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Abstract—This paper investigates simultaneous transmitting and
reflecting reconfigurable intelligent surface (STAR-RIS)-assisted
multi-user downlink (dl) communications with a primary focus
on maximizing information secrecy by considering the channel
state information (CSI) error. Acquiring perfect CSI is particularly
challenging due to the unavailability of radio frequency chains
at the STAR-RIS, the inherent impact of noise and interference
on the CSI estimation, as well as non-collaborative nature of
the eavesdroppers. In particular, we tackle the worst-case robust
beamforming design problem to maximize the sum secrecy rate of
the system while considering transmit power limitations, quality of
service requirements, and practical constraints on the STAR-RIS
phase shifter array. To tackle the resulting non-convex problem,
we employ the S-procedure as an initial step to approximate
semi-infinite inequality constraints. Subsequently, we leverage the
alternating optimization with a line search framework to update
the precoder and phase shift matrix iteratively. Furthermore, we
extend our solution to address the non-convexity by leveraging a
deep reinforcement learning (DRL) multi-agent (MA) framework
based on Markov decision process. We also analyze practical phase
shifts and the effect of direct links to showcase the practicality of
our approach. Simulation results confirm STAR-RIS’s significant
performance edge, exhibiting approximately 27.1% higher secrecy
in conventional optimization and around 35.4% in the MA-DRL
context compared over the conventional RIS. Moreover, our pro-
posed MA-DRL approach surpasses single-agent schemes by about
8.6% in the case of proximal policy optimization and 19.9% in the
case of deep deterministic policy gradient, emphasizing the benefits
of the MA framework with STAR-RIS.

Index Terms—Reconfigurable intelligent surface (RIS), robust
beamforming, deep reinforcement learning (DRL).

I. INTRODUCTION

Recently, the cutting-edge technology known as reconfigurable
intelligent surfaces (RISs) has garnered substantial attention
in both the research community and academia. These two-
dimensional meta-surfaces consist of multiple low-cost passive
reflection elements, each capable of applying a programmable
phase shift to incoming signals, altering the direction of signal
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propagation. RISs offer a cost-effective and low-complexity
approach to dynamically reconfigure wireless propagation con-
ditions, significantly improving communication system perfor-
mance [1]–[4]. This is achieved by enhancing signal-to-noise
ratios (SNRs) for legitimate users while degrading SNRs for
potential eavesdroppers, thus enhancing wireless communication
security. Additionally, RISs mitigate fading, reduce interference,
and enhance networks performance, providing a secure and
energy-efficient alternative to traditional relaying methods.

Physical layer security (PLS) has emerged as a crucial tech-
nology for mitigating security concerns, leveraging the inherent
physical properties of wireless channels. Given the broadcast na-
ture of wireless channels, wireless users face vulnerability to po-
tential eavesdropping attacks by malicious eavesdroppers within
the network, leading to significant security concerns related to
the potential leakage of confidential information. Moreover, with
the proliferation of a vast number of connected wireless devices,
network capacity increases but at the expense of higher costs,
elevated energy consumption, and increased security risks [5],
[6]. Hence, there is a critical need for innovative and resource-
efficient solutions to bolster wireless network security. Within
wireless networks, the integration of RIS offers an innovative
spatial dimension, effectively diminishing signal strength for
potential eavesdroppers and amplifying it for legitimate users.
This leads to a substantial enhancement in security performance.
Further, recent advancements have introduced the concept of
simultaneous transmitting and reflecting RIS (STAR-RIS) which
leverages energy splitting (ES), mode switching (MS), or time
switching (TS) protocols to simultaneously transmit and reflect
signals [7], [8]. In contrast to traditional RIS systems, STAR-RIS
offers complete spatial coverage and a greater degree of freedom
(DoFs) for controlling signal propagation, which can enhance the
wireless performance in various scenarios.

One of the pivotal applications of RISs lies in bolstering PLS
in wireless networks. PLS addresses vulnerabilities inherent in
wireless channels by leveraging the physical properties of signals.
Due to the broadcast nature of wireless transmissions, users are
susceptible to eavesdropping attacks, posing security risks such
as unauthorized data interception. Meanwhile, RISs play a crucial
role in mitigating these risks by selectively enhancing signal
strength for intended recipients while introducing significant
degradation for potential eavesdroppers [9]–[12]. The evolution
from conventional RISs to STAR-RIS represents a significant
advancement as STAR-RIS introduces capabilities such as si-
multaneous transmission and reflection using ES, MS, or TS
protocols. This innovation not only extends spatial coverage but
also enhances control over signal propagation, thereby offering
new avenues to improve system performance and security in
wireless communications [7], [8].
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A. Related Works

Over the past years, numerous studies have addressed PLS and
RIS-assisted PLS in wireless communication systems (refer to
[9]–[16] and the included references). For instance, the authors
in [13] addressed secrecy rate maximization and power mini-
mization in a single user/eavesdropper multiple-input multiple-
output (MIMO) system using Taylor series approximation. The
secrecy rate maximization in single-cell multiple-input single-
output networks while considering the constraint of minimum
harvested energy was studied in [14]. In [15], an inexact block
coordinate descent method was employed to tackle secrecy
rate maximization in single-user MIMO simultaneous wireless
information and power transfer systems. The application of the
primal decomposition method to optimize secrecy throughput in
wireless-powered communication networks was carried out in
[16]. In [9], the authors focused on securing RIS-aided multi-user
massive MIMO systems, optimizing artificial noise power and
RIS phase shifts. Meanwhile, [10] suggested virtual partitioning
of RIS elements to enhance physical layer security and optimize
secrecy capacity under rate constraints. The authors of [11]
jointly optimized transmit precoding, artificial noise covariance,
and RIS phase shifts, confirming enhanced secrecy rates through
RIS incorporation in the system. Moreover, the hybrid beam-
forming design as well as the RIS phase shift design to enhance
the system sum secrecy rate was carried out in [12]. However, it
is important to note that the works in [9]–[16] have delved into
RIS-assisted PLS systems but exclusively under perfect channel
state information (CSI) conditions. In contrast, the works in
[17]–[22] have considered RIS-assisted PLS systems, particularly
under varying imperfect CSI conditions. For instance, the authors
of [17] proposed joint strategies for secure links using low-
resolution programmable reflecting elements in a RIS for multi-
antenna access points serving single-antenna users amidst multi-
ple eavesdroppers. Meanwhile, [18] introduced a secure multicast
communication system using RIS to combat eavesdroppers and
jammers during multi-user transmission. The analysis conducted
in [19], explored the application of active RIS to optimize
worst-case secrecy rates and weighted sum-secrecy rates under
varying imperfect CSI conditions. While in [20], the authors
introduced a RIS-aided MIMO secure communication system,
optimizing ergodic secrecy rates using random matrix theory-
based derivations and a joint optimization algorithm under statis-
tical CSI. The investigation on RIS-aided secure communication
systems with hardware impairments for maximizing the ergodic
secrecy rate was carried out in [21], while [22] addressed CSI
errors to minimize transmit power. However, the aforementioned
literature [9]–[12], [17]–[22] primarily focused on incorporating
passive RIS over STAR-RIS for evaluating secure communication
systems. More recent works have transitioned to investigating
STAR-RIS in broader communication scenarios. For instance,
works such as [23]–[25] have focused on incorporating STAR-
RIS into conventional communication systems, showcasing its
performance benefits over passive RIS. Specifically, the authors
of [23] explored a STAR-RIS-aided MIMO network to maximize
the weighted sum rate through an energy splitting (ES) scheme,
while [24] optimized training patterns for the time switching
(TS) protocol and customized schemes for the ES protocol to
achieve efficient uplink channel estimation in STAR-RIS-aided

two-user systems. In [25], the authors aimed to maximize the
coverage range without addressing information secrecy or robust
optimization under CSI errors. Following this, several works
have extended STAR-RIS applications to secure communication
systems, integrating them with PLS techniques. The authors of
[26] introduced a STAR-RIS-aided secure communication system
designed to mitigate full-space mutual eavesdropping by employ-
ing a penalty-based secrecy beamforming algorithm to optimize
coupled phase-shift coefficients. Similarly, [27] explored various
transmission protocols, including ES, mode switching (MS), and
TS, and proposed joint optimization of beamforming and trans-
mission/reflection coefficients to maximize the weighted sum se-
crecy rate. Furthermore, [28] leveraged STAR-RIS to reconfigure
the electromagnetic environment, enabling secure communication
between legitimate users and the base station (BS), taking into
account both full and statistical eavesdropper’s CSI. Secrecy
performance, considering residual hardware impairments, was
examined in [29], though without robust beamforming design.
Finally, [30] integrated STAR-RIS with non-orthogonal multiple
access (NOMA) and air-federated learning to mitigate interfer-
ence and provide omnidirectional coverage, focusing on learning
performance under non-ideal wireless channels.

Recently, there has been a surge in the adoption of deep
reinforcement learning (DRL) methods. DRL involves iterative
learning and decision-making within dynamic environments, pre-
senting a promising alternative with its learning and decision-
making process. For instance, the authors of [31] introduced a
novel DRL-based secure beamforming approach, utilizing post-
decision state (PDS) and prioritized experience replay schemes
to enhance learning efficiency and secrecy performance. A novel
learning-based approach, PDS-deep Q-network combined with
fourier feature mapping algorithm, addressing the non-convex
optimization problem and dynamic environment to improve se-
crecy rate and quality of service (QoS) satisfaction was carried
out in [32]. While, [33] explored the integration of RIS in
mobile edge computing enabled industrial internet of things
(IIoT) networks to enhance task offloading security against eaves-
droppers. Meanwhile, [34] introduced deep deterministic policy
gradient (DDPG) and soft actor-critic algorithms to maximize the
legitimate user’s long-term security rate in a STAR-RIS-based
integrated sensing and communication secure system, addressing
the non-convex problems while ensuring echo SNR.

B. Motivation

The advent of 6G technology beckons a transformative era
in wireless communication systems, marked by unprecedented
demands for enhanced coverage, capacity, and security. Meeting
these demands requires innovative strategies, where the synergy
of STAR-RIS, secure communication protocols, and robust trans-
mission designs emerges as a promising paradigm. The merits
can be explained as follows:

• Maximizing Security Amid Threats: STAR-RIS contributes
to preventing both jamming and eavesdropping attempts by
manipulating RIS element phases and amplitudes, which can
create artificial noise or beamforming, disrupting unwanted
reception by eavesdroppers or jammers, while reinforcing
the intended signal for the legitimate receiver [35].

