertex in U
can only be matched within U . Hence, the size of maximum
matching is |O|+ |U |/2, and 3) the conditions that the vertex
in E is matched with the vertex in E ∪ U and the vertex in
O is matched with the vertex in O∪U , will never happen for
any maximum matching of G(t).

Based on Lemma 1, we can match as many requesters as
possible to the providers ranked higher through augmenting
and removing. For example, we first obtain the maximum
matching M1(t) with the E1, O1 and U1 in graph G1(t) =
(V(t), E1(t)). After removing all useless edges of rank 2 which
are connected with those vertices in O1∪U1, and useless rank
1 edges that one end is in O1 but the other is not in E1, we aug-
ment M1(t) to obtain M2(t) in G1(t) = (V(t), E1(t)∪E2(t)).
Considering that the matched vertices in M1(t) are still in
M2(t), the signature of x1 may remain unchanged. This way,
we can obtain the rank-maximal matching M(t) step by step.
Given Gi(t) = (V(t), E1 ∪ ... ∪ Ei(t)), the interval rank-
maximal matching based link selection (IRMLS) algorithm
can be summarized in Alg. 1.

To prove that M(t) is rank-maximal with respect to G(t),
we need to prove that the removed edges in Alg. 1 do
not appear in any rank-maximal matching of Gi+1(t) and
each element in the former signature remains unchanged after
successive augmentations.

Lemma 2: For 1 ≤ i < j ≤ Np(t), the signature of Mi(t)
is the same as the first i elements in the signature of Mj(t).

Proof: Considering that all vertices matching in Mi(t) are
also matched in Mj(t) after successive augmentations and
all useless edges are removed from G′

j(t), all edges at rank
smaller than or equal to i in G′

j(t) belong to Gj(t). Also,
since Mi(t) is the maximum matching having achieved the
maximal signature, Mj(t) must have the same edges of rank
i as Mi(t).

Proposition 1: The rank-maximal matching in Gi(t) is also
a maximum matching in G′

i(t).
Proof: We prove this lemma through induction hypothesis.

When i = 1, all edges of G′
1(t) have the same rank, and

maximizing the signature is the same as finding the maximum
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Algorithm 1 Interval Rank-maximal Matching based Link
Selection (IRMLS) Algorithm

1: Phase 1: Initialization
2: Proceed to the next slot t. The DT predicts the uncertain

task correlation and delay parameters for its physical
object for link selection, and determine the preference
orders based on the interval utility values. Construct the
graph G(t) and the reduced graph G′

1(t) = G1(t) in DT
layer.

3: Phase 2: Matching
4: for i = 1 to Np(t)− 1 do
5: Divide the vertex set V(t) into Ei, Oi and Ui for each

rank i.
6: Remove the useless edges of Ej(t) connecting vertices

in Oi ∪ Ui, ∀j > i, that are matched in any maximum
matching of G′

i(t).
7: Remove the useless rank i edges from G′

i(t) that one
end is in Oi but the other is not in Ei, which do not
appear in any maximum matching of G′

i(t).
8: Update the reduced graph G′

i+1(t) = G′
i(t) ∪ Ei+1(t)

and obtain the maximum matching Mi+1(t) by aug-
menting Mi(t).

9: end for
10: Return the matching M(t) = Mi+1(t) in t.

matching in G′
1(t). Assuming that the statement is true for i,

we now prove it for the (i+1)-th round. For any rank-maximal
matching Ni(t) in Gi(t) and its signature (x1, ..., xi), the
signature of Ni+1(t) can be represented as (x1, ..., xi, xi+1)
based on Lemma 2. Besides, Ni+1(t) cannot involve any
removed edges from G′

i(t) since Ni(t) is also a maximum
matching in G′

i(t), which indicates that the removed edges in
the i-th round do not appear in any rank-maximal matching of
Gi+1(t). Thus, any rank-maximal matching in Gi+1(t) is con-
tained in G′

i+1(t). Furthermore, assuming that the signature of
maximum matching Mi+1(t) in G′

i+1(t) is (x1, ..., xi, yi+1)
based on Lemma 2, the condition xi+1 ≥ yi+1 holds since
Ni+1(t) is rank-maximal. Meanwhile, considering that any
rank-maximal matching in Gi+1(t) is contained in G′

i+1(t)
and that Mi+1(t) is a maximum matching in G′

i+1(t), xi+1 ≤
yi+1 also holds, then we can infer that xi+1 = yi+1. Hence,
Ni+1(t) is also a maximum matching in G′

i(t) and we can
conclude that Mi(t) is rank-maximal with respect to Gi(t) for
every 1 ≤ i ≤ Np(t).

After proving the correctness, we now discuss the im-
plementation issues of Alg. 1. In the initialization phase,
we exploit the real-time prediction capability of DT for the
estimation of task correlation and delay parameters. Since the
probability distribution of estimation deviations is unknown in
advance and difficult to obtain with small samples in complex
dynamic environments, we only use the fluctuation range de-
picted by the interval number for preference ordering, which is
relatively easy to obtain through learning from historical data
in practice. Then, considering that the graph theory models
are widely used for the simplification and analysis of different
network structures in real word, the bipartite graph G(t)

is constructed for characterizing network links with spatio-
temporal changes, and dynamically depict network topologies
in DT layer. Based on this, the link selection problem can
be transformed to find the rank-maximal matching in G(t). In
this way, the computational complexity can be reduced and
thus our proposed method can better handle the dynamic and
uncertain nature of UAV communication networks. Finally, we
analyze the computational complexity of Alg. 1.

