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Abstract—This paper presents a novel analytical framework
for minimizing transmit power in satellite and terrestrial inte-
grated networks using reconfigurable intelligent surface (RIS)
technology within integrated sensing and communication sys-
tems. We employ a cutting-edge federated deep reinforcement
learning approach, utilizing a federated deep deterministic policy
gradient (F-DDPG) algorithm, to tackle the complex non-convex
power minimization problem effectively. The approach leverages
federated learning to dynamically adapt to network changes,
ensuring compliance with beamforming designs, multiple tar-
get signal-to-interference-plus-noise ratio thresholds, and RIS
phase-shift requirements through an effective feedback loop. In
particular, we propose an F-DDPG algorithm that outperforms
existing benchmarks such as the federated deep Q-network
(DQN), centralized DDPG, and conventional DDPG and DQN
methods. Through simulations, we demonstrate that integrating
RIS significantly lowers base station (BS) power requirements
against both random configurations and non-RIS setups. The
optimal RIS configuration with 60 elements achieves a 6.3%
reduction in BS transmit power compared to the random RIS
scenario and a 34.2% reduction compared to the no-RIS setup.
Additionally, our results demonstrate that increasing the number
of RIS elements markedly improves sensing capabilities while
maintaining the same level of transmit power.

Index Terms—Integrated sensing and communication (ISAC),
satellite-terrestrial integrated network (STIN), reconfigurable in-
telligent surfaces (RIS), beamforming design, federated learning,
deep reinforcement learning (DRL).
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SENSING technologies are essential for advancing future
wireless network functionalities, such as those projected

for 6G, which enable applications including navigation, activ-
ity detection, movement tracking, and environmental monitor-
ing [1], [2]. With the continuous advancements in wireless
communications and radar sensing, the demand for scarce
spectrum resources increasingly outpaces the supply, high-
lighting their critical scarcity and value. To mitigate these
challenges, the integrated sensing and communication (ISAC)
paradigm emerged as an effective strategy to efficiently utilize
spectral, hardware, and energy resources. The ISAC achieves
this by harmonizing signal processing techniques and leverag-
ing a unified hardware infrastructure to concurrently support
both sensing and communication functionalities. Despite its
advantages, the majority of ISAC research remains focused
on terrestrial scenarios, thereby restricting its ability to provide
services on a global scale [3].

Satellite communication networks offer a viable solution to
overcoming coverage limitations due to their wide coverage
capability [4]. In earlier years, the deployment of large-scale
satellite networks was hindered by substantial setup costs
and a comparative deficiency in capacity against ground-
based networks. Nevertheless, the growing demands for global
communication services and breakthroughs in technology have
recently made the concept of satellite constellations a focal
point of interest in both the academic realm and the industry.
This shift led to the initiation of various satellite constellation
projects aimed at furnishing global coverage, highlighting
projects such as Starlink, Telesat, and OneWeb [5]. Integrating
satellite with terrestrial networks presents a viable strategy
for achieving widespread broadband access, leveraging the
extensive coverage of satellite systems alongside the high-
capacity infrastructure of terrestrial networks [6]. Notably, the
3rd Generation Partnership Project (3GPP) has explored this
synergistic approach in Releases 15, 16, and 17, examining
the integration of terrestrial and non-terrestrial networks to
extend network services to underserved areas, enhance service
continuity, and optimize multicast/broadcast communications
[7], [8]. According to the vision for future wireless networks
outlined in the 6G White paper, the seamless integration
between satellite and terrestrial networks is crucial, signaling
a pivotal shift towards a more inclusive and versatile commu-
nication network infrastructure [9], [10].
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A. Related Works

In recent years, the concept of satellite-terrestrial integrated
networks (STIN) has emerged as a focal point of research,
driven by its potential to substantially enhance resource alloca-
tion through the integration of terrestrial and satellite networks
[11], [12]. This innovative concept has piqued interest in
both commercial and academic sectors, leading to a plethora
of studies aimed at advancing the functionalities of STIN
systems. Among these, significant strides have been made in
areas such as resource management [13], [14], cooperative
coordination [15], [16], and notably, beamforming techniques.
In particular, beamforming stands out for its dual ability to im-
prove signal quality for intended recipients while minimizing
interference to others, thereby facilitating effective interfer-
ence management and allowing the seamless coexistence or
collaboration between satellite and terrestrial networks [17],
[18]. In [19], researchers explored the challenge of developing
a hybrid analog-digital beamforming design for spectrum-
sharing between satellite and terrestrial systems, introducing
an optimization scheme for analog-digital beamforming. The
authors in [20] introduced a beamforming strategy aimed at
enhancing the signal-to-interference-plus-noise ratio (SINR)
for terrestrial users while minimizing interference to satel-
lite users. Meanwhile, research presented in [21] developed
two beamforming approaches to optimize cellular user data
rates within the interference limitations of satellite users.
These studies leveraged beamforming technology not only
to improve overall system performance but also to bolster
satellite network security by leveraging green interference
from terrestrial networks. Furthermore, the insights from [21]
were extended in [22] to propose a joint beamforming strategy
designed to secure communications in scenarios involving
multiple satellite users and potential eavesdroppers.

On the other hand, a significant body of research has
explored the concept of ISAC within terrestrial network
frameworks. The adoption of multiple-input multiple-output
(MIMO) technology within terrestrial ISAC systems has been
leveraged to notably improve the spectral and energy ef-
ficiencies of communication systems, a development thor-
oughly investigated in [23]. Moreover, the research outlined
in [24]–[28] focused on the development of hybrid beamform-
ing methods, employing diverse MIMO radar techniques to
boost the performance of dual-functional radar communication
systems. Recent advancements have also seen the adoption
of orthogonal frequency division multiplexing (OFDM) for
communications within terrestrial ISAC systems to effectively
address inter-symbol interference issues, thereby facilitating
enhanced target sensing capabilities as highlighted in [29].
However, terrestrial ISAC systems do not offer global coverage
and are limited by inadequate data reception and processing
capabilities. In response to these limitations, the idea of
integrating ISAC with low Earth orbit (LEO) satellites has
gained attention, driven by advancements in satellite onboard
processing technologies. A strategy for hybrid beamforming
in ISAC-LEO systems is detailed in [30], which also con-
siders the impact of beam squint. Further, a novel ISAC-
aided dynamic resource allocation strategy that enhances ran-

dom access efficiency and system throughput within satellite-
terrestrial relay networks (STRNs) is detailed in [31]. Even
though ISAC leverages the larger bandwidths of millimeter
wave (mmWave) frequencies for enhanced data rates and radar
resolution, the higher frequencies introduce significant signal
blockage issues, adversely affecting performance. To mitigate
this, reconfigurable intelligent surfaces (RISs) can establish
effective virtual connections between the ISAC base station
(BS) or satellite and sensing targets, offering a promising
strategy to overcome the challenge. RIS technology has gar-
nered significant attention as a transformative approach for
reconfiguring wireless environments by tuning the phase shifts
of low-cost reflecting elements, thereby enhancing system
performance in next-generation networks [32].

Recent studies have extensively explored the synergy be-
tween RIS and ISAC systems [33], [34], highlighting two
predominant approaches in RIS-enhanced ISAC systems [35].
The first approach utilized RIS primarily to enhance com-
munication capabilities while maintaining direct links from
the transceiver to the target for sensing purposes [36], [37].
Specifically, the authors in [36] explored designing both
transmit and receive beamforming strategies alongside RIS
phase adjustments for multi-user settings. Conversely, [37]
focused on reducing the transmit power of dual-function
radar-communication (DFRC) BS by concurrently optimizing
both active and passive beamforming in light of RIS-induced
interference. Leveraging the advantages of RIS, the authors in
[38] adopted deep reinforcement learning (DRL) to explore
the integration of RIS within satellite networks, presenting
promising solutions to latency, dynamic channel conditions,
and energy constraints in 6G Internet of Things (IoT) environ-
ments. In [39], research focused on optimizing beamforming
for RIS-enhanced hybrid satellite-terrestrial networks with
blocked satellite and BS-user links. The concept of active RIS,
incorporating amplifiers to mitigate the double path fading ef-
fect, has been explored in general communication systems [40]
and ISAC frameworks [41], showing improved performance
under optimized power budgets and element numbers. This
paper, however, focuses on passive RIS in satellite-terrestrial
systems, leaving active RIS integration as a potential direction
for future work.