• Enhanced Performance Despite Imperfections: In challeng-
ing scenarios with imperfect CSI and hardware limitations,
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STAR-RIS uses diverse protocols to handle uncertainties.
These methods optimize resource allocation, power con-
sumption, and balance transmission and reflection modes,
effectively improving system resilience and performance in
adverse conditions [36].

Overall, the interplay of STAR-RIS, secure communication, and
robust transmission design serves as a prime motivation for
our study, offering a comprehensive and innovative framework
for advancing the state-of-the-art of wireless communication
systems.

Despite the promising potential of robust and secure transmis-
sion design in multi-user STAR-RIS-aided communications, there
is a lack of comprehensive research exploring its full capabilities.
Prior works primarily focused on PLS and passive RIS-aided
PLS, assuming perfect CSI, as seen in [9]–[16]. While some
research works considered imperfect CSI, such as [17]–[22],
they often prioritized passive RIS over STAR-RIS for evaluating
secure communication systems. The exploration of STAR-RIS
in communication and PLS systems was carried out in [23]–
[30]. However, these works often did not fully address the
robust optimization under CSI errors, the practical challenges
of imperfect CSI, and the comprehensive handling of downlink
communication scenarios, as summarized in Table I. Specifically,
they either focused on specific protocols ( [23], [27]), uplink
scenarios ( [28]) or did not consider the non-convex nature of
robust beamforming design under practical CSI constraints (
[25], [26], [29] ). Further, the authors in [30] analyzed learn-
ing performance under non-ideal wireless channels but faced
complexities in handling nonconvex subproblems. Additionally,
integrating DRL algorithms in PLS with either RIS or STAR-
RIS has been explored [31]–[34], albeit in single-agent systems.
Although certain works explored weighted sum-secrecy rate
optimization under imperfect CSI scenarios, particularly empha-
sizing eavesdropper channel imperfections, these may not fully
reflect practical scenarios, as in [19]. Nevertheless, leveraging
STAR-RIS for enhanced security, especially in the presence
of imperfect CSI, and analyzing optimization problems using
both conventional robust optimization techniques and multi-agent
(MA) DRL algorithms, remains an unexplored domain in the
current literature.

C. Contribution

Motivated by the identified research gap, this paper explores
robust transmission design in multi-user STAR-RIS-aided com-
munication systems under imperfect CSI. Unlike previous stud-
ies that overlooked realistic links involving the base station,
users, and eavesdroppers, our analytical framework addresses
the sum secrecy rate maximization problem by integrating ro-
bust optimization techniques with a tailored multi-agent deep
reinforcement learning (MA-DRL) approach. We adapt MA-
RL for STAR-RIS, focusing on agent configuration, observation
sharing, and policy updates to manage unique T-zone and R-zone
requirements. Our hybridization of MA-RL with robust optimiza-
tion methods, including the S-procedure and alternating opti-
mization (AO), effectively handles non-convex challenges, while
our customized proximal policy optimization (PPO) framework
ensures stability and efficiency. These contributions advance
secure transmission design in STAR-RIS systems, enhancing both
security and computational performance.

Fig. 1: STAR-RIS aided multi-user dl secure communication system.

• We tackle the worst-case robust beamforming design prob-
lems with the goal of maximizing the system sum secrecy
rate while considering transmit power limitations, QoS
requirements, and constraints on the STAR-RIS phase shifter
array.

• The non-convex nature of this problem presents computa-
tional complexities. Initially, we employ the S-procedure to
approximate semi-infinite inequality constraints. Following
this, we utilize an alternating optimization (AO) framework
along with line search methods for iterative updates to the
precoder and phase shifter array. This approach also includes
the analysis of practical phase shifts and the impact of
direct links to enhance the practicality and robustness of
our method.

• Furthermore, we extend our solution to address this non-
convexity of the formulated optimization problem by adopt-
ing the MA-DRL solution tailored to STAR-RIS-aided com-
munication systems with imperfect CSI. The contributions
include the application of MA-DRL to handle distinct
transmission and reflection zones (T-zone and R-zone) with
secure communication requirements, integration with robust
optimization techniques to address non-convexity, and adop-
tion of the PPO framework for stability and efficiency.

• The computational complexity analysis is provided to spec-
ify the effectiveness of the proposed algorithms. Compar-
ative analysis of the proposed multi-user STAR-RIS-aided
secure communication scheme under imperfect-CSI against
its counterparts (PPO and DDPG schemes) is provided, by
varying transmit power budgets, the number of antennas at
the BS, STAR-RIS elements, distance, number of users, and
minimum rate requirements. We also introduced the perfect
CSI assumption and conventional passive-RIS to compare
with the proposed system.

• Simulation results highlight the superiority of STAR-RIS
over conventional RIS configurations, particularly in sce-
narios involving random phase matrices at RIS and no-
RIS setups. The STAR-RIS exhibits around 27.1% higher
secrecy performance in conventional optimization and ap-
proximately 35.4% in the MA-DRL context compared to
passive RIS. Additionally, the proposed MA-DRL approach
outperforms single-agent schemes by approximately 8.6%
(PPO) and 19.9% (DDPG), highlighting the benefits of
employing the MA framework with STAR-RIS.

D. Structure of the Paper

Section II outlines the system model, Section III presents
the formulated optimization problem and introduces the robust
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TABLE I: Comparison of Performance Metrics with State-of-the-Art References [23]–[30].

Performance metric [23] [24] [26] [27] [28] [25] [29] [30] Our Work
Sum Secrecy Rate Maximization ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓
Energy Splitting (ES) Scheme ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Robust Beamforming Design ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Channel State Information (CSI) Errors ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
Information Secrecy ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓
Multi-Agent DRL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Markov Decision Processes ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Alternating Optimization ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
S-Procedure for Semi-Infinite Constraints ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Practical Constraints on Phase Shifters ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

optimization-based solution, while Section IV introduces the
proposed MA-DRL-based framework. Numerical simulations are
discussed in Section V, followed by conclusion remarks in
Section VI.

II. SYSTEM MODEL

Let us consider a STAR-RIS aided multi-user downlink (dl)
system, depicted in Fig. 1. In this system, we have a multi-
antenna BS equipped with N antennas, and a STAR-RIS com-
prising M elements. Their purpose is to efficiently support K
single-antenna dl users. This system operates in the presence of
an unauthorized receiver1, referred to as an eavesdropper with a
single antenna. To enhance clarity, we refer to the users located in
the reflection zone as R-users and the users located in the trans-
mission zone as T-users. The STAR-RIS divides the geometric
space of the network into reflection and transmission regions,
accommodating R-users and T-users, respectively. Notably, T-
users are located in an area without direct links to the BS, often
called the “dead zone2.” Let us denote the number of R-users as
Kr and the number of T-users as Kt. These sets are respectively
represented as Kr = {1, ...,Kr} and Kt = {Kr+1, ...,Kr+Kt}.
It follows that the total user set K comprises all K users, which
can be defined as K = Kt ∪Kr = {1, ...,K}.

The transmission and reflection properties of the mth RIS
element are given by ϕt

m=
√
αt
mejθ

t
mand ϕr

m=
√
αr
mejθ

r
m , where

αt
m, αr

m∈[0, 1] and θm,l∈[0, 2π) denote the amplitude and phase
shift response of the mth element’s transmission and reflection
coefficients. Note that, for each element, the phase shifts for
transmission and reflection, denoted as ϕt

m and ϕr
m, can typically

be chosen independently from one another. However, it is essen-
tial to ensure that αt

m and αr
m adhere to the energy conservation

constraint αt
m+αr

m = 1, applicable for all elements within the set
m ∈M [38]. Further, we consider the ES protocol, where all el-
ements of the STAR-RIS simultaneously work in the two modes.
Thus, the transmission and reflection coefficient matrices for the
STAR-RIS are given as Φt ≜ diag (ϕt

1, . . . , ϕ
t
M ) ∈ CM×M and

Φr ≜ diag (ϕr
1, . . . , ϕ

r
M ) ∈ CM×M .

1While differential privacy and friendly jamming are valuable privacy solutions,
our relay-based approach is specifically tailored to the unique capabilities and
constraints of the STAR-RIS system, offering an optimal balance between privacy
protection and system performance.

2Users in the transmission zone of STAR-RIS are referred to as being in a
dead zone because these are areas where traditional RIS or direct signals from
the BS are insufficient to provide reliable connectivity. STAR-RIS addresses
this challenge by simultaneously transmitting and reflecting signals, effectively
enhancing coverage and reducing the occurrence of dead zones. Our algorithms
can also be readily extended to the case where the direct links exist [37].

A. Practial Phase-shift coupled STAR-RIS:

In many existing studies on STAR-RIS systems [39]–[42],
it is assumed that phase-shift coefficients for transmission and
reflection can be adjusted independently, a condition that involves
allowing electric and magnetic impedances to take arbitrary
values. However, such an assumption may not hold for passive
STAR-RIS setups, where the realizable electric and magnetic
impedances are limited to purely imaginary numbers [43].

In general, the practical STAR-RIS model takes into account
the phase-shift coupled STAR-RIS model. In this model, the
phase-shift coefficients for transmission and reflection are inter-
dependent, reflecting real-world constraints and offering a more
accurate representation of STAR-RIS behavior.

Proposition 1. For given loss-less passive STAR-RISs, the trans-
mission and reflection coefficient phase-shift for each STAR-RIS
follow that√

αt
m

√
αr
m cos

(
θtm − θrm

)
= 0, (1)

|θtm − θrm| =
(2a+ 1)π

2
, a ∈ Z,∀m ∈M, (2)

such that the independent phase-shift model for transmission and
reflection coefficient cannot be realized [44].