Complexity Analysis: In the initialization phase, the com-
plexity for constructing graph G(t) is O(|E(t)| + |V(t)|).
In the matching phase, the operations for vertex set parti-
tion and edge removal can also be finished in O(|E(t)|).
To obtain Mi+1(t), the Hopcroft-Karp algorithm will take
O(min(

√
|V(t)|, |Mi+1(t)| − |Mi(t)| + 1)|̇E(t)|) for aug-

menting Mi(t). Considering that the iteration number is
bounded by Np(t), the overall complexity can be bounded
by O(min(Np(t)

√
|V(t)|,V(t) + Np(t))|̇E(t)|). Note that as

many edges have been removed by constraint (4b) and Lemma
1, the actual complexity is much lower than this bound.

IV. SIMULATION RESULTS

In this section, we consider that a swarm of UAVs are
distributed in an area of size (2 × 2 × 0.5) km3 with pre-
determined trajectories according to the tasks. For the task
model, there are 3 types of tasks and each task list records
2 recently executed tasks and 2 pending tasks. Besides, there
are 20000 time slots with duration δ = 500 ms, and each task
period is within the range [100, 500] s. The extracted data
from executed tasks is with size [10, 100] Mbits. Note that
the task list will be updated after each task execution. For the
communication model, the minimal and maximum values of
value Rician factor related parameter are set to 5 and 15 dB,
the probability distribution function, and the angle-dependent
path loss exponent of A2G channel are set according to [15],
the channnel gain parameters of P2P link and V2P link are set
to η0 = −20 dB and η1 = −30 dB, the transmission power is
0.1 W and 0.5 W for UAV and edge server, respectively, the
channel bandwidth is 2 Mhz, the noise power density is -130
dbm/Hz, the virtual I/O and wired link rates are within the
ranges [0.5, 1.2] and [0.1, 1] Gbps [13], [14], respectively. The
estimation deviation range is ±10%. For the energy model,
the battery capacity is 2×105J and 20% of the energy is set
as the threshold. During the execution of the algorithms, the
interaction request follows the Poisson process with arrival
rate N/2 and the delay requirement follows the exponential
distribution with mean 5 s. The threshold values ϕth and
ρth are set to 0.3 and 0.5, while the weight factors are set
according to [4], [9].

To evaluate the attained interaction performence, we com-
pare the IRMLS with different benchmarks, including the
rank-maximal matching only considering the P2P link (RMP),
the bilateral matching (BM) algorithm [4] based on the es-
timated utility values, and the uncertain preference match-
ing (UPM) algorithm [10] based on the expected preference
values. Note that the complexity of the above mentioned
algorithms is similar to that of IRMLS. Moreover, we use
the “Exhaustive Search (ES)” based on the revealed global
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Fig. 2: Average data availability performance.
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Fig. 3: Average transmission timeliness performance.

information in exponential time to give the upper bound
performance.

Fig. 2 and 3 show the data availability performance, i.e.,
the task spatio-temporal correlation of obtained data, and
the transmission timeliness performance versus the number
of UAVs under uncertainty. Due to the high spatio-temporal
separation between any two UAV nodes when the UAV number
is small, the task spatio-temporal correlation is affected. In
this situation, it is difficult to establish a physical-virtual
link satisfying both requirements simultaneously, although the
transmission timeliness requirement can be met in the virtual
layer. As the density of UAVs increases, both performances
are gradually improving, and the curve tends to flatten out
when most requirements can be met.

Compared with other state-of-the-art algorithms, the IRMLS
can always achieve the sub-optimal performances with proper
complexity for both data availability and transmission time-
liness. The reason are threefold. Firstly, by integrating the
interval optimization into thematching theory, the IRMLS can
handle the utility in the form of interval number. Secondly, the
IRMLS focuses on the rank maximization and the unilateral
preferences, which can reduce the inaccuracy of the traditional
bilateral matching model. Finally, the physical-virtual interac-
tion opportunities brought by DT further improve the inter-
action efficiency. Although our proposed IRMLS algorithm
can fully utilize the DT to make predictable physical-virtual
interaction link selection decision under uncertainty, there is
still room for improvement in uncertainty quantification and
complexity reduction. On one hand, further exploration of
other information beyond interval width and center is needed
for accuracy improvement. On the other hand, advanced data
structure and approximate simplification approach should be
integrated into the algorithm design for further reducing the

complexity.

V. CONCLUSION

By integrating the interval optimization with matching the-
ory, we developed a novel interval matching framework for
solving the physical-virtual interaction link selection problem
under uncertain estimation deviations in the form of interval
number. More specifically, we proposed an IRMLS algorithm
with complexity bounded by O(min(Np(t)

√
|V(t)|,V(t) +

Np(t))|̇E(t)|), which can achieve enhanced data availability
and transmission timeliness performances compared with other
state-of-the-art algorithms. Although the interval optimization
provide a new method to quantifying the mapping error of
DT under small sample conditions, the lack of distribution
information within the interval still leaves some room for
improvement. In the future work, we aim to further explore
effective ways to quantify uncertainty and enhance the prac-
tical value of our proposed uncertain optimization method in
complex dynamic network environments.
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