B. Motivation

The potential of ISAC in revolutionizing satellite and RIS-
enhanced terrestrial networks is vast, yet a thorough examina-
tion of its full potential remains unexplored. Research carried
out in [11]–[22] focused on the nuances of STINs without
delving into the integration of ISAC or the innovative use of
RIS. Further, while studies [24]–[27], [29] have investigated
ISAC within terrestrial contexts, their scope does not extend
to achieving global coverage or overcoming the data process-
ing and reception challenges inherent to terrestrial networks.
Efforts to incorporate ISAC within satellite frameworks, as car-
ried out in [30], [31], have not considered the integration with
RIS. Although the synergy between RIS and ISAC was exam-
ined in [33]–[37], such research remained limited to terrestrial
implementations. However, the works in [38], [39] explored
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the benefits of RIS in satellite and STINs, yet overlooked
ISAC applications. Even though the authors in [37] made
significant contributions to the power minimization problem,
their research was confined to the terrestrial ISAC system and
did not extend to STIN implementations. Given these gaps, the
challenge arises of addressing the power minimization problem
through joint beamforming design within ISAC systems that
span both satellite and RIS-enhanced terrestrial networks. This
underscores the complexity of such tasks, where traditional
optimization methods may prove inadequate. To the best of
the authors’ knowledge, a comprehensive study leveraging
federated learning for ISAC in satellite and RIS-enhanced
terrestrial networks has not yet been significantly pursued in
the existing literature.

C. Contribution

Motivated by the aforementioned discussion, we introduce a
novel analytical framework to evaluate the performance of the
ISAC-enabled satellite and RIS-enhanced terrestrial integrated
network and address the power minimization problem through
a federated learning approach. The key contributions are
outlined as follows:

• We develop an intricate framework that seamlessly com-
bines ISAC functionalities across both satellite and terres-
trial domains, enhanced by RIS technology. This frame-
work is meticulously designed to minimize the transmit
power at the BS, while simultaneously guaranteeing the
sensing performance through a minimum SINR require-
ment at the sensing targets and the users.

• We tackle the non-convex resource allocation problem
through a federated DRL (F-DRL) approach. This method
simplifies optimization by dynamically adapting to real-
time changes and employing multi-agent reinforcement
learning for effective resource management in both satel-
lite and terrestrial segments. It enables agents to adjust
satellite transmit power and meet SINR and RIS phase-
shift requirements, thus boosting network performance
through strategic feedback.

• The proposed federated deep deterministic policy gradi-
ent (F-DDPG) algorithm exhibits enhanced performance
compared to benchmarks such as the federated deep Q-
network (F-DQN), centralized DDPG (C-DDPG), and
conventional DDPG and DQN methods. The integration
of RIS within our framework substantially reduces BS
power requirements compared to random configurations
and without RIS. Additionally, our results demonstrate
that increasing the number of RIS elements markedly
improves sensing capabilities while maintaining the same
level of transmit power.

In summary, the novelty of our work lies in the inte-
grated satellite-terrestrial ISAC system design, the application
of FMA-DRL to tackle non-convex optimization in STIN
systems, the development of a federated learning framework
addressing privacy and scalability challenges, and a compre-
hensive benchmarking study of federated DRL paradigms.

D. Structure of the Paper

Section II describes the system model, while Section III
details the formulation of the optimization problem. In Section
IV, we present the proposed federated multi-agent deep rein-
forcement learning (FMA-DRL) approach, structured within
the Markov decision process (MDP) framework. Section V
provides a discussion of the numerical simulation results. Fi-
nally, Section VI offers concluding remarks. The key notations
used throughout this paper are summarized in Table I.

TABLE I: Key notations.

Notation Definition Notation Definition
(A)H Hermitian (A)T Transpose
diag(·) Diagonalization operator |A| Modulus operator
CM×M Complex matrix CM×1 Complex vector
||A|| Norm operator A∗ Optimal A
◦ Hadamard product E{·} Expectation

II. SYSTEM MODEL

In the schematic shown in Fig. 1, we investigate a RIS-aided
downlink (DL) ISAC system utilizing a STIN. The ISAC-
geostationary orbit (GEO) satellite is equipped with Nt anten-
nas for transmission and Nr antennas for reception, adopting
a monostatic configuration. This system provides service to
L satellite users (SUs), each equipped with a single antenna,
denoted by the set L = {1, ..., L}, and engages in the detection
of several targets, represented by the set Ts = {1, ..., Ts}.
The design incorporates uniform linear arrays (ULAs) for
all antenna configurations, with a consistent half-wavelength
separation between each pair of adjacent antennas.

Expanding upon the previously described GEO satellite-
based ISAC system, we also explore a terrestrial counter-
part that incorporates a RIS-enhanced ISAC system1. In this
terrestrial setup, a BS is equipped with two ULAs for en-
hanced communication and sensing capabilities. The system
incorporates RIS with N passive elements designed to reflect
the signal from BS towards K single antenna DL cellular
users (CUs) indexed as K = {1, ...,K}. This setup allows
CUs to receive signals directly from the BS as well as via
the RIS-reflected path, offering both direct and indirect link
connectivity. Furthermore, the terrestrial BS utilizes a Mt-
antenna ULA to cater to densely populated regions within
the same frequency spectrum. The DL ISAC signal, trans-
mitted by a ULA consisting of Mt elements, is designed
for simultaneous communication with K single-antenna DL
CUs, and for performing target detection on multiple targets,
denoted by the set Tb = {1, ..., Tb}, within the terrestrial
domain. The target echo signal is received at the BS via the
receiving ULA, which comprises Mr elements. This design
ensures that the terrestrial base station optimally controls the
RIS for cellular communication, while the satellite system ef-
fectively serves users and covers targets outside terrestrial BS

1While increased satellite beam directivity reduces interference to terrestrial
zone users, our research is crucial for advanced interference management,
enhancing ISAC capabilities, ensuring scalability, addressing real-world de-
ployment factors, and improving user experience in integrated satellite-
terrestrial systems.
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Fig. 1: Illustration of ISAC enabled satellite and RIS-enhanced
terrestrial integrated network.

coverage, thereby enhancing the overall system efficiency and
effectiveness. Dividing into two sub-ISAC systems optimizes
performance and resource allocation for communication and
sensing tasks in their respective zones.

A. Satellite Channel Model

The communication channel from the ISAC-GEO satellite
to the lth SU encompasses free space loss, the radiation pattern
of the antenna, and rain attenuation, resulting in the modeling
of the DL channel as [42]

gl = bl ◦ ql ◦ exp {jφl}, (1)

where bl = [bl,1, bl,2, ..., bl,Nt
] ∈ CNt encapsulates both the

radiation pattern of the satellite beam and the losses due to
free space. The approximation for the ntht entry in bk is as
follows

bl,nt
=

√
FgFl,nt

4π dlλ
√
κTsysBg

, (2)

where Fg denotes the gain of the antenna at the user’s location,
dl represents the distance from the satellite to the lth user,
λ signifies the wavelength of the carrier signal, κ stands for
Boltzmann’s constant, Tsys indicates the temperature associ-
ated with receive noise, and Bg defines the bandwidth. The
beam gain from the ntht feed to the lth user, denoted as Fl,nt

,
can be estimated by

Fl,nt
= Fmax

[
J1 (ul,nt)

2ul,nt

+ 36
J3 (ul,nt)

u3l,nt

]2

, (3)

where Fmax represents the maximum beam gain
achievable for each beam, with ul,nt

calculated as
2.07123 sin(θl,nt

)/ sin(θ3 dB). The term θl,nt
denotes

the angle from the lth user to the center of the ntht
beam, while (θ3 dB) is the angle at which the beam’s
gain drops by 3 dB compared to its center. J1 and J3
correspond to the first and third-order Bessel functions of
the first kind, respectively. ql = [ql,1, ql,2, ..., ql,Nt

] ∈ CNt

describes the rain attenuation coefficients, with each
component defined as ql,nt

= ξ
1/2
l,nt

. The power gain
ξl,nt , expressed in dB as ξl,nt(dB) = 20 log10(ξl,nt),
typically adheres to a log-normal distribution, such that
ln(ξl,nt

(dB)) ∼ N (µ, σ) with mean µ and standard deviation
σ. Furthermore, φl = [φl,1, φl,2, .., φl,Nt

] ∈ CNt is the phase

vector with uniform distribution, where φl,nt ∼ U(0, 2π).
G = [g1, ...,gL] ∈ CNt×L denotes the satellite channels
connecting the satellite with all the SUs.