Proof. See proof of the Proposition 1 in [44]. ■

Thus, the signal received at the kth dl T-user and eavesdropper
in T-zone are given as

ytk = (gt
k
H
ΦtF)Ws+ nt

k,∀k ∈ Kt, (3)

yte,k = (gt
e
H
ΦtF)Ws+ nt

e,k,∀k ∈ Kt. (4)

Here, nt
k ∼ CN

(
0, σt

k
2
)

and nt
e,k ∼ CN

(
0, σt

e,k
2
)

represent
the additive white-Gaussian noise (AWGN) in T-zone with zero
mean and variances σt

k
2 and σt

e,k
2, respectively. Similarly, the

signal received at the kth dl R-user and eavesdropper in R-zone
are given as

yrk = (hH
k + gr

k
HΦrF)Ws+ nr

k,∀k ∈ Kr, (5)

yre,k = (hH
e + gr

e
HΦrF)Ws+ nr

e,k,∀k ∈ Kr, (6)

where hk ∈ CN×1 is the direct channel between the BS and
the k-th R-user, gl

k ∈ CM×1, l ∈ {t, r},∀k ∈ K is the channel
between the kth user and the STAR-RIS, and F ∈ CM×N is
the channel between the BS and the STAR-RIS. Moreover, he ∈
CN×1 is the direct channel between the BS and the eavesdropper,
gl
e ∈ CM×1, l ∈ {t, r}, is the channel between the STAR-RIS

and the eavesdropper. Further, the precoder matrix is expressed
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as W = [w1, ...,wK ] ∈ CN×K . Moreover, nr
k ∼ CN

(
0, σr

k
2
)

and nr
e,k ∼ CN

(
0, σr

e,k
2
)

represent the AWGN in R-zone with

zero mean and variances σr
k
2 and σr

e,k
2, respectively.

Let Gl
k = diag(gl

k

H
)F be the cascaded channel between the

BS and the kth user via STAR-RIS. Similarly, Gl
e = diag(gl

e
H
)F

be the cascaded channel between the BS and the eavesdropper via
STAR-RIS. In practical scenarios, CSI estimation can have errors
due to factors such as imperfect channel estimation procedures.
This paper assumes that the BS lacks perfect knowledge of the
CSI, so the expressions for CSI are formulated as follows:

Gl
k = G̃l

k+∆Gl
k,G

l
e = G̃l

e+∆Gl
e; l ∈ {t, r},∀k ∈ K, (7)

hk = h̃k +∆hk,∀k ∈ Kr;he = h̃e +∆he, (8)

where G̃l
k, h̃k, G̃

l
e, h̃e, represents the estimated channel vectors

and ∆Gl
k,∆hk,∆Gl

e,∆he are the corresponding channel error
vectors. Moreover, the channel uncertainties are modeled using
the worst-case approach based on norm-bounded errors, as de-
scribed in [45], which are given by

||∆Gl
k||2Fro ≤ (ξlg,k)

2, ||∆hk||2 ≤ (ξh,k)
2,

||∆Gl
e||2Fro ≤ (ξlg,e)

2, ||∆he||2 ≤ (ξh,e)
2, (9)

where ξlg,k, ξh,k, ξ
l
g,e, ξh,e represent the uncertainty bounds.

Denote by θl≜
[
ϕl
1, . . . , ϕ

l
M

]T ∈CM×1 the vector represent-
ing the diagonal elements of the matrix Φl, and by W−k =
[w1, ..,wk−1,wk+1, ..,wK ]. Then, the signal-to-interference
plus noise ratio (sinr) at the kth user can be expressed as

γl
k ≜


|(θlHGl

k)wk|2

||(θlHGl
k)W−k||

2

2
+σl

k
2 , l = t, ∀k ∈ Kt,

|(hH
k +θlHGl

k)wk|2

||(hH
k +θlHGl

k)W−k||
2

2
+σl

k
2 , l = r, ∀k ∈ Kr.

(10)

In a more stringent security scenario, we make the assump-
tion that eavesdroppers have limitless computational resources,
enabling them to effectively filter out all interference signals,
as well as external noise during the decoding of each user’s
information [46]. Consequently, under these conditions, the sinr
for eavesdroppers can be expressed as

γl
e,k ≜

{
|(θlHGl

e)wk|2/σl
e,k

2
, l = t,∀k ∈ Kt,

|(hH
e + θlHGl

e)wk|2/σl
e,k

2
, l = r, ∀k ∈ Kr.

(11)

Using the aforementioned sinr expressions, the achievable se-
crecy rates at the kth T-user and R-user are respectively expressed
as

Rt
s,k = {log2

(
1 + γt

k

)︸ ︷︷ ︸
Rt

k

− log2
(
1 + γt

e,k

)︸ ︷︷ ︸
Rt

e,k

}+,∀k ∈ Kt, (12)

and

Rr
s,k = {log2 (1 + γr

k)︸ ︷︷ ︸
Rr

k

− log2
(
1 + γr

e,k

)︸ ︷︷ ︸
Rr

e,k

}+,∀k ∈ Kr. (13)

Here, the notation {·}+ ≜ max(0, ·) ensures that the secrecy rate
can never be negative.

B. Problem Formulation

Taking into account that imperfect channels reside within a
certain bounded region, the channel uncertainty is modeled as
Gt

k ∈ Etk ≜ {∀∆Gt
k, ||∆Gt

k||2 ≤ (ξtg,k)
2} and Gr

k,hk ∈ Erk ≜
{∀∆Gr

k, ||∆Gr
k||2≤(ξrg,k)

2}, {∀∆hk, ||∆hk||2≤(ξh,k)
2}. Sim-

ilarly, at the eavesdroppers, the channel uncertainty is modeled
as Gt

e ∈ Ete ≜ {∀∆Gt
e, ||∆Gt

e||2 ≤ (ξtg,e)
2 and Gr

e,he ∈ Ere ≜
{∀∆Gr

e, ||∆Gr
e||2 ≤ (ξrg,e)

2}, {∀∆he, ||∆he||2 ≤ (ξh,e)
2}. The

sum secrecy rate maximization problem is formulated as

(P0) : max
W,Φt,Φr

min
Gl

k∈El
k,hk∈Er

k

Gl
e∈El

e,he∈Er
e

∑
k∈Kt

Rt
s,k +

∑
k∈Kr

Rr
s,k (14a)

s.t. Tr(WHW) ≤ PT , (14b)∣∣ϕt
m

∣∣2 + |ϕr
m|

2
= 1,∀m ∈M, (14c)

Rt
k ≥ Rmin;G

t
k ∈ Etk;∀k ∈ Kt, (14d)

Rr
k ≥ Rmin;G

r
k,hk ∈ Erk ;∀k ∈ Kr, (14e)

where PT is the maximum BS transmit power in (14b), rep-
resenting the power budget at the BS, and (14c) is the energy
conservation constraint of STAR-RIS. The minimal rate necessity
at every user is specified by (14d) and (14e). The problem’s
non-convexity arises from the complex nature of the objective
function, which aims to maximize the sum secrecy rate involv-
ing beamforming and phase-shift matrices. This complexity is
compounded by non-linear and coupled constraints, such as the
power constraint, energy conservation at the STAR-RIS, and rate
requirements for users. Additionally, robustness considerations
for channel uncertainties further contribute to the non-convexity.
These challenges necessitate the use of advanced optimization
techniques and heuristic methods like DRL to find approximate
solutions.

It is important to note that the objective function, as specified
in (P0), seeks to maximize the minimum sum secrecy rate
across all possible realizations of the channel uncertainties. This
formulation aligns with robust optimization principles, ensuring
that the system is optimized for the worst-case channel conditions
within the defined uncertainty sets. It does not require precise CSI
but instead leverages the bounds of uncertainty to ensure that the
system performance is optimized across all potential states.

Remark 1: In instances where the eavesdropping attack is orig-
inated from user equipment or a node part of the network infras-
tructure (e.g., remote radio heads, etc.), the undesired receiver
(i.e., eavesdropper) is indeed a known/authenticated entity part
of (or subscribed to) the same communication network. In such
instances, the communication behavior of the said authenticated
user or infrastructure node as part of the communication network
can be verified and hence trusted. Therefore, it is plausible to
treat such an eavesdropping entity as a cooperative component
regarding standard communication procedures like acquiring
CSI, geographical positioning, and usual measurements [47],
[48].

Lemma 1. At the optimality of (P0), the {·}+ ≜ max(0, ·)
operator of the secrecy rate expressions for each user can be
neglected without loss of optimality.

Proof: The proof is obtained through contradiction, akin to
[49], and is omitted due to space constraints.
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III. PROPOSED SOLUTION

The optimization problem in (14) is non-convex in nature and
generally intractable. In this section, we address robust beam-
forming design with bounded CSI errors and aim to maximize
the system sum secrecy rate by optimizing jointly the precoder
matrix W and the phase shift matrix Φl. Moreover, the STAR-
RIS introduces an additional layer of complexity by necessitating
the joint optimization of both transmission and reflection phase
shifts (Φt and Φr). Unlike conventional RIS, which only controls
the phase shifts for reflection, STAR-RIS must balance the
dual functionality within the same physical device, making the
optimization landscape more complex.

To tackle this non-convex problem involving semi-infinite in-
equality restrictions and coupling variables, we introduce an AO
approach that leverages the S-procedure, second-order cone pro-
gramming (socp), and penalty convex-concave procedure (p-ccp)
techniques [50]. The S-procedure is chosen for efficiently trans-
forming channel uncertainties, represented as quadratic forms,
into tractable linear matrix inequalities (LMIs), without notably
affecting solution feasibility or optimality. Firstly, we convert the
infeasible problem into a solvable form by utilizing the epigraph
form and introducing slack variables τ r = [τ r1 , ..., τ

r
Kr

] and
τ t = [τ tKr+1, ..., τ

t
Kr+Kt

] as follows

max
W,Φt,Φr

τr,τ t

∑
k∈Kt

(τ tk−τ te)+
∑
k∈Kr

(τ rk−τ re ) (15a)

s.t. (14b), (14c), (15b)
Rt

k ≥ τ tk,G
t
k ∈ Etk,∀k ∈ Kt, (15c)

Rr
k ≥ τ rk ;G

r
k,hk ∈ Erk ,∀k ∈ Kr, (15d)

Rt
e,k ≤ τ te ,G

t
e ∈ Ete,∀k ∈ Kt, (15e)

Rr
e,k ≤ τ re ;G

r
e,he ∈ Ere ,∀k ∈ Kr, (15f)

τ tk ≥ Rmin,G
t
k ∈ Etk,∀k ∈ Kt, (15g)

τ rk ≥ Rmin;G
r
k,hk ∈ Erk ,∀k ∈ Kr, (15h)

τ te < τ tk,G
t
e ∈ Ete,∀k ∈ Kt, (15i)

τ re < τ rk ;G
r
e,he ∈ Ere ,∀k ∈ Kr. (15j)

To address the non-convexity of the rate constraint, (15c) is
reformulated and split into worst-case desired and interference
noise power, using auxiliary variables β = [β1, ..., βK ]T , as

|(θtHGt
k)wk|2 ≥ βk(2

τt
k − 1),Gt

k ∈ Etk,∀k ∈ Kt, (16a)

||(θtHGt
k)W−k||

2

2 + σt
k
2 ≤ βk,G

t
k ∈ Etk,∀k ∈ Kt. (16b)

To handle the non-convex semi-infinite inequalities (16a), we
approximate non-convex elements and address semi-infinite in-
equalities using the S-Procedure. This involves a linear approxi-
mation of the useful signal power as follows (For a detailed expla-
nation, please refer to the [51]). Substituting Gt

k = G̃t
k +∆Gt

k,
then |[θtH(G̃t

k +∆Gt
k)]wk|2 is approximated linearly using its

lower limit at (w(n)
k ,θt(n)) as follows

vecT(△Gt
k)Akvec(△Gt

k
∗
)+2Re

{
aTk vec(△Gt

k
∗
)
}
+ak, (17)

where

Ak = wkw
(n),H
k ⊗ θt∗θt(n),T +w

(n)
k wH

k ⊗ θt(n),∗θtT

− (w
(n)
k w

(n),H
k ⊗ θt(n),∗θt(n),T), (18)

ak = vec(θt
(
θt(n),HG̃t

k

)
w

(n)
k wH

k )

+ vec(θt(n)
(
θtHG̃t

k

)
wkw

(n),H
k )

− vec(θt(n)
(
θt(n),HG̃t

k

)
w

(n)
k w

(n),H
k ), (19)

ak = 2Re
{(

θt(n),HĜt
k

)
w

(n)
k wH

k

(
G̃t H

k θt
)}

−
(
θt(n),HG̃t

k

)
w

(n)
k w

(n),H
k

(
G̃t H

k θt(n)
)
. (20)

By substituting the signal power in (16a) and its linear approxi-
mation in (17), we reformulate (16a) as

vecT(△Gt
k)Akvec(△Gt

k
∗
) + 2Re

{
aTk vec(△Gt

k
∗
)
}
+ ak

≥ βk(2
τt
k − 1),Gt

k ∈ Etk,∀k ∈ Kt. (21)

Due to the coupling of variables on the right-hand side (R.H.S.)
of (21), it is still intractable to solve. Thus, by applying Taylor’s
first-order approximation at βk

(n) and τ tk
(n), (21) is transformed

as

vecT(△Gt
k)Akvec(△Gt

k
∗
) + 2Re

{
aTk vec(∆Gt

k
∗
)
}
+ ak

≥ bk,G
t
k ∈ Etk,∀k ∈ Kt, (22)

where bk=βk
(n)2τ

t
k
(n)

+2τ
t
k
(n)

(βk−βk
(n))+βk

(n)[2τ
t
k
(n)

log2][τ tk−
τ tk

(n)
]. Then, (22) is transformed into the subsequent LMI as[

ϖg,kIMN +Ak ak
aTk Ct

k

]
⪰ 0,∀k ∈ Kt, (23)

where ϖg = [ϖg,1, ..., ϖg,K ] ≥ 0 are the slack variables and
Ct

k = ak − bk − ϖg,k(ξ
t
g,k)

2. Further, through the application
of Schur’s complement method, (16b) is reformulated into an
equivalent LMI as follows:[

βt
k−σt

k
2−µg,kM t̃tk

H
01×N

t̃tk I(K−1) ξtg,kW
H
−k

0N×1 ξtg,kW−k µg,kIN

]
⪰0,∀k∈ Kt, (24)

where t̃tk = [(θtHG̃t
k)W−k]

H and µg = [µg,1, ..., µg,K ]T ≥ 0.
Similarly, for the case of eavesdropper in T-zone, substituting
Gt

e = G̃t
e + ∆Gt

e, then [θtH(G̃t
e + ∆Gt

e)]wk|2 is linearly
approximated similar to (22) by replacing Gk,ak and ak with
Ge, āk and āk. By substituting channels and bounded error terms
with eavesdropper channels, we can derive an equivalent LMI
using a process similar to equations (18) to (23) as[

ϑe,kIMN +Ak āk
āTk C̄t

k

]
⪰ 0,∀k ∈ Kt, (25)

where ϑe = [ϑe,1, ..., ϑe,K ] ≥ 0 are the slack variables and
C̄t

k = āk − σt
e,k

2
(2τ

t
e,k − 1) − ϑe,k(ξ

t
g,e)

2. Similarly, to tackle
the non-convex rate constraint for R-zone, (15d) is reformulated
as

|(hH
k + θrHGr

k)wk|2 ≥ βk(2
τr
k − 1);Gr

k,hk ∈ Erk ,∀k ∈ Kr,
(26a)

||(hH
k + θrHGr

k)W−k||
2

2 + σr
k
2 ≤ βk;G

r
k,hk ∈ Erk ,∀k ∈ Kr.

(26b)

Substituting hk = h̃k+∆hk and Gr
k = G̃r

k+∆Gr
k, then |[(h̃k+

∆hk)
H +θrH(G̃r

k +∆Gr
k)]wk|2 is linearly approximated at its
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lower bound at (w(n)
k ,θr(n)) as xH

k Ãkxk + 2Re
{
ãHk xk

}
+ ãk,

where

Ãk = Dk − Zk +DH
k ,

Dk =

[
w

(n)
k

w
(n)
k ⊗ θr(n),∗

]
[ wH

k wH
k ⊗ θrT ],

Zk =
[

w
(n)
k

w
(n)
k ⊗ θr(n),∗

]
[ w

(n)H
k w

(n)H
k ⊗ θr(n)T ],

ãk = d2,k + d1,k − zk,

d1,k =

 wkw
(n),H
k

(
h̃k + G̃r H

k θr(n)
)

vec∗(θr
(
h̃H
k + θr(n),HG̃r

k

)
w

(n)
k wH

k )

 ,

d2,k =

 w
(n)
k wH

k

(
h̃k + G̃r H

k θr
)

vec∗(θr(n)
(
h̃H
k + θrHG̃r

k

)
wkw

(n),H
k )

 ,

zk =

 w
(n)
k w

(n),H
k

(
h̃k + G̃r H

k θr(n)
)

vec∗(θr(n)
(
h̃H
k + θr(n),HG̃r

k

)
w

(n)
k w

(n),H
k )

 ,

ãk = 2Re {dk} − zk; xk =
[
△hH

k vecH(△Gr
k
∗)

]H
,

dk =
(
h̃H
k + θr(n),HG̃r

k

)
w

(n)
k wH

k

(
h̃k + G̃r H

k θr
)
,

zk =
(̃
hH
k +θr(n)HG̃r

k

)
w

(n)
k w

(n)H
k

(̃
hk+G̃rH

k θr(n)
)
.

However, due to the coupling of variables on the R.H.S. of (24), it
is still intractable to solve. Thus, by applying Taylor’s first-order
approximation at βk

(n) and τ rk
(n), (24) is transformed as

xH
k Ãkxk + 2Re

{
ãHk xk

}
+ ãk ≥ fk;G

r
k,hk ∈ Erk ,∀k ∈ Kr,

(27)

where fk = βk
(n)2τ

r
k
(n)

+ 2τ
r
k
(n)

(βk − βk
(n)) +

βk
(n)[2τ

r
k
(n)

log2][τ rk − τ rk
(n)]. Moreover,

Erk ≜


xH
k

[
IN 0
0 0

]
xk − ξ2h,k ≤ 0,

xH
k

[
0 0
0 IMN

]
xk − ξrg,k

2 ≤ 0.
(28)

Then, the corresponding LMI is expressed as Ãk +

[
ϖr

h,kIN 0

0 ϖg,kIMN

]
ãk

ãHk Cr
k

 ⪰ 0,∀k ∈ Kr,

(29)

where ϖr
h = [ϖr

h,1, ..., ϖ
r
h,Kr

] ≥ 0 are the slack variables and
Cr

k = ãk−fk−ϖr
h,k(ξh,e)

2−ϖg,k(ξ
r
g,e)

2. Next, by substituting
hk = h̃k + ∆hk and Gr

k = G̃r
k + ∆Gr

k, (26b) is transformed
into the equivalent matrix inequality as

0 ⪯
[

βk − σr
k
2 t̃rHk

t̃rk I

]
+

[
0

(
△hH

k + θrH△Gr
k

)
W−k

WH
−k

(
△hk +△GrH

k θr
)

0

]

⪯
[

0
WH

−k

]
[ △hk 0 ] +

[
△hH

k

0

] [
0 W−k

]
+

[ 0
WH

−k

]
△GrH

k [ θr 0 ] + [
θrH

0
]△Gr

k[ 0 W−k ]

+

[
βk − σr

k
2 t̃rHk

t̃rk I

]
. (30)

With mk=βk−σr
k
2−µg,kM−µr

h,k, t̃rk=[(h̃k
H
+θtHG̃t

k)W−k]
H

and further adopting the Schur’s complement method, the power
inequalities in (26b) is reformulated into an equivalent LMI as
follows:

mk t̃r H
k 01×N 01×N

t̃rk I(K−1) ξrg,kW
H
−k ξh,kW

H
−k

0N×1 ξg,kW−k µg,kIN 0N×N

0N×1 ξh,kW−k 0N×N µr
h,kIN

⪰0,∀k∈Kr, (31)

where µr
h = [µr

h,1, ..., µ
r
h,Kr

]T ≥ 0 and t̃tk = [(θtHG̃t
k)W−k]

H.
Similarly, for the case of the eavesdropper in R-zone, substituting
Gr

e = G̃r
e +∆Gr

e and he = h̃e +∆he, then |(h̃e +∆he)
H +

θrH(G̃r
e + ∆Gr

e)
r)wk|2 is approximated linearly by its upper

boundary at (w(n)
k ,θr(n)) as uH

e Ãkue + 2Re
{
âHk ue

}
+ âk,

where ue =
[
△hH

e vecH(△Gr
e
∗)

]H
. It is important to note

that the rate constraint (and hence the corresponding sinr) has
an upper bound, setting the upper bound for these constraints
within this scenario. Further, Ãk, âk, and âk and the equivalent
LMI can be derived in a similar manner as described in equations
(27) to (29). However, in this case, we replace the channels
and norm-bounded error terms with the corresponding R-zone
eavesdropper channels and errors. Therefore, the respective LMI
can be expressed as followsÃk +

[
ϱe,kIN 0

0 ϑe,kIMN

]
âk

âHk Ĉr
k

 ⪰ 0,∀k ∈ Kr, (32)

where ϱe = [ϱe,1, ..., ϱe,Kr
] ≥ 0 are the slack variables and

Ĉr
k = âk − σr

e,k
2(2τ

r
e,k − 1)− ϱe,k(ξh,e)

2 − ϑe,k(ξ
r
g,e)