B. Radar and Satellite Communication Model

Initially, we focus on the DL transmission within the ISAC-
satellite system. Here, a narrowband ISAC signal, represented
as xsat ∈ CMt×1, is transmitted to achieve both radar sensing
and multiuser communication in the DL, utilizing multi-
antenna beamforming. Given the presence of multiple targets,
this integrated signal formulation is as follows:

xsat =

L∑
l=1

wls
sat
l +

Ts∑
ts=1

ssatts , (4)

where the beamformer vector wl ∈ CNt×1 corresponds to
the beamforming weights employed for the DL SU l, where
l ∈ L. The data symbol of user l, denoted as ssatl ∈ C, has
a unit power, indicating that its expected power is normalized
to E{|ssatl |2} = 1. Additionally, ssatts ∈ CNt×1, signifies the
unique radar signal aimed at target ts, which is characterized
by its covariance matrix Wts ≜ E{ssatts ssat Hts }. This definition
is pivotal for enhancing the degrees of freedom (DoF) of the
transmit signal xsat, facilitating superior sensing accuracy. The
formulation of Wts allows for the synthesis of sts , as indicated
in [43]. Furthermore, the system adheres to a total power con-
straint, expressed as

∑L
l=1∥wl∥2 +

∑Ts

ts=1 Tr(Wts) ≤ P satmax ,
where P satmax signifies the peak power budget allocated for the
satellite operations.

Subsequently, we formulate the echo signal for the mul-
tiple targets under consideration. We assume that the radar
channel includes line of sight (LoS) components, with
both the transmitting and receiving ULAs at the satel-
lite spaced at half the wavelength. The steering vector
for the transmit array towards direction ψ is defined as
ct(ψ) ≜ 1/

√
Nt[1, e

jπ sin(ψ), ..., ejπ(Nt−1) sin(ψ)]T , and sim-
ilarly, the receive steering vector is given by cr(ψ) ≜
1/
√
Nr[1, e

jπ sin(ψ), ..., ejπ(Nr−1) sin(ψ)]T . Assuming that the
target ts being detected is positioned at an angle denoted
as ψts , the reflection from the target can be represented as
βtscr(ψts)c

H
t (ψts)x

sat. Here, βts ∈ C represents the complex
amplitude of the target, which is primarily influenced by
factors like path loss and radar cross section [44]. We make
the assumption that ψts and βts of the target are known or
previously estimated at the satellite. This information is used
to design an appropriate transmit signal that is best suited for
detecting the specific target of interest [45]–[49]. With the
given targets echo, the received signal at the satellite can be
expressed as

ysatts = Htsx
sat︸ ︷︷ ︸

Target reflection

+

Ts∑
t′ ̸=ts,t′=1

Ht′x
sat

︸ ︷︷ ︸
Echo signal of interferer targets

+ñtar,∀ts

= βtsC(ψts)x
sat +

Ts∑
t′ ̸=ts,t′=1

βt′C(ψt′)x
sat + ñtar,∀ts,

(5)
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where Hts(t) = βtscr(ψts)c
H
t (ψts) is the radar channel and

C(ψts) ≜ cr(ψts)c
H
t (ψts). The term ñtar ∈ CNr×1 indicates

the additive white Gaussian noise (AWGN) with covariance
σ̃2
tarINr

.
In practice, a receive beamformer denoted as Ũ =

[ũ1, .., ũts ] ∈ CNr×ts , is employed to capture the desired
reflected signal of the target ts from the received signal ysatts .
Subsequently, using this information, the SINR of the target
ts can be expressed as

γtar
ts =

E{|ũHtsβtsC(ψts)x
sat|2}

E{|ũHtsDxsat|2}+ E{|ũHts ñtar|2}
,∀ts, (6)

where D =
∑
t′ ̸=ts βt′C(ψt′). Alternatively, we represent

the communication channel between the lth DL SU and the
satellite as gl ∈ C1×Nt . Further, we assume that the SUs
are positioned outside the service area of the BS, which is
designated as a terrestrial zone. This placement ensures that
the SUs may encounter mutual interference due to remaining
SUs in the zone but remain unaffected by any interference
originating from the BS [50]. Consequently, the received signal
at the lth DL SU is given as

ysatl = glwls
sat
l︸ ︷︷ ︸

Desired signal

+

L∑
l′=1,l′ ̸=l

glwl′s
sat
l′︸ ︷︷ ︸

Multi SU interference

+

Ts∑
ts=1

gls
sat
ts︸ ︷︷ ︸

Interfering sensing signal

+nsatl ,∀l, (7)

where nsatl indicates the AWGN with σsatl
2 variance. Based

on this, the SINR of the DL lth SU can be formulated by
referring to (7) as

γsatl =
|glwl|2∑L

l′=1,l′ ̸=l |glwl′ |2 +
∑Ts

ts=1 glWtsg
H
l + σsatl

2 ,∀l.

(8)

C. Radar and Terrestrial Communication Model

Initially, the DL transmission involves sending a narrowband
ISAC signal, xbs ∈ CMt×1, tailored for simultaneous target
detection and communication with multiple DL users through
multi-antenna beamforming. In this context, considering the
presence of multiple sensing targets, the combined signal can
be formulated as

xbs =

K∑
k=1

vksk +

Tb∑
tb=1

stb , (9)

where vk ∈ CMt×1 denotes the beamforming vector for
the DL CU k, k ∈ K, and sk ∈ C is the transmitted
data symbol for user k, assumed to have unit power, i.e.,
E{|sk|2} = 1. Additionally, stb ∈ CMt×1 is the radar-specific
signal intended for target tb, characterized by a covariance
matrix Vtb ≜ E{stbsHtb}, designed to expand the DoF of
the transmitted signal xbs for improved radar sensing. The
generation of stb follows upon determining Vtb .

In modeling the echo signal from the radar system,
we consider that the channel of the sensing targets in-
cludes direct LoS components. The array steering vec-
tor for transmission towards direction ϑ is represented by
at(ϑ) ≜ 1/

√
Mt[1, e

jπ sin(ϑ), . . . , ejπ(Mt−1) sin(ϑ)]T , and the
steering vector for reception in the direction ϑ is ar(ϑ) ≜
1/
√
Mr[1, e

jπ sin(ϑ), ..., ejπ(Mr−1) sin(ϑ)]T . When considering
the detection of a target tb, located at the angle ϑtb , the
corresponding target reflected signal can be represented as
αtbar(ϑtb)a

H
t (ϑtb)x

bs, where αtb ∈ C signifies the target’s
complex amplitude, which is influenced by path loss and radar
cross-section characteristics [44]. We assume that the BS has
prior knowledge or estimations of ϑtb and αtb for the detection
of the particular target of interest [45]–[49]. Consequently, the
received signal at the BS by taking into account the reflected
echoes from the targets can be formulated as

ybstb = H̄tbx
bs︸ ︷︷ ︸

Target reflection

+

Tb∑
t′ ̸=tb,t′=1

H̄t′x
bs

︸ ︷︷ ︸
Echo signal of interferer targets

+nrad

=αtbA(ϑtb)x
bs+

Tb∑
t′ ̸=tb,t′=1

αt′A(ϑt′)x
bs+nrad,∀tb, (10)

where H̄tb(t) = αtbar(ϑtb)a
H
t (ϑtb) is the radar channel and

A(ϑtb) ≜ ar(ψtb)a
H
t (ψtb). The term nrad ∈ CMr×1 indicates

the AWGN with covariance σ2
radIMr .