2.
However, the problem remains non-convex and poses a chal-

lenge to jointly optimize W and Φl due to the coupling of
variables. To address this, we employ the AO method, optimizing
W and Φl sequentially in an iterative fashion. We begin by max-
imizing the worst-case sum secrecy rate while keeping Φl fixed.
This step transforms the problem into a convex one concerning
W, which is efficiently solved using the CVX tool. Specifically,
given a fixed Φl, the subproblem for W is formulated as

max
W,τr,τ t

ϖg,µg,ϑe,
ϖr

h,µ
r
h,ϱe,β

∑
k∈Kt

(τ tk − τ te) +
∑
k∈Kr

(τ rk − τ re ) (33a)

s.t. (14b), (15g)−(15j), (23)−(25), (29), (31), (32),
(33b)

{ϖg,µg,ϑe,ϖ
r
h,µ

r
h,ϱe} ≥ 0. (33c)

Then, for a given value of W, the subproblem concerning Φl be-
comes a feasibility check. To enhance the convergence of the Φl

optimization, we introduce the slack variables λ = [λ1, .., λK ],
λ̃ = [λ̃1, .., λ̃K ] and further neglecting the portion of LMI
independent of θl, the respective power inequalities in (16a),
(16b) and (25) are modified as[

ϖg,kIMN +Ak ak
aTk Ct

k − λk

]
⪰ 0,∀k ∈ Kt, (34)

[
βt
k − σt

k
2 − µg,kM t̃tk

H

t̃tk I(K−1)

]
⪰ 0,∀k ∈ Kt, (35)
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Algorithm 1 AO and Line Search Algorithm

1: Set tle > 0.
2: Repeat (line search algorithm)
3: Initialize R̃ = 0, r = 0, select θl(0) randomly.
4: Repeat AO algorithm
5: Under fixed θl, optimize wk by solving (33)
6: Under fixed wk, optimize θl by solving (40)
7: Calculate the objective R̃r=mink R

l
s,k given wk and

8: θl; r = r + 1
9: until convergence of R̃r

10: Update tle = tle +∆tle and proceed to step 3.
11: until tle ≥ tle,max

12: Output: (wk,θ
l) relies on the local optimal tle.

and [
ϑe,kIMN +Ak āk

āTk C̄t
k − λ̃k

]
⪰ 0,∀k ∈ Kt. (36)

Similarly, the corresponding power inequalities in (26a), (26b)
and (32) are modified asÃk+

[ϖr
h,kIN 0

0 ϖg,kIMN

]
ãk

ãHk Cr
k − λk

⪰0,∀k ∈ Kr, (37)

[
mk t̃r H

k

t̃rk I(K−1)

]
⪰ 0,∀k ∈ Kr, (38)

andÃk +
[
ϱe,kIN 0

0 ϑe,kIMN

]
âk

âHk Ĉr
k − λ̃k

 ⪰ 0,∀k ∈ Kr. (39)

However, the problem remains non-convex due to the presence
of unit-modulus constraints. Therefore, similar to the approach
followed in [50], we employ the p-ccp approach to address these
non-convex constraints. Under the p-ccp framework, we express
the constraint (14c) in an equivalent form 1 ≤ |ϕt

m|2 + |ϕr
m|2 ≤

1,∀m ∈M. The non-convex components of these constraints are
then linearized through |ϕt

m
[t]|2 − 2Re(ϕt

m
∗
ϕt
m

[t]
) + |ϕr

m
[t]|2 −

2Re(ϕr
m

∗ϕr
m

[t]) ≤ −1,∀m ∈ M, at fixed ϕl
m

[t]. Thus, the
convex subproblem for Φl is expressed as

max
Φt,Φr,τr,τ t

ϖg,µg,ϑe,ϖ
r
h,µ

r
h

ϱe,β,c,λ̃,λ

∑
k∈Kt

(τ tk − τ te) +
∑
k∈Kr

(τ rk − τ re )−α[t]
2M∑
m=1

cm

(40a)
s.t. (15g)−(15j), (33c), (34)− (39), (40b)

|ϕt
m

[t]|2 − 2Re(ϕt
m

∗
ϕt
m

[t]
) + |ϕr

m
[t]|2

− 2Re(ϕr
m

∗ϕr
m

[t])≤cm−1,∀m, (40c)

|ϕt
m

[t]|2+|ϕr
m

[t]|2≤1+cM+m,∀m, (40d)

λ̃ ≥ 0,λ ≥ 0, c ≥ 0, (40e)

where c = [c1, . . . , c2M ]T represents the slack variables intro-
duced to enforce the equivalent linear constraints for the unit-
modulus constraints. The objective function includes the penalty
term ||c||1, which is adjusted by the regularization coefficient
α[t] to control the constraints’ feasibility.

After optimizing (wk,Φ
t), we update tle and reiterate the

optimization using the AO algorithm. The range for tle is limited

Algorithm 2 Penalty CCP Algorithm

1: Initialize Φl[0], γ[0] > 1, and set t = 0.
2: Repeat.
3: if t < tmax

4: Update Φl[t+1]
from Problem (40);

5: α[t+1] = min
{
γα[t], αmax

}
;

6: t = t+ 1
7: else
8: Initialize with a new random Φl[0], set up α[0] > 1 again,
9: and set t = 0

10: end if
11: Until ∥c∥1 ≤ ζ and

∥∥∥Φl[t] −Φl[t−1]
∥∥∥
1
≤ χ

12: Output: Φl[t+1]
= Φl[t]

to tle ∈ (0, tle,max) to ensure the eavesdropper’s achievable
rate remains below the worst-case rate Rl

s,k for users without
eavesdroppers. Going beyond tle,max violates security principles
and jeopardizes secure transmission. To find the optimal tle, we
use a uniform sampling-based line search algorithm within the
range (0, tle,max) [52]. Once determined, this leads to a local
optimum solution for the original problem P0. By employing
the AO framework, we iteratively tackle the problem in (15)
by addressing problems (33) and (40). Specifically, ϕl

m
[t] in

constraint (40c) and α[t] are updated iteratively using CCP,
while θl(n) undergoes iterative updates within the outer AO
framework. Further, the combined AO and line search algorithms
are summarized in Algorithm 1.

Problem (40) is a semidefinite program (SDP) and can be
solved by the CVX tool. The steps of finding a feasible solution
of Φl are summarized in Algorithm 2. We remark that: a) When
ζ is sufficiently low, constraints (14c) in the original problem
is guaranteed by ||c||1 ≤ ζ; b) The maximum value αmax

is imposed to avoid a numerical problem, that is, a feasible
solution satisfying ||c||1 ≤ ζ may not be found when the iteration
converges to the stopping criterion ||Φl[t] −Φl[t−1]||1 ≤ χ with
the increase of α[t]; c) Stopping criteria ||Φl[t] −Φl[t−1]||1 ≤ χ
controls the convergence of Algorithm 2; d) As mentioned
in [53], a feasible solution to Problem (40) is guaranteed by
imposing a maximum number of iterations tmax and, in case
it is reached, we restart the iteration based on a new initial
point. Further, as proved in [54], Algorithm 1 generates a
sequence of {W(⋆),Φt(⋆),Φr(⋆)} which corresponds to non-
decreasing values of problem (14) objective function. As a result,
the stationary point of the original problem is obtained after a
sufficient number of iterations.

A. Extension to Phase-shift coupled Mode

With simple mathematical derivations, it can be proved that the
phase-shift coupled constraint in (1) and (2) for the ES protocol
can be used as [44]

θtm
[t]
θrm + θtmθrm

[t] − θtm
[t]
θrm

[t] + 1 ≥ 0. (41)

Owing to (41), the beamforming design problem in (40) can
be rewritten for phase-shift coupled ES mode. To this end, we
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Fig. 2: Representation of MA-DRL framework.

adopt a penalty-based convex approximation framework to solve
it as follows

max
Φt,Φr,τr,τ t

ϖg,µg,ϑe,ϖ
r
h,µ

r
h

ϱe,β,c,λ̃,λ

∑
k∈Kt

(τ tk − τ te) +
∑
k∈Kr

(τ rk − τ re )−α[t]
2M∑
m=1

cm

(42a)
s.t. (15g)−(15j), (33c), (34)−(39), (40e), (41).

(42b)

IV. MULTI-AGENT DRL BASED FRAMEWORK

DRL holds significant promise for addressing complex chal-
lenges in wireless communication systems by enabling agents
to acquire optimal policies through continuous interactions with
their environment. However, many existing DRL-based ap-
proaches predominantly center on single-agent systems, poten-
tially resulting in inefficiencies when dealing with a growing
number of network nodes. Our study proposes DRL, particularly
in an MA framework, to address these challenges. By leveraging
multiple DRL-based agents, we achieve superior adaptability,
scalability, and robustness to uncertainties compared to single-
agent DRL and traditional optimization techniques [55]. This
approach enhances real-time performance, effectively manages
high-dimensional optimization problems, and provides resilient
solutions for dynamic environments. In our system model de-
picted in Fig. 1, we categorize communication links into different
zones. The R-zone includes links connecting the BS, STAR-
RIS, and R-users, encompassing both the links from the BS to
R-users and the links from the BS to STAR-RIS to R-users.
Conversely, the T-zone encompasses links associated with the
BS, STAR-RIS, and T-users. In our framework, we introduce
two agents, one for the R-zone and another for the T-zone, with
each agent responsible for making decisions within its respective
zone. These agents interact with the environment, comprising the
BS, STAR-RIS, and users, and enhance their decision-making
policies through learning from their experiences.

In an MA system, each individual agent faces the challenge
of acquiring precise knowledge of the entire trained model,
including information about the states and rewards of other
agents. Each agent takes on the role of a policy maker, guiding an
agent’s learning and experience updates within the environment
until an optimal policy is achieved. For training the agents, we
utilize the PPO algorithm, a state-of-the-art method in DRL.
PPO ensures stable and efficient learning by iteratively adjusting
the policy parameters based on the experiences collected. The
agents within this distributed MA-DRL framework communicate,
exchange information, and coordinate their actions to derive the

optimal policy. To tackle the potential instability inherent in
the MA approach, we employ the PPO algorithm, which aids
in training neural networks. Our choice of MA-PPO addresses
key challenges in MA-DRL: non-stationarity, scalability with
joint action spaces, and partial observability. PPO’s actor-critic
architecture mitigates non-stationarity, while its decentralized
approach and shared policy parameters enhance scalability [56].
Additionally, integrating local observations with shared experi-
ences fosters robust policy development.
A. MDP Based Problem Formulation

In the depicted MA-DRL framework (Fig. 2), the Markov
decision process (MDP) framework is structured with five com-
ponents, forming a five-tuple S,A,R, O,P . When the agent
takes action at ∈ A based on the policy π(at|st), P denotes
the probability of transitioning from the current state st ∈ S
to the next state st+1 ∈ S. Furthermore, the agent obtains an
observation ot from the set O rather than directly acquiring st
from the domain S. At time t, the immediate reward of the agent
is denoted by the variable rt. Specifically, the definitions of S,A,
R, and O are as follows:

1) State Space and Local Observations: The overarching con-
cept is to include maximal environmental data related to problem
(P0) within the state space. Let S represent the system state
space, encompassing global channel conditions and behaviors
of all agents. The formulation of this state space relies on
the information available to the BS, obtained either directly or
indirectly, and holds a crucial role in defining the reward function
expressed as:

S = {Jt
k,J

r
k,V

t
e,k,V

r
e,k}, (43)

where
Jl
k ≜

{
θlHGl

k, l = t,∀k ∈ Kt,

hH
k + θlHGl

k, l = r, ∀k ∈ Kr,
(44)

and
Vl

e,k ≜

{
θlHGl

e, l = t,∀k ∈ Kt,

hH
e + θlHGl

e, l = r, ∀k ∈ Kr.
(45)

Please note that Jl
k and Vl

e,k denote the effective channels in
the T-zone and R-zone, respectively, representing communication
between the BS and users or eavesdroppers. The phase-shift
matrices at STAR-RIS and channel information of all the users
are components of the current state st ∈ S. Due to imperfect
channel state information, the feedbacks Jl

k and Vl
e,k account for

channel error vectors [57]. However, it is essential to note that
the system state S remains unknown to each individual agent. In
the MA-DRL, agents operate based on their limited local obser-
vations and experiences, lacking access to complete global state
information. Each agent maintains its partial state representation,
including relevant information specific to the agent. Since we
have two distinct agents, one dedicated to the T-zone and the
other to the R-zone, the individual observation spaces are denoted
ott = {Jt

k,V
t
e,k}, and ort = {Jr

k,V
r
e,k}, respectively. Hence,

the observation space set is given by O = {olt | l = {t, r}}.
The observations from both the T and R agents are stored
in a centralized memory buffer, which is implemented at the
BS. Each agent can access this memory through its dedicated
control channel. During training, the neural network undergoes
offline updates by randomly sampling observations from this
memory. Subsequently, each agent leverages these stored ob-
servations to inform its decision-making for the next actions.
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This methodology ensures efficient learning and adaptation in
the dynamic network environment, progressively enhancing the
decision-making capabilities of the agents.

2) Action Space: The action space is constructed by the
transmit beamforming matrix W, the phase-shifts matrix Φl,
and the channel error vectors ∆Gl

k,∆hk,∆Gl
e, and ∆he for

the corresponding T-zone and R-zone channels. Thus, the action
space can be given by
A={{wk},{ϕl

m},{∆Gl
k,∆hk,∆Gl

e,∆he}}, l={t, r},∀k∈K.
(46)

Given the presence of multiple agents, the action space is
formulated to incorporate the independent actions of each agent.
In particular, the action spaceAt ∈ A for the T-agent is expressed
as:

At={{wk}, {ϕt
m}, {∆Gt

k,∆Gt
e}},∀k ∈ Kt. (47)

Similarly, for the R-agent, the action space Ar ∈ A can be
defined as

Ar={{wk}, {ϕr
m}, {∆Gr

k,∆hk,∆Gr
e,∆he}},∀k∈Kr. (48)

As part of the learning process, the agent advances a step at a
time. The environment transitions from the current state, st, to the
subsequent state st+1 when the agent takes action at ∈ A at time
step t. Consequently, the agent receives a reward rt. With distinct
action spaces for each agent, the T and R agents independently
make decisions based on their observations and policies. This
decentralized approach enables both agents to optimize their
modes, considering the overarching system objectives, ultimately
enhancing performance in terms of throughput, coverage, and
overall system efficiency.

3) Reward: The reward function in the paper quantifies the
immediate return obtained by taking action in a given state st,
with a design to maximize the sum rate of the system model
described in (14) through joint optimization of the action space.
In DRL, the agent aims to choose actions that maximize the
cumulative reward over time by interacting with the environment
in discrete time steps. To achieve this, we designate the reward
for each agent as rlt, l={t, r}. To this end, the reward function
at the time step t is defined as rt =

∑
l r

l
t.

The objective of learning is to determine an optimal policy
π∗ that maximizes the expected overall reward from any initial
state. By defining reward functions for both agents, the pro-
posed MA-DRL framework aims to maximize the accumulated
rewards obtained by the T and R-zone agents throughout the
interaction horizon. In this context, the term reward function
denotes the cumulative value of discounted rewards denoted as
Rt =

∑T
t=0 γt rt, where γ ∈ (0, 1] is the discount factor

representing the impact of the reward at time step t.
Thus, our MA-DRL framework ensures adherence to con-

straints (14a) to (14e) through a synergistic integration of ob-
servations, action spaces, and reward functions tailored for each
agent.

• Observations: Agents receive localized observations that are
pivotal for informed decision-making. These observations
include effective channel information and network feedback,
crucial for dynamic adjustments within the framework’s
constraints.

• Action Space and Constraints Compliance: The action space
is carefully designed to allow for adjustments that remain

within the power budget and phase shift regulations ((14b)
and (14c)), as well as ensuring the satisfaction of the
minimum rate requirements ((14d) and (14e)). The real-
time observations enable agents to assess the impact of
their actions and adjust strategies to comply with these
constraints.

• Reward Function: The reward structure is designed to pe-
nalize actions that risk constraint violations, guiding agents
toward strategies that optimize system performance while
respecting the defined limits. This mechanism relies on
observations to identify and reinforce constraint-compliant
behaviors.

In summary, the effective use of observations within our MA-
DRL framework enables each agent to act in a manner that is
not only aligned with achieving high sum secrecy rates but also
in strict adherence to the system’s operational constraints. This
ensures a balanced approach to optimizing network performance
while maintaining compliance with all specified requirements.

B. PPO Based Algorithm
PPO algorithms belong to a category of DRL methods rec-

ognized for their stability and superior training performance.
Typically, the actor network receives the system state st as input.
Given that the state involves varying magnitudes of channel
information, Z-score normalization is applied to standardize the
inputs throughout the entire episode. Further, the actor network
produces two components in its output: the mean vector and
standard deviation of the policy.

Certainly, PPO is a policy optimization technique that seeks
to maximize the expected cumulative reward by employing
a surrogate objective function. This function ensures that the
updated policy remains close to the old one, preventing drastic
changes that may lead to instability. This adaptability makes
PPO effective in handling diverse environments. Moreover, PPO
addresses the challenge of selecting an appropriate step size by
enabling modifications to the objective function during training.

The inherent randomness in the policy πµ(at|st) implies that
the probability of future trajectories τ = {st, at} relies on param-
eters governing the action sampling probability. Consequently,
the objective function, dependent on µ, can be expressed as
J(µ) = E

τ∼πµ

[R(τ)], where µ represents the neural network

parameter of the policy function π. In an algorithm iterating
between sampling and optimization, E denotes the empirical
average calculated over a finite batch of samples. Further, by
utilizing the gradient ascent method the parameter µ is updated
as follows

µt+1 ← µt + ω∇µJ(µ), (49)

where ω is the learning rate or step size. The primary objective
is to find the optimal policy π∗ for the BS, maximizing J(µ)
through repeated gradient estimation:

∇µJ(µ) = Eπµ

[
∇µ log πµ(st, at)Aπµ

(st, at)
]
, (50)

where Aπµ
(st, at) is the advantage function assessing whether

an action is superior or inferior to the policy’s default behavior.
The advantage function at time step t is defined as Aπµ

(st, at) =
Qπµ(st, at) − Vπµ(st), with Qπµ(st, at) = Eπµ [Rt|s = st, a =
at] and Vπµ(st) = Eπµ [Rt|s = st] representing the action
value and state value functions, respectively. However, estimating
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the advantage function is susceptible to bias, and an improper
learning rate can lead to instability or slow convergence. To
address this, PPO uses χt(µ) = πµ(at|st)/πµold

(at|st), a proba-
bility ratio constraining the update range, reducing sensitivity to
learning rates and enhancing efficiency.

To satisfy the trust region constraint, this PPO-based approach
maximizes a clipping surrogate objective function. Thus, the
clipping surrogate objective, limiting substantial weight updates,
is expressed as:

Jclip
t (µ) = Eπ

[
min

(
χt(µ)Aπµold

(st, at), clip (χt(µ),

1− ϵ, 1 + ϵ)Aπµold
(st, at)

)]
, (51)

where ϵ is the hyperparameter that tunes the fraction used for
clipping within the specified range. The second term in the
clipping surrogate objective adjusts the probability ratio within
the range [1 − ϵ, 1 + ϵ]. This approach creates a lower bound
and pessimistic estimate of the unclipped objective by selecting
the minimum of the clipped and unclipped objectives [58]. To
enhance the objective, a value function error term and an entropy
bonus are included to ensure sufficient exploration. Combining
these terms, the final objective of the proposed algorithm is
formulated as

JPPO
t (µ) = Eπ

[
Jclip
t (µ)− c1L

VF
t (µ) + c2Sπµ

(st)
]
, (52)

where c1, c2 are coefficients, LVF
t = (Vπµ(st) − V targ

t )2 is
the value function error, and S = −

∑
a πµ(a|st) log πµ(a|st)

is the entropy bonus term. The generalized advantage estimation
function is defined as

At = rt + γVπµ
(st+1)− Vπµ

(st) . (53)

Moreover, in the realm of the MA-DRL system model, the
PPO-based algorithm is applied individually to each individual
agent, facilitating tailored policy optimization and adaptation.
The proposed MA-PPO framework involves a structured ex-
change of information that includes local observations, shared
experiences through a centralized memory buffer, reward signals,
and coordinated actions. The detailed procedure is outlined in
Algorithm 3.

The convergence of our proposed PPO algorithm is rigorously
established. According to Theorem 1 and Corollary 1 in [59],
under suitable conditions on learning rates and the characteristics
of the loss functions, our PPO algorithm converges to a local
minimum of the associated objective function. These conditions
ensure stability and convergence of the algorithm, making it
suitable for optimizing policies in dynamic environments. For
detailed proofs and additional algorithmic specifics, please refer
to Sect. 3.1 and 3.2 of the [59].