In practice, a receive beamforming matrix represented as
U = [u1, ..,utb ] ∈ CMr×tb , is utilized to capture the desired
reflected signal from target tb within the received signal ybstb .
Following this, the SINR for target tb is expressed as

γrad
tb

=
E{|uHtbαtbA(ϑtb)x

bs|2}
E{|uHtbBxbs|2}+ E{|uHtbnrad|2}

,∀tb, (11)

where B =
∑
t′ ̸=tb αt′A(ϑt′). Further, we assume that each

CU encounters mutual interference due to other CUs in the
zone and from satellite interference2 [50]. The interference
channel Z = [z1; . . . ; zL] ∈ CL×Nt represents the channel
gain from the satellite to all CUs. Each element zl ∈ C1×Nt

captures the interference effect from the satellite’s Nt antennas
to the lth CU. Hence, the signal received by the kth CU is
described as follows:

ybsk = hkvksk︸ ︷︷ ︸
Desired signal

+

K∑
k′=1,k′ ̸=k

hkvk′sk′︸ ︷︷ ︸
Multi-CU interference

+

Tb∑
tb=1

hkstb︸ ︷︷ ︸
Sensing signal

+

L∑
l=1

zlwls
sat
l︸ ︷︷ ︸

Satellite interfering channels

+nk,∀k, (12)

where nk indicates the AWGN with variance σk
2. The ef-

fective communication channel gain from the BS to the kth

DL CU is denoted by hk ∈ C1×Mt , where hk = hb,k +

2Satellite communication interferes with ground communication due to
higher transmission power and clear LoS propagation, while ground com-
munication does not interfere with satellite communication because terrestrial
signals are attenuated by obstacles and spatial separation [50].
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hr,kΦHb,r. Specifically, hb,k ∈ C1×Mt signifies the the
direct BS-to-kth CU link, hr,k ∈ C1×N ,∀k ∈ K denotes
the channel gain between RIS and the kth CU link, and
Hb,r ∈ CN×Mt illustrates the channel gain between the BS
and the RIS link. Further, we design the RIS phase shift matrix
as Φ ∈ CN×N . It is characterized by the phase-shift vector
ϕ = [ϕ1, ϕ2, . . ., ϕN ], delineating the phase changes for each
of the N elements in RIS. The phase shift matrix is structured
as Φ = diag(ϕ), where ϕn pertaining to the phase shift of
the nth element within the interval [0, 2π]. Based on this, the
SINR of the DL kth CU can be formulated by referring to
(12) as

γbsk

=
|hkvk|2

K∑
k′=1,k′ ̸=k

|hkvk′ |2+
Tb∑
tb=1

hHk Vtbhk +
L∑
l=1

|zlwl|2 + σ2
k

,∀k.

(13)

III. PROBLEM FORMULATION

In this section, we aim to devise a joint beamforming
approach to minimize the total transmit power consumption at
the terrestrial BS in the RIS-aided ISAC STIN. This objective
entails the optimization of the transmit beamforming vectors
{wl}Ll=1 and {vk}Kk=1, along with {Wts}

Ts
ts=1 at the satel-

lite and {Vtb}
Tb
tb=1 at the BS. Additionally, the optimization

extends to the phase shift matrix Φ at the RIS within the
terrestrial zone and the receive beamformers, represented by
Ũ and U, with the goal of minimizing the transmit power con-
sumption at the BS. Let J define the set of optimization vari-
ables represented by J ≜ {{wl}Ll=1, {vk}Kk=1, {Wts}

Ts
ts=1 ⪰

0, {Vtb}
Tb
tb=1 ⪰ 0,U, Ũ,Φ}. Based on these criteria, the

optimization problem is formulated as

minimize
J

P =

K∑
k=1

∥vk∥2 +
Tb∑
tb=1

Tr(Vtb) (14a)

s.t γtar
ts ≥ τ tar

ts , ∀ ts ∈ Ts, (14b)

γrad
tb

≥ τ rad
tb
, ∀ tb ∈ Tb, (14c)

γsatl ≥ τsatl , ∀ l ∈ L, (14d)

γbsk ≥ τ bsk , ∀ k ∈ K, (14e)
L∑
l=1

∥wl∥2 +
Ts∑
ts=1

Tr(Wts) ≤ P satmax , (14f)

|ϕn| = 1,∀n ∈ N , (14g)

where the constraints (14b) and (14c) ensure the SINR at the
targets meets a minimum threshold, critical for maintaining
the quality of sensing operations within the STIN framework.
Constraints (14d) and (14e) specify the minimum SINR re-
quirements for the lth SU and kth CU, respectively. (14f)
limits the maximum allowed transmit power for the satellite.
Additionally, constraint (14g) is the unit modulus constraint
of the phase-shift matrix at the RIS. The coupling relationship
between the satellite-based and terrestrial RIS-enhanced ISAC
systems is crucial for optimal performance, characterized by
interference management and resource allocation strategies
that ensure seamless integration and coordination.

It is important to note that the resource allocation problem
defined in (14) is characterized by its non-convexity [51],
making the search for a globally optimal solution difficult
with standard polynomial-time algorithms. Furthermore, the
coupling of optimization variables adds another layer of com-
plexity, complicating the resolution process and rendering the
problem challenging to address. The challenges in addressing
the problem extend beyond its non-convex nature. Specifically,
the necessity for computationally demanding tasks, such as
matrix inversions and singular value decompositions in itera-
tive approaches, complicates their implementation in real-time
scenarios. To tackle these issues, we present a solution in
the form of a FMA-DRL algorithm, aimed at overcoming the
inherent difficulties associated with non-convex optimization.
The choice of DRL is motivated by its scalability, ability to
handle high-dimensional optimization, and superior empirical
performance compared to conventional methods.

To effectively tackle the optimization challenge, we propose
a dynamically adaptive strategy suitable for real-time imple-
mentation, ensuring optimal performance with only partial
environment observations. This strategy redefines the problem
within the context of MA-DRL3, assigning independent agents
to both non-terrestrial and terrestrial zones. Within this frame-
work, each agent, represented by BS or a satellite module,
navigates its operational parameters within each time slot. This
feedback loop enables the dynamic adjustment of transmit
power and other operational variables to maintain compliance
with the SINR requirements and RIS phase-shift design.

IV. THE PROPOSED FEDERATED MULTI-AGENT DEEP
REINFORCEMENT LEARNING ALGORITHM

In this approach, we reinterpret the previously mentioned
problem within the framework of DRL, with the BS and the
satellite functioning as agents. The objective of the satellite
agent is to enhance the overall user throughput while reducing
interference. In the DRL scenario, base stations are required
to develop deep neural network (DNN) models that output
either Q-values or direct control measures. A pivotal challenge
is the expedited training of these DNN models to align with
the dynamic nature of network conditions. Federated learning4

enhances our system by addressing privacy concerns, enabling
localized training, lever aging shared model updates, and
optimizing the global objective function across heterogeneous
network environments, thus offering significant advantages
over independent DRL approaches [53]. To address this, we
suggest the adoption of an FMA-DRL strategy. This strategy
allows for the collaborative improvement of a predictive model
through the mutual exchange of DRL model weights among
federated agents. In our framework, dedicated agents are
assigned to both the satellite zone and the terrestrial base
station area, thereby achieving swift adaptation to network
changes while safeguarding user data privacy.

3The constraints of problem 14 are strictly enforced through reward function
penalties and action space restrictions, ensuring that the proposed solution
complies with the problem requirements.

4While the proposed framework offers significant potential for improving
federated learning in real-world applications, there are several deployment
challenges to consider. These include device heterogeneity, communication
overhead, data privacy, resource constraints, and scalability [52].
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In summary, DRL’s ability to effectively handle non-convex
optimization problems, coupled with its computational effi-
ciency, flexibility, adaptability, and suitability for real-time
implementation, makes it a superior choice over traditional
convex optimization methods for our system. In subsequent
sections, we initially outline the RL issue by detailing the
state space, action space, and reward function relevant to
the problem (14). Following this, we introduce two variants
of FMA-DRL: the F-DDPG and the F-DQN, both aimed at
addressing the challenge of the formulated problem.

A. MDP Formulation

DRL methodologies are typically framed within the struc-
ture of MDP, which are characterized by a 5-element tuple:
{S,A,R,P, γ̄}. Here, S denotes the set of all possible states,
A represents the set of all possible actions, P signifies the
probabilities of moving from one state to another state given
an action, expressed as Pr(st+1|st, at), rt(st, at) ∈ R is the
function that assigns a reward based on the state and action at
time t, and γ̄ ∈ [0, 1) is the discount factor which adjusts the
value of future rewards. At any given time step t, given the
current state st, the agent selects an action at ∈ A, which leads
to a transition to a new state st+1 with a transition probability
of Pr(st+1|st, at) ∈ P , and the agent receives a reward rt.
The decision-making strategy of the agent, known as a policy
π(s, a), defines the likelihood of choosing action at = a when
in state st = s, or formally, π(s, a) = Pr(at = a|st = s). In
particular, agent, S,A, and R are designed as follows:

1) Agent: In our framework, we allot distinct agents to
handle operations in the satellite zone as well as the terrestrial
zone.