C. DDPG Based Algorithm

DDPG enhances the actor-critic framework using deep neural
networks (DNNs) for modeling policy and value functions,
addressing high-dimensional state and action spaces effectively.
Notably, DDPG handles continuous action spaces, making it
suitable for such environments. The architecture includes:

Critic Network: Also known as the Q-network with parameter
ϱc, it processes state s and action a inputs to yield Q(st, at; ϱc).
The Q-function is defined as

Qπ

(
st, at

)
= Eπ

[
Rt|st = s, at = a

]
, (54)

Algorithm 3 Proposed MA-DRL Based PPO Algorithm
1: Initialize the parameter settings for the proposed STAR-RIS aided

secure communication system, neural networks at t = 0
2: Input: Environment, observation space O
3: Output: A={{wk}, {ϕl

m}}
4: Initialize: µ, πµ, Vπµ , memory buffer
5: for episode = 1→ E do
6: Get the initial observation state st, t = 0 and memory

buffer;
7: for t = 1→ ST do
8: for each agent do
9: Identify olt and determine the action al

t by
employing sampling of the corresponding
density function;

10: Choose action al
t based on current policy;

11: end for
12: Obtain rlt and the next state st+1;
13: Each agent takes actions and receives reward rt+1

14: for each agent do
15: Observe olt+1 and calculate rlt+1

16: Store the transition (olt, al
t, r

l
t+1, done) in

the memory buffer;
17: end for
18: end for
19: for each agent do:
20: Compute the advantage function using (53);
21: Compute the final objective of the proposed

PPO algorithm using (52);
22: Compute gradient according to (50);
23: Update µ according to (49) via gradient ascent

method;
24: end for
25: end for

and updated via the Bellman expectation equation. The optimal
Q-function is

Q∗ (st, at) = rt + γ̄ max
at+1∈A

Q∗ (st+1, at+1
)
, (55)

with the optimal action derived by

a∗ = argmax
a∈A

Q∗ (s, a) . (56)

Actor Network: Known as the policy network, it maps state
s to continuous action a, denoted as at = π(st; ϱµ). The
actor optimizes the state-value function using the policy gradient
method:

∇ϱµ
J(ϱµ)≈E[∇aQ(st, a; ϱc)|a=π(st;ϱµ)∇ϱµ

π(st; ϱµ)], (57)

where J(ϱµ) = Es∼ϱc,a∼ϱµ
R(s, a). The critic minimizes the loss

function:
L(ϱc) = E

[
(yt −Q(st, at; ϱc))

2
]
, (58)

with yt = Rt + γ̄Q(st+1, π(st+1; ϱ′µ); ϱ
′
c). Target networks

π(st; ϱ′µ) and Q(st, at; ϱ′c) stabilize training, updated as ϱ′µ =
ζϱµ + (1− ζ)ϱ′µ and ϱ′c = ζϱc + (1− ζ)ϱ′c.

Unlike Q-learning, policy gradient methods optimize the pol-
icy directly, avoiding overestimation bias. During testing, the
best policy is selected deterministically. In MA-DRL, each agent
uses DDPG for personalized policy optimization. This specific
methodology is described in Algorithm 4.

D. Complexity Analysis of Algorithm 1 and Algorithm 4
In this section, we conduct an analysis of the computational

complexity associated with the proposed methods for robust
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TABLE II: Computational complexity of conventional robust optimization problem, MA, PPO, and DDPG algorithms.

Robust Optimization O
((∑I

i=1 ci

)1/2
NK

[
N2K2+NK

∑I
i=1 c

2
i +
∑I

i=1 c
3
i

])
+ O

((∑I
i=1 ci

)1/2
M
[
M2+M

∑I
i=1 c

2
i +
∑I

i=1 c
3
i

])

Proposed MA O
(
W 2
(
10M

√
a
ϵ
M +12M

√
a

ϵM
+10
√

a
ϵ
M+6

√
a

ϵM
+(3M+6)a

ϵ
+4M+4

)
2 + W

(
2M
√

a
ϵ
M + 4M

√
a

ϵM

+2
√

a
ϵ
M+3

√
a

ϵM
+(2M+2)a

ϵ
+5
) )

PPO O
(
W

(
12M

√
a
ϵ
M +16M

√
a

ϵM
+13
√

a
ϵ
M+8

√
a

ϵM
+
(
4M+8

)
a
ϵ

+4M+5
))

DDPG O
(
W

(
12M

√
aM +16M

√
a
M

+13
√
aM+8

√
a
M

+
(
4M+8

)
a+4M+5

))

Algorithm 4 DDPG Algorithm for Each Agent
1: Input: Initialize the parameter settings for the proposed system

model, neural networks at t = 0
2: Input: Exploration parameter ϵ, learning rate Ω, number of episodes

E
3: Initialize the actor-network, π(st; ϱµ) and the critic network

Q(st, at; ϱc) with the weights ϱµ and ϱc.
4: Create the target DNNs by setting ϱ′µ ← ϱµ and ϱ′c ← ϱc
5: Initialize a replay buffer
6: Initialization: get initial ϱµ from server
7: for ep = 1→ E do
8: Initialize a random process η for action exploration
9: Receive initial observation state s1

10: for t = 1→ T do
11: Obtain action at from the actor-network;
12: Add exploration noise to at as at = at + η
13: Calculate the instant reward rt

14: Observe the new state st+1

15: Store experiences in the buffer and sample random mini-
batches of experiences to train the DNNs

16: Set the expected return yt

17: Update the actor policy via (57) and critic via (58)
18: Update the target actor ϱ′µ and the target critic ϱ′c
19: end for
20: end for

transmission design in Algorithm 1. Given that all resulting
convex problems involve LMIs, soc constraints, and linear con-
straints solvable through standard interior point methods [51],
we aim to compare the computational complexities of different
methods based on their worst-case runtime. The general ex-
pression for this runtime, excluding the complexities of linear
constraints and soc, is presented in Table I. Specifically, for
problem (33), n1 = NK represents the number of variables,
while I = 3Kt + 3Kr denotes the count of LMIs, each sized
as ci. Similarly, for problem (40), n2 = M signifies the number
of variables involved. Additionally, we define ci = 3MNKr +
4NKr + 2MNKr + 2Kr + 2NKt + 3Kt +K2

t +K2
r .

Next, we analyze the complexity analysis of the DRL algo-
rithm which primarily hinges on several parameters, including
dataset size, state and action dimensions, complexities associ-
ated with forward and backward propagations within the neural
networks, and the structural configuration of the fully con-
nected neural network architecture. Specifically, within the actor
network, weight adjustments occur through both forward and
backward propagations, while in the critic network, only forward
propagation is utilized. Additionally, as outlined in [60], the
dimensions of the first fully connected layer (f1) and second fully
connected layer (f2) in the actor-network are determined based
on various factors such as the number of actor-network learning

samples denoted as a and the count of reflecting elements
represented by N . These dimensions are mathematically defined
as f1 =

√
aN + 2

√
a/N and f2 =

√
aN and f2 =

√
aN .

On a similar note, within the MA-DRL framework in Algo-
rithm 2, the utilization of multiple agents results in diverse ac-
tions undertaken by each agent. Consequently, the incorporation
of multiple agents in the MA-DRL algorithm, coupled with the
global critic’s oversight across the actor networks, leads to an
exponential increase in actor-network complexity relative to the
number of agents. In our proposed MA-DRL framework, we
specifically operate with two distinct agents. With this context
in mind, we examine the computational complexities associated
with the robust optimization problem, MA-DRL-based algorithm,
as well as those of the PPO, and DDPG, presented in Table II.

V. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, the exhaustive simulation-based results are
presented to verify the convergence and effectiveness of the
proposed algorithm. The location of the BS is fixed at (0, 0)m.
The STAR-RIS is fixed at (50, 10) m. The R-zone and T-zone
users are randomly and uniformly distributed in a circle centered
at (30,0) m and (70,0) m with a radius of 5 m, respectively.
The R-zone and T-zone eavesdroppers are fixed at (20,0) m and
(65,0) m, respectively. All the considered channels are assumed to
include large-scale and small-scale fading. The large-scale path-
loss model is χl = −χ0 − 10ς log10(d), where ς represents the
path-loss exponent, d denotes the link distance in meters, χ0 is
the reference path-loss at 1m distance which is defined as 40
dB utilizing the 3GPP-UMi model at a carrier frequency of 3.5
GHz [61]. The small-scale fading is assumed to be Rayleigh
fading distribution. Furthermore, the neural network parameters
are updated using the Adam optimizer and the activation function
used is ReLU. The proposed PPO and DDPG frameworks employ
two hidden layers each, with 256 neurons [62]. Moreover, we
set the hyperparameters as γ = 0.9 [63], critic and actor-
network learning rates are given as c = 0.0002 and a = 0.0001,
respectively [64], memory buffer W = 10000 [65], ϵ = 0.2 [58],
size of buffer = 32, episodes E = 2000, steps ST = 500. We
set M=16, Kt=Kr= 3 such that K= Kt+Kr= 6, N = 6,
Rmin = 2 bits/s/Hz [51], ξlg,k = ξh,k = ξlg,e = ξh,e = −15 dB,
σl
k

2
=σl

e,k

2
=−100dBm [33], PT =30 dBm, convergence factor

as 10−3, and sampling interval ∆tle=0.1 [51]. For the robust
beamforming design, we considered 100 channel realizations.
The results are then averaged over these 100 channel realizations.
This averaging process helps to ensure that the performance
metrics reported are reflective of typical system behavior under
a variety of conditions. Unless stated otherwise, the parameters
follow the mentioned specifications.
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We label our proposed MA-DRL framework and the conven-
tional robust transmission design, utilized for secure transmission
design in a multi-user STAR-RIS-aided communication system,
as “MA” and “Con,” respectively. Additionally, we conduct
comparisons with the following benchmark schemes:

1) Perfect: This analysis compares our proposed robust trans-
mission design under imperfect CSI conditions with a sce-
nario where the transmitter possesses perfect CSI [66].

2) Passive-RIS: In this approach, we apply our proposed beam-
forming design at the BS while employing conventional
passive beamforming at the RIS for secure communication.
This approach substitutes STAR-RIS with passive-RIS in all
comparative simulations [67], [68].

3) Random-RIS: This scheme implements our proposed beam-
forming design at the BS while incorporating random pas-
sive beamforming at the RIS [69].

4) No-RIS: This scheme represents secure communication
without employing RIS, essentially the scenario without any
RIS usage. Comparing our proposed beamforming design
against this case allows us to emphasize the advantages
brought by RIS deployment in secure communication [69].