2) State & Observation Space: The aim is to integrate a
comprehensive array of environmental information pertaining
to the problem within the state space. Denote S = {Ssat,Sbs}
as the state space of the system, which includes the overall
channel conditions and the behavior of all the agents involved.
This state space is devised from the information available
to the BS and satellite, whether obtained directly or through
inference, and it is pivotal in formulating the reward function.
The observation state feature set at ISAC-satellite encompasses
all channel data within the satellite area, and the previous
beamformers and transmission power [54]–[56]. Therefore, the
designated observation state space for the ISAC-satellite is
described as

Ssat = {gtl ,Ht
ts , {wl}t−1, {Wts}t−1, Ũt−1,−P t−1}. (15)

Meanwhile, the observation state space at the BS includes
the current state feature set, which comprises all channel
information within the terrestrial area, the phase shift matrix
at the RIS, and the previous beamformers and transmission
power [54], [55]. Therefore, the observation state space feature
set at the BS is defined as

Sbs = {htk, H̄t
tb
,Φt−1,{vk}t−1, {Vtb}t−1,

{wl}t−1,Ut−1,−P t−1}. (16)

The observations collected from the agents are saved in
a centralized buffer, where each agent retrieves information

through its unique control channel. In the training process,
updates to the neural network are carried out offline through a
random selection of observations from this repository. Fol-
lowing this, agents utilize archived observations to shape
their decision-making for forthcoming actions. This process
facilitates efficient adaptation and learning in a constantly
changing network setting, steadily advancing the decision-
making skills of the agents.

3) Action Space: An action results from the policy out-
puts (either from DQN or the actor-network in actor-critic
schemes). Let the action space for the system be denoted as
A = {Asat,Abs}, designed by integrating a policy incorpo-
rating both the comprehensive beamforming matrices and the
phase-shift matrix at the RIS [54]–[56]. With multiple agents
involved, the action space is designed to include the individual
actions of each agent. Specifically, the subset of the action
space Asat ∈ A that pertains to the satellite area is defined as

Asat={{wl}t, {Wts}t, Ũt}. (17)

Likewise, the subset of the action space Abs ∈ A associated
with the terrestrial area is defined as

Abs={{vk}t, {Vtb}t,Ut,Φt}. (18)

4) Reward Function: The reward function in our study is
designed to calculate the instant reward received when an
action is performed at state st, targeting the objective in (14)
by optimizing the action selection comprehensively. In the
realm of DRL, the objective is for the agent to identify actions
that lead to the maximization of aggregate rewards over time
through discrete-time interactions with the environment. For
this purpose, we assign to each agent a reward rtF , where
F ∈ {sat, bs}. To elaborate, “sat” refers to the satellite zone,
and “bs” signifies the terrestrial BS zone. The reward value,
rt, at learning time step t is defined as the negative of the
total transmit power, specifically rt = −P t.

B. Federated Learning Model

In this section, we discuss the utilization of DRL algo-
rithms that employ DNNs to determine action probabilities
for optimizing returns. The fundamental concept of federated
learning is to develop a unified statistical model (here, a
DNN) using data collected across numerous devices. Our
approach ensures each agent processes and keeps its state data
locally, sending periodic updates to the gateway. As the central
server for federated learning, the gateway facilitates seamless
communication, optimizes resource allocation, and ensures
efficient coordination and data aggregation. The objective of
this training methodology is to optimize a predefined objective
function by minimizing its value which is given by

min
ϱ
F (ϱ) =

∑
j∈F

κjFj(ϱ
j). (19)

The global model is deployed at a central server located in the
network gateway, which connects the terrestrial and satellite
zones. For optimizing the global model, we aim to fine-tune
the global objective function, F (ϱ), alongside its weights, ϱ,
and adjust the local loss function, Fj , with their respective
weights, ϱj , for each agent across different zones j. The share
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of each zone, j, in the overarching network is determined by
κj , defined as κj =

Uj∑
j∈F Uj

, where Uj denotes the number
of users within zone j of the network set F . Specifically, for
the satellite zone, represented as j = sat, Uj = L, whereas
for the terrestrial zone, denoted as j = bs, Uj = K.

C. Federated Multi-Agent Deep Deterministic Policy Gradient

DDPG enhances the actor-critic framework by incorporating
DNNs to model policy and value functions. This approach
provides a more sophisticated solution to the challenges of
handling extensive state and action spaces, characteristic of
high-dimensional scenarios. DDPG stands out for its capa-
bility to handle continuous action spaces, making it adept
at decision-making in such environments. Essentially, the
proposed DDPG employs two key DNN components in its
architecture:

1) Critic Network: The model, also known as a Q-network
and characterized by the parameter ϱc, processes an input
comprising a state s and an action a as inputs, subsequently
yielding the Q-value, Q(st, at; ϱc). Further, the action-value
function, often referred to as the Q-function is defined as

Qπ
(
st, at

)
= Eπ

[
Rt|st = s, at = a

]
. (20)

This function can be updated using the Bellman expectation
equation [57]. Furthermore, the optimal Q-function in (20)
can be determined through the Bellman optimality equation,
expressed as

Q∗ (st, at) = rt + γ̄ max
at+1∈A

Q∗ (st+1, at+1
)
. (21)

Accordingly, the optimal action a∗ is derived by

a∗ = argmax
a∈A

Q∗ (s, a) . (22)

2) Actor Network: This is also referred to as a policy
network, which accepts a state s as input and produces a con-
tinuous action a, denoted by at = π(st; ϱµ) while updating the
network parameter ϱµ. The actor-network undergoes training
through (22), intending to optimize the state-value function.

Besides, DDPG employs both a target actor-network, de-
noted as π(st; ϱ′µ), and a target critic network, represented by
Q(st, at; ϱ′c), to enhance training stability. Here, ϱ′µ and ϱ′c
signify the parameters for the target actor and critic networks,
respectively. Further, the actor undergoes training to enhance
the objective function by employing a policy gradient method

∇ϱµJ(ϱµ)≈E[∇aQ(st, a; ϱc)|a=π(st;ϱµ)∇ϱµπ(s
t; ϱµ)]. (23)

Here, J(ϱµ) = Es∼ϱc,a∼ϱµR(s, a) typically represents the
expected cumulative return. Meanwhile, the critic undergoes
iterative optimization aimed at reducing the loss function,
which is characterized as

L(ϱc) = E
[
(yt −Q(st, at; ϱc))

2
]
, (24)

where yt = Rt + γ̄Q(st+1, π(st+1; ϱ′µ); ϱ
′
c) denotes the

expected return. The stability of yt throughout the training is
ensured by incrementally adjusting the parameters of the target
networks with a minor coefficient, ζ ∈ [0, 1], thus updating as
ϱ′µ = ζϱµ + (1− ζ)ϱ′µ and ϱ′c = ζϱc + (1− ζ)ϱ′c.

Algorithm 1 Federated DDPG Algorithm for Each Agent
1: Input: Initialize the parameter settings for the proposed system

model, neural networks at t = 0
2: Input: The aggregation frequency ρ, exploration parameter ϵ,

learning rate Ω, number of episodes E
3: Initialize the actor-network, π(st; ϱµ) and the critic network

Q(st, at; ϱc) with the weights ϱµ and ϱc.
4: Create the target DNNs by setting ϱ′µ ← ϱµ and ϱ′c ← ϱc
5: Initialize a replay buffer
6: Initialization: get initial ϱµ from server
7: for ep = 1→ E do
8: Initialize a random process η for action exploration
9: Receive initial observation state s1

10: for t = 1→ T do
11: Obtain action at from the actor-network;
12: Add exploration noise to at as at = at + η
13: Calculate the instant reward rt

14: Observe the new state st+1

15: Store experiences in the buffer and sample random
mini-batches of experiences to train the DNNs

16: Set the expected return yt

17: Update the actor policy via (23) and critic via (24)
18: Update the target actor ϱ′µ and the target critic ϱ′c
19: end for
20: end for
21: update ϱep+1

µ = ϱepµ +Ω∇ϱµJ(ϱµ)
22: if ep mod ρ = 0 then
23: send ϱepµ to server for aggregation
24: get aggregated ϱepµ from server
25: end if

Unlike value-based approaches like Q-learning, policy gra-
dient techniques optimize the policy directly, bypassing the
need to calculate Q-values. This strategy avoids the overesti-
mation bias inherent in value-based methods. The update of
parameters favors actions leading to more rewarding outcomes.
During testing, the best policy is identified by choosing the
action that has the highest probability in a deterministic
manner. Thus, by incorporating the cost function into (19),
we obtain the cost associated with the F-DDPG algorithm as

min
ϱ
J(ϱµ) =

∑
j∈F

κjJj(ϱ
j
µ). (25)

Furthermore, within the context of the MA-DRL system
framework, each agent independently employs a F-DDPG
based algorithm, enabling personalized policy optimization
and adaptation. This specific methodology is described in
Algorithm 1.

D. Federated Multi-Agent Deep Q Network

Following the DDPG model, we also consider a value-based
reinforcement learning approach with F-DQN to estimate ex-
pected future rewards by leveraging the action-value function
Q(s, a). This function, Qπ(st, a), defines the expected sum of
discounted rewards for a given state-action pair:

Qπ(s
t, a) = Eπ


∞∑
j=1

γ̄t+jrt+j |st, a

 (26)

= Est+1,a{rt + γ̄Qπ(s
t+1, a)|st, at}. (27)

The agent aims to find the optimal action-value function,
Q∗(st, a), which represents the maximum expected return



9

Algorithm 2 Federated DQN Algorithm for Each Agent
1: Input: Initialize the parameter settings for the proposed system

model, neural networks at t = 0
2: Input: ρ, ϵ, Ω, E
3: Initialization: get initial ϱn from server
4: for ep = 1→ E do
5: Receive initial observation state s1

6: for t = 1→ T do
7: Select random r ∈ [0, 1]. Obtain action at using

at ≜

{
argmaxa Q(st, a; ϱn) if r > ϵ

pick uniformly action else

8: Take action at, go to state st+1 and get reward rt+1

9: Store the tuple B = {at, st, rt+1, st+1}
10: end for
11: update ϱep+1

n = ϱepn − Ω∇ϱnL(ϱn)
12: if ep mod ρ = 0 then
13: send ϱepn to server for aggregation
14: get aggregated ϱepn from server
15: end if
16: end for

from state st onward. Using a DNN, we approximate
Q(s, a; ϱn) to estimate optimal Q-values by minimizing the
loss function

L(ϱn) = (rt + γ̄max
a

Q(st+1, a; ϱn)−Q(st, a; ϱn))
2. (28)

During training, the agent stores experience tuples
(st−1, at−1, rt, st) in a dataset B, iteratively updating
Q(s, a; ϱn) by minimizing L(ϱn). To balance exploration
and exploitation, an adaptive ϵ-greedy strategy is employed,
allowing the agent to explore different actions early in training.
In the federated multi-agent setting, each agent optimizes
its local action-value function Q(s, a; ϱjn), contributing to a
shared federated objective

min
ϱn

L(ϱn) =
∑

j∈F
κjLj(ϱ

j
n), (29)

enabling coordinated learning among agents within the feder-
ated framework. The F-DQN process is outlined in Algorithm
2.

E. Complexity Analysis

For the computation at the tth iteration, we categorize the
dimensions of the action and state spaces with the notations
|at| and |st|, correspondingly. Algorithm 1 breaks down
the process into two primary segments: 1) Calculation of
rewards, which holds a computational complexity of O(|st|).
2) Selection of actions, where the actor and critic networks’
complexity is determined by the neuron count in each layer
and the total number of layers. For the actor network, let the
number of neurons in its mth layer be represented by Wm,
and the total layer count by La. Consequently, the complexity
for a single layer m is given by O(Wm−1Wm+WmWm+1),
leading to a total actor network computational complexity of
Cat = O(|st| · W 1 +

∑La−1
m=2 (Wm−1Wm + WmWm+1) +

WLa−1 · |at|). In the critic network, with V q as the neuron
count for layer q and Lc for the total layers, the complexity
for layer q is O(V q−1V q +V qV q+1), leading to a total critic

TABLE II: Simulation Parameters [50], [58]

Parameters Value
Carrier frequency 28 GHz (Ka-band)
Bandwidth 500 MHz
3 dB angle 0.4◦

Height of GEO satellite 35786 km
Maximum beam gain 52 dBi
User terminal antenna gain Fg 42.7 dBi
UPA inter element spacing λ/2
Rain fading parameters (µrain, σrain) = (−2.6, 1.63)
Boltzmann’s constant, κ 1.38× 10−23J/m
Noise temperature of system, Tsys 517K

network computational complexity of Cct = O(|st| · V 1 +∑Lc−1
q=2 (V q−1V q + V qV q+1) + V L

c−1). Thus, the overall
complexity for choosing actions is denoted by Ct = Cat +C

c
t .

The overarching computational complexity of the algorithm
across all iterations is therefore expressed as O(E · T · Ct).

Next, the computational complexity of the DQN-based
learning algorithm specified in Algorithm 2 is quantified as
O(E ·T (

∑Ld

m=0 F
m
d F

m+1
d )), where Ld represents the number

of hidden layers in the DNN, and Fd denotes the number of
neurons in each layer.

V. NUMERICAL SIMULATIONS AND DISCUSSION

A. Parameter Setup

In this segment, we delve into the performance analysis
of our proposed federated learning algorithms, leveraging
PyTorch for model development and employing the Adam
optimization technique for model training. The architectural
setup for both the proposed F-DDPG and the F-DQN across
MA systems is similar, employing two hidden layers each
with 256 neurons [59], [60]. Furthermore, the neural network
parameters are updated using the Adam optimizer and the
activation function used is ReLU. Moreover, we set the hyper-
parameters as γ̄ = 0.9, both critic and actor-network learning
rates are given as Ω = 0.001, memory buffer W = 10000,
size of minibatch = 32, episodes E = 5000, each episode
encompasses a horizon of T = 10 time slots, aggregate
frequency ρ = 100.

Moreover, Table II outlines the parameters used in the simu-
lation [61]. The satellite is configured with Nt = Nr = N̄ = 4
antennas for transmission and reception. It includes L = 4
SUs and Ts = 2 targets within the satellite zone, with these
targets positioned at angles ψ1 = −20◦ and ψ2 = 30◦. On the
terrestrial side, the BS features Mt = Mr = M = 4 transmit
and receive antennas, serving K = 4 CUs and integrating
N = 64 elements of a RIS. We consider Tb = 2 targets in
the terrestrial zone, located at angles ϑ1 = 0◦ and ϑ2 = 20◦.
For each CU channel, we model the transmission path using a
LoS approach [62], characterized by the channel representation
hk =

√
ξkMrar(ϑ̃k),∀k. This notation includes ξk to denote

the path loss and ϑ̃k for the angular direction of the user. A
standard path loss value of -103.6 dB is applied to model the
link between each CU and the BS. The directional angles for
the DL CUs, listed as {ϑ̃1, ϑ̃2} and {ϑ̃3, ϑ̃4} are configured
to {−40◦, 60◦} and {45◦,−65◦}, respectively. The simulation
does not incorporate any form of user grouping. Both the
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Fig. 2: Convergence behavior.

satellite and BS adhere to a maximum transmit power limit
of P satmax = 40 dBm. For the satellite channel model, the
noise power is normalized by κTsysBg which results in the
noise variance being set to σsatl

2
= σk

2 = 1,∀l,∀k [50].
For simplicity, we consider τ tar

ts = τ tar = 12 dB, ∀ts and
τ rad
tb

= τ rad = 12 dB, ∀tb. The numerical results presented are
the average outcomes from 100 distinct channel realizations.
Unless stated otherwise, the parameter settings adhere to the
aforementioned specifications.

B. Benchmark Schemes

For comparative analysis, we incorporate the following
benchmark schemes.

1) Centralized scheme: In the centralized DRL framework,
each iteration requires agents to share data with a central
server for immediate control actions, facilitating the de-
velopment of a unified model. This setup is implemented
for DDPG, denoted as C-DDPG in the simulation [63].

2) Communication - only scheme: This benchmark omits
the sensing SINR requirements within a RIS-enhanced
STIN, labeled as “w/o sensing” in the simulation. This
strategy assists in determining the effects of incorporating
sensing capabilities on communication performance [64].

3) Random RIS scheme: In this scheme, while the satellite
and BS utilize our proposed beamforming approach, the
RIS adopts a random passive beamforming approach [28],
[65]–[68].

4) No-RIS scheme: This scheme examines the performance
of our ISAC-STIN setup without RIS intervention in the
terrestrial domain, marked as “w/o RIS” in the figures.
underscores the significance of integrating RIS into our
network design [65]–[68].

Fig. 2 illustrates the minimum transmit power at the BS
for the F-DDPG algorithm implemented in a federated setting
across multiple MA systems with ρ = 200. The training
process spanned 2000 episodes, with each episode consisting
of a sequence of T = 10 time slots. For comparison, the F-
DQN, traditional DDPG, and DQN algorithms are also con-
sidered in the same setting. Additionally, an exhaustive search
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Fig. 3: Convergence behavior of F-DDPG and C-DDPG at different
aggregate frequencies.

benchmark is included to evaluate the proposed algorithm’s
performance against a method that guarantees optimal solu-
tions but with significantly higher computational complexity
and slower convergence. F-DDPG demonstrates smoother and
more consistent convergence compared to F-DQN, attributed
to their different exploration strategies. This phenomenon is
likely due to the distinct exploration mechanisms employed
by the two algorithms. On one hand, DQN relies on the ϵ-
greedy method, introducing more randomness until conver-
gence is attained. On the other hand, DDPG leverages a
policy gradient framework that prioritizes updates along state-
action paths associated with superior average rewards, which
seems to benefit more directly from the aggregation process.
Compared to the exhaustive search, F-DDPG achieves near-
optimal solutions with considerably faster convergence and
lower complexity, demonstrating its practical applicability for
real-time systems. While exhaustive search ultimately reaches
the optimal solution, its computational overhead underscores
the advantages of DRL-based approaches in complex and
dynamic settings.

Fig. 3 illustrates the minimum transmit power required at
the BS when using the DDPG algorithm in both federated and
benchmark centralized settings across MA systems. The figure
compares the performance of the system over different aggre-
gate intervals for F-DDPG along with C-DDPG. The depicted
curves show the impact of server-agent aggregation intervals,
specifically at ρ = 100 and ρ = 200. Specifically, it dictates
the frequency of model update exchanges between the server
and agents, affecting the convergence rate and effectiveness
of the federated learning algorithms. With shorter aggregation
intervals, the system tends to require more power due to more
frequent updates. In C-DDPG, updates occur every iteration,
requiring frequent model exchanges that indirectly increase BS
transmit power to support continuous synchronization. While
this dependency is not explicitly modeled in the objective
function, it results from C-DDPG’s frequent update structure.
In contrast, F-DDPG employs predetermined aggregation in-
tervals, reducing synchronization events and thereby lowering
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BS power requirements for more power-efficient performance.
Additionally, the less frequent updates in F-DDPG facilitate
a smoother and more consistent convergence path, reducing
potential oscillations caused by continuous updates. As a
result, F-DDPG exhibits steadier performance and lower power
consumption than C-DDPG across all tested frequencies.

Fig. 4 demonstrates the impact of P satmax on the minimum
transmit power requirements at the BS. As P satmax increases,
system performance improves but simultaneously elevates
interference in the terrestrial zone, necessitating higher power
outputs at the BS to mitigate this interference. Additionally,
this figure also examined the impact of different SINR thresh-
olds at the CUs on the corresponding power demands at the
BS. Our findings in Fig. 4 show that as the SINR requirement
τ bsk for CUs becomes more demanding, the BS is forced to
allocate even more power to meet these higher quality thresh-
olds. This dynamic underscores a complex trade-off unique
to STIN systems, where managing the interplay between
satellite and terrestrial power is essential to optimizing overall
performance. Further, the proposed F-DDPG demonstrates
superior performance compared to F-DQN, traditional DDPG,
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Fig. 6: Impact of N at different τ tar and aggregate frequencies.

and DQN methods. This analysis underscores the intricate
balance required between efficient power management at the
BS and optimal resource allocation within the system.

Fig. 5 examines the influence of the target SINR threshold in
the terrestrial zone on the minimum transmit power require-
ments at the BS. As the τ rad threshold rises, necessitating
better sensing performance, the system must allocate increased
power for enhanced sensing capabilities. For a clearer compar-
ison, a reference scenario focusing solely on communication
excluding target sensing SINR requirements ( “w/o sensing”)
is also analyzed. The “w/o sensing” scenario consumes less
power for communication than systems with sensing targets,
as validated in Fig. 5. Additionally, the analysis also explores
the role of RIS in the network. Increasing the RIS elements
increases the number of phase shifters, which boosts channel
gain diversity for users and decreases the transmission power
necessary to achieve the desired quality of service. Addition-
ally, we compare these effects against the random RIS phase
shift allocations. The results show that optimized RIS config-
urations significantly lower BS power requirements compared
to random setups, as demonstrated through the proposed F-
DDPG and benchmark DDPG methods. Consequently, the
optimal RIS configuration with N = 60 elements and the
initial parameter settings achieves a 5.8% reduction in transmit
power requirements at the BS compared to the random RIS
scenario.

Fig. 6 illustrates the impact of increasing the number of
elements in an RIS on the minimum transmit power at the
BS, indicating that a higher number of reflecting elements
leads to improved system performance even with a reduced
transmit power at the BS due to the additional spatial DoF.
This improvement is especially notable when compared to
scenarios without an RIS, labeled as “w/o RIS”. The figure
also examines different target SINR thresholds τ tar in the
satellite zone. As the τ tar increases, the transmit power at
the satellite also increases to meet the more stringent sensing
requirements of higher thresholds within the ISAC system.
This, in turn, leads to increased interference in the terrestrial
zone, necessitating more power at the BS to compensate.
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Moreover, the data indicates that the minimum transmit power
required for τ tar = 12 dB with 90 elements is comparable to
that for τ tar = 14 dB with 120 elements. This comparison
indicates that increasing the number of RIS elements can
significantly enhance sensing performance while maintaining
the same level of transmit power. Additionally, the results
validate that the optimal RIS configuration with N = 60
elements and the initial parameter settings achieve a 34.2%
reduction in transmit power requirements at the BS compared
to the scenario without RIS in the system.

Fig. 7 illustrates the impact of number of transmit antennas
at the BS and the minimum required transmit power. As
anticipated, increasing the number of antennas at the BS leads
to a reduction in the transmit power needed for information
transfer. This decrease is due to the additional DoFs provided
by more antennas, which enhances the efficiency of spatial
multiplexing and subsequently lowers power consumption at
the BS. Additionally, the impact of integrating an RIS into
the system is also investigated. The comparison between
systems with and without RIS reveals that RIS contributes
additional DoFs, thereby further reducing the transmit power
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requirements and enhancing system efficiency compared to the
no RIS setup.

Fig. 8 delineates the relationship between the increasing
number of users and the minimum transmit power at the
BS. The analysis reveals a direct correlation: as the number
of users increases, there is a corresponding increase in BS
transmit power required to sustain optimal communication
system performance. This figure further details the influence
of increasing target SINR thresholds in both satellite and
terrestrial zones. Notably, as the τ rad and τ tar thresholds
increase, there is a corresponding increase in the transmit
power at the BS. This adjustment is necessary to meet the
enhanced sensing demands imposed by these increased SINR
thresholds within the ISAC system, ensuring that the system
can adequately support both its communication and sensing
functionalities under more stringent conditions.

The impact of channel state information (CSI) uncertainty
on the performance of the STIN is analyzed in Fig. 9, focusing
on the relationship between transmit power at the BS and
CSI estimation error variance (σ2

e ). The results demonstrate
that as CSI estimation errors increase, system performance de-
grades significantly for both F-DDPG and F-DQN algorithms.
However, the benefits of deploying additional RIS elements
remain evident even under CSI uncertainty [69]. For instance,
scenarios with N = 90 RIS elements consistently outperform
those with N = 60, owing to greater channel diversity
and improved system robustness. This analysis underscore
the importance of considering CSI uncertainty in the STIN
and validates the effectiveness of the proposed approach in
addressing practical challenges like robustness.

Next, we detail the achieved beampattern gain for target
functionality realized through Algorithm 1. By employing the
optimized receive beamformer u∗

tb
, which is normalized to

ensure
∥∥u∗

tb

∥∥ = 1, along with the optimized transmit signal
xbs∗, we define the beampattern directed towards the target as

p(ϑtb) = |u∗
tb
ar(ϑtb)a

H
t (ϑtb)x

bs∗|. (30)

Further, we illustrate the beampattern gains achieved for
specific target locations in Fig. 10. We consider a case with
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Tb = 2 targets positioned at angles 0◦ and 20◦. Keeping
other parameter settings constant, we address the challenge of
maximizing the power at BS subject to radar SINR constraints
for Tb targets in the terrestrial zone using Algorithm 1.
The target beampattern gains showcased in Fig. 10 is the
result of employing the optimized receive beamformer u∗

tb
,

as outlined in (30). Similarly, the beampattern gain for targets
in the satellite zone, positioned at angles of -20◦ and 30◦ is
illustrated in Fig. 11. The illustrations confirm that the main
lobes are directed toward the intended targets, underscoring
the capability of the proposed beamforming design to detect
multiple targets effectively.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a cutting-edge analytical
framework to minimize transmit power at the BS in STINs
through the use of RIS within the ISAC framework. By
leveraging federated learning, our method dynamically adapted
to network changes, ensuring compliance with beamforming
designs, multiple target SINR thresholds, and RIS phase-shift
requirements via an effective feedback loop. The proposed F-
DDPG algorithm across MA systems outperformed existing

models, including F-DQN, centralized DDPG, and conven-
tional DDPG and DQN methods. Simulation results have
demonstrated that integrating RIS significantly lowers base
station power requirements against both random and without
RIS configurations. In particular, the optimal RIS configuration
with 60 elements achieved a 6.3% reduction in BS transmit
power compared to the random RIS scenario and a 34.2%
reduction compared to the no-RIS setup. Furthermore, the
simulations results validated that increasing the number of
RIS elements markedly improves sensing capabilities while
maintaining the same level of transmit power.

REFERENCES

[1] A. Yazar, S. Dogan-Tusha, and H. Arslan, “6G vision: An ultra-flexible
perspective,” ITU J. Future Evolving Technol., vol. 1, no. 1, pp. 121–140,
2020.

[2] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and
J. Yuan, “Enabling joint communication and radar sensing in mobile
networks—a survey,” IEEE Commun. Surv. & Tut., vol. 24, no. 1, pp.
306–345, Firstquart. 2022.

[3] L. Yin, Z. Liu, M. R. Bhavani Shankar, M. Alaee-Kerahroodi, and
B. Clerckx, “Integrated sensing and communications enabled low earth
orbit satellite systems,” IEEE Netw., pp. 1–1, 2024.

[4] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO
satellite communications: Architectures and key technologies,” IEEE
Wireless Commun., vol. 26, no. 2, pp. 55–61, Apr. 2019.

[5] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical compar-
ison of three low earth orbit satellite constellation systems to provide
global broadband,” Acta Astronautica, vol. 159, pp. 123–135, 2019.

[6] J. P. Choi and C. Joo, “Challenges for efficient and seamless space-
terrestrial heterogeneous networks,” IEEE Commun. Mag., vol. 53, no. 5,
pp. 156–162, May 2015.

[7] “(Release 15) study on new radio (NR) to support non-terrestrial
networks,” 3GPP Sophia Antipolis, France, Rep. TR38.811 V15.3.0.
Release 15, Jul. 2020.

[8] J. Peisa, P. Persson, S. Parkvall, E. Dahlman, A. Grovlen, C. Hoymann,
and D. Gerstenberger, “5G evolution: 3GPP releases 16 & 17 overview,”
Ericsson Technology Review, vol. 2020, pp. 2–13, 03 2020.

[9] B. Aazhang et.al, Key drivers and research challenges for 6G ubiquitous
wireless intelligence (white paper), 09 2019.

[10] L. Kuang, C. Jiang, Y. Qian, and J. Lu, Terrestrial-Satellite Communica-
tion Networks: Transceivers Design and Resource Allocation. Springer,
2017.

[11] K. An et al., “Outage performance of cognitive hybrid satel-
lite–terrestrial networks with interference constraint,” IEEE Trans. Veh.
Technol., vol. 65, no. 11, pp. 9397–9404, Nov. 2016.

[12] X. Zhu, C. Jiang, L. Kuang, N. Ge, and J. Lu, “Non-orthogonal multiple
access based integrated terrestrial-satellite networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 10, pp. 2253–2267, Oct. 2017.

[13] L. Kuang, X. Chen, C. Jiang, H. Zhang, and S. Wu, “Radio resource
management in future terrestrial-satellite communication networks,”
IEEE Wireless Commun., vol. 24, no. 5, pp. 81–87, Oct. 2017.

[14] B. Li, Z. Fei, X. Xu, and Z. Chu, “Resource allocations for secure
cognitive satellite-terrestrial networks,” IEEE Wireless Commun. Lett.,
vol. 7, no. 1, pp. 78–81, Feb. 2018.

[15] F. Guidolin et al., “A cooperative scheduling algorithm for the coexis-
tence of fixed satellite services and 5g cellular network,” in Proc. IEEE
Int. Conf. Commun., Jun. 2015, pp. 1322–1327.

[16] X. Zhu, C. Jiang, L. Kuang, N. Ge, and J. Lu, “Energy efficient resource
allocation in cloud based integrated terrestrial-satellite networks,” in
Proc. IEEE Int. Conf. Commun., May 2018, pp. 1–6.

[17] M. Lin et.al, “Joint beamforming and power control for device-to-device
communications underlaying cellular networks,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 138–150, Jan. 2016.

[18] M. Lin, L. Yang, W.-P. Zhu, and M. Li, “An open-loop adaptive space-
time transmit scheme for correlated fading channels,” IEEE J. Sel. Topics
Signal Process., vol. 2, no. 2, pp. 147–158, Apr. 2008.

[19] M. A. Vazquez et.al, “Hybrid analog-digital transmit beamforming for
spectrum sharing satellite-terrestrial systems,” in Proc. IEEE 17th Int.
Workshop Signal Process. Adv. Wireless Commun., Jul. 2016, pp. 1–5.

[20] B. Li et al., “Robust chance-constrained secure transmission for cogni-
tive satellite–terrestrial networks,” IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 4208–4219, May. 2018.



14

[21] K. An, M. Lin, J. Ouyang, and W.-P. Zhu, “Secure transmission in
cognitive satellite terrestrial networks,” IEEE J. Sel. Areas Commun.,
vol. 34, no. 11, pp. 3025–3037, Nov. 2016.

[22] M. Lin, Z. Lin, W.-P. Zhu, and J.-B. Wang, “Joint beamforming for
secure communication in cognitive satellite terrestrial networks,” IEEE
J. Sel. Areas Commun., vol. 36, no. 5, pp. 1017–1029, May 2018.

[23] F. Liu et al., “Joint radar and communication design: Applications, state-
of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6,
pp. 3834–3862, Jun. 2020.

[24] S. Biswas et.al, “Design and analysis of FD MIMO cellular systems in
coexistence with MIMO radar,” IEEE Trans. Wireless Commun., vol. 19,
no. 7, pp. 4727–4743, Jul. 2020.

[25] A. Kaushik, C. Masouros, and F. Liu, “Hardware efficient joint radar-
communications with hybrid precoding and RF chain optimization,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2021, pp. 1–6.

[26] F. Liu et.al, “Toward dual-functional radar-communication systems:
Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16,
pp. 4264–4279, Aug. 2018.

[27] K. Singh, S. Biswas, T. Ratnarajah, and F. A. Khan, “Transceiver design
and power allocation for full-duplex MIMO communication systems
with spectrum sharing radar,” IEEE Trans. Cogn. Commun. Netw., vol. 4,
no. 3, pp. 556–566, Sep. 2018.

[28] S. Pala, O. Taghizadeh, M. Katwe, K. Singh, C.-P. Li, and A. Schmeink,
“Secure RIS-assisted hybrid beamforming design with low-resolution
phase shifters,” IEEE Trans. Wireless Commun., pp. 1–1, 2024.

[29] T. Tian, T. Zhang, L. Kong, and Y. Deng, “Transmit/receive beamform-
ing for MIMO-OFDM based dual-function radar and communication,”
IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4693–4708, May 2021.

[30] L. You, X. Qiang, C. G. Tsinos, F. Liu, W. Wang, X. Gao, and B. Ot-
tersten, “Beam squint-aware integrated sensing and communications
for hybrid massive MIMO LEO satellite systems,” IEEE J. Sel. Areas
Communications, vol. 40, no. 10, pp. 2994–3009, 2022.

[31] B. Zhao, M. Wang, Z. Xing, G. Ren, and J. Su, “Integrated sensing and
communication aided dynamic resource allocation for random access in
satellite terrestrial relay networks,” IEEE Commun. Lett., vol. 27, no. 2,
pp. 661–665, Feb. 2023.

[32] C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo,