5) Non-Secrecy: Combining beamforming design at the BS
with passive beamforming at STAR-RIS, this scheme fo-
cuses on non-secure communication without considering
eavesdroppers’ effects. The aim is to analyze the system’s
performance without security considerations [70].

The convergence pattern of the proposed MA-DRL framework
and the robust optimization problem are shown in Fig. 3 and
Fig. 4 respectively. In Fig. 3, rewards indicating the overall
system sum secrecy rate across episodes are illustrated. This eval-
uation contrasts the proposed MA approach with benchmark PPO
and DDPG single-agent algorithms in a configuration involving
M = 16 RIS elements. The MA algorithm achieves a peak
reward of 29.8 bits/s/Hz, surpassing PPO’s 27.9 bits/s/Hz and
DDPG’s 25.2 bits/s/Hz. This is because of MA’s consideration
of system-wide objectives while optimizing individual agent poli-
cies. By comprehensively evaluating actions’ global impact, MA
allocates resources more coherently and efficiently. Employing
PPO within the MA framework allows broader action explo-
ration, aiding in reaching optimal solutions and enhancing overall
performance. Regarding convergence, MA converges at around
600 episodes, PPO at roughly 360 episodes, and DDPG within
the initial 200 episodes due to its deterministic policy output. The
MA-PPO scheme demands agents to consider others’ behaviors,
necessitating more episodes to discover optimal policies that
maximize system performance. Conversely, DDPG’s lack of
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Fig. 3: Convergence behaviour of proposed DRL framework.
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action exploration leads to faster convergence but lower rewards.
PPO’s exploration during training causes slower convergence,
potentially achieving higher rewards.

Fig. 4 demonstrates the convergence behavior of the robust
optimization problem. It showcases the system’s achievable sum
secrecy rate against iteration count for varying STAR-RIS el-
ements (M = {16, 32, 64}) at PT =30 dBm. Notably, as the
number of STAR-RIS elements increases, the attainable sum
secrecy rate also increases under the proposed solution. Initially,
performance exhibits steady enhancement with more iterations,
yet it eventually stabilizes after a certain threshold. For instance,
at M= 64, the algorithm peaks at a sum secrecy rate of 31.1
bits/s/Hz. Similar trends occur for M={16, 32}, achieving sum
secrecy rates of 22.4 and 26.5 bits/s/Hz, respectively. Specifically,
for M = {16, 32, 64}, the sum secrecy rate stabilizes around
{6, 8, 10} iterations, indicating the algorithm’s convergence to
a stable solution within a relatively small iteration count. This
behavior highlights the effectiveness of the proposed algorithm
in optimizing the system sum secrecy rate.

In Fig. 5, the impact of adjusting maximum transmit power on
secrecy performance across various BS antenna configurations is
shown for both the MA framework and conventional robust op-
timization. As expected, higher power and larger antenna arrays
lead to increased degrees of freedom (DoF), resulting in better
system performance, as validated in Fig. 5. Consistently, the MA
framework outperforms the conventional method across all sce-
narios. Moreover, we compare these against passive-RIS and No-
RIS schemes. The proposed STAR-RIS approach, optimizing the
phase-shift matrix, outperforms the other scenarios by providing
comprehensive spatial coverage and greater control over signal
propagation compared to passive RIS. Notably, using STAR-
RIS brings a significant performance improvement compared
to operating the system without RIS, underlining its substantial
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impact.
In Fig. 6, we compare the proposed system’s performance,

considering robust transmission design with both imperfect and
perfect CSI variations across varying maximum transmit power
at the BS. At a transmission power of 40 dBm, the proposed MA
algorithm and conventional robust design achieve substantial se-
crecy sum rates of 31.33 and 20.6 under imperfect CSI conditions,
respectively. Meanwhile, the PPO and DDPG algorithms yield
sum secrecy rates of approximately 28.8 and 26.09. We further
compare the proposed imperfect CSI design with perfect CSI
scenarios. Under perfect CSI assumptions, the MA, PPO, DDPG,
and Con schemes achieve enhanced sum secrecy rates of 32.2,
30.02, 27.5, and 23.5, respectively. These findings highlight the
effectiveness of the MA approach within our model, showcasing
its superior performance compared to other considered DRL
schemes like PPO and DDPG frameworks. Additionally, this
comparison underscores the consistent superiority of the MA-
DRL framework over conventional robust designs, highlighting
its inherent benefits and notably improved performance within
the considered system.

Fig. 7 shows how varying STAR-RIS element numbers impact
the overall sum secrecy rate for both the proposed MA-DRL
framework and conventional robust optimization, comparing
them with passive-RIS, random phase settings, and No-RIS
scenarios. Overall, increasing RIS elements improves the sum
secrecy rate except in the No-RIS case. In the conventional robust
optimization scenario, employing 16 RIS elements in Con-STAR-
RIS yields a sum secrecy rate of 21.7, surpassing passive RIS
at 17.07. Meanwhile, random RIS phase initialization results
in 15.05, while the absence of RIS reaches 11.8. Similarly, in
the MA-DRL framework with 16 RIS elements, MA-STAR-RIS
achieves a sum secrecy rate of 28.3, outperforming passive RIS at
20.9. Random RIS phase initialization leads to 18.6, while the ab-
sence of RIS results in 14.7, a pivotal role of RIS implementation,
particularly STAR-RIS, in enhancing performance. Therefore at
M =16, STAR-RIS demonstrates approximately 27.1% higher
secrecy performance than passive RIS in the conventional case
and around 35.4% higher performance in the MA-DRL case.
This advantage stems from STAR-RIS offering spatial diversity
and simultaneous transmission and reflection modes, amplifying
SNR and secrecy rates for legitimate users while reducing these
metrics for eavesdroppers. Moreover, we have also examined

3The sum secrecy rate is expressed in bits/s/Hz. However, for brevity, the unit
of measure is omitted in the text.

the performance of the phase-shift coupled STAR-RIS design,
i.e., PC-MA-STAR-RIS and PC-Con-STAR-RIS with all other
schemes. The results in Fig. 7 demonstrate that the consideration
of phase-shift coupled design performs slightly inferior to the
ideal ES mode and achieves a significant performance gain over
the conventional RIS, as validated in existing works [71], [72].

Fig. 8 explores the impact of varying deployment positions
of the STAR-RIS on network performance concerning the sum
secrecy rate while identifying the optimal deployment location.
It discusses the sum secrecy rate achieved by deploying a
STAR-RIS and a Passive-RIS in different locations, specifically
adjusting the distance from the STAR-RIS to the BS while main-
taining fixed positions for the BS and users. For this particular
simulation, the BS is positioned in the XY -plane at (70, 0), and
two users (K= 2) are deployed at (0, 0) and (1, 0), respectively,
assuming their proximity. The distance of the STAR-RIS is varied
concerning the BS and users. The observed trend reveals that as
the distance between the STAR-RIS and both the BS and users
increases, there is a notable decrease in the sum secrecy rate.
This decline is attributed to increased path loss resulting from
greater distances, consequently degrading the sum secrecy rate,
as confirmed in Fig. 8. Consequently, the findings suggest that
the network demonstrates superior sum secrecy rate performance
when the deployment positions of the STAR-RIS are nearer to
either the BS or the users.

Fig. 9 illustrates the impact of minimum data rate (Rmin)
constraints on the system’s sum secrecy rate under different
configurations. The results demonstrate that as Rmin increases,
the sum secrecy rate decreases. This trend is due to the stricter
quality-of-service (QoS) requirements imposed by higher Rmin,
which reduce the feasible region for the optimization problem.
Specifically, a higher Rmin forces the BS to allocate more power
to users with poor channel conditions to meet their QoS demands.
This reallocation reduces the power available for other users
and compromises the system’s overall secrecy performance. For
instance, when Rmin is low, the BS can optimize power allocation
more freely, achieving a higher sum secrecy rate. However, as
Rmin increases, the sum secrecy rate decreases more rapidly,
especially for users with poor channel conditions. The figure
also compares the proposed MA-based scheme with a conven-
tional optimization method. The MA-based scheme demonstrates
superior performance in maintaining higher secrecy rates under
varying Rmin, validating the efficacy of the proposed algorithm
in handling stringent QoS constraints.

Fig. 10 illustrates the system performance of STAR-RIS,
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passive RIS, and no RIS configurations, with and without direct
links between the BS and users/eavesdroppers. Since users are far
from the BS, they primarily rely on STAR-RIS-assisted links. Our
analysis shows minimal performance variation between scenarios
with weak direct links and no direct links, indicating that direct
links have negligible impact. This underscores the significant role
of STAR-RIS in enhancing system performance. Regardless of
the presence of direct links, STAR-RIS consistently improves
efficiency and robustness, demonstrating that the majority of
performance gains are thanks to STAR-RIS, not the marginal
influence of direct links.

Fig. 11 illustrates the relationship between maximum transmit
power and sum secrecy rate under different Rmin constraints
and system conditions. Higher transmit power enhances secrecy
rates, but stricter QoS constraints (Rmin = 3 vs. Rmin = 2)
limit performance due to reduced power allocation flexibility.
The analysis also examines the impact of imperfect system
conditions, where inaccuracies in parameters like channel state
information degrade secrecy rate performance. However, the MA-
based scheme consistently outperforms the conventional method,
demonstrating its robustness and adaptability in maintaining
higher secrecy rates across varying transmit power levels and
Rmin constraints, even under imperfections.

VI. CONCLUSIONS

In this paper, we explored the realm of multi-user STAR-
RIS-assisted dl communication with a primary focus on max-
imizing information secrecy. We tackled the worst-case robust
beamforming design problem to maximize the overall system
sum secrecy rate while considering constraints related to transmit
power limitations, specified QoS requirements, and practical
constraints on the STAR-RIS phase shifter array. To address
the non-convex problem, we employed the S-procedure within
the AO framework, incorporating a line search to iteratively
update the precoder and phase shift matrix. Further, we extended
our solution by utilizing an MA-DRL framework based on
MDP to tackle non-convexity. We also analyzed practical phase
shifts and the effect of direct links to showcase the practicality
of our approach. Simulation results underscore the significant
advantage of STAR-RIS, showing approximately 27.1% higher
secrecy in conventional optimization and about 35.4% in the
MA-DRL context compared to the conventional RIS. Moreover,
our MA-DRL approach outperforms single-agent schemes by
approximately 8.6% of PPO and 19.9% of DDPG, highlighting
the substantial benefits of coupling of the proposed framework.
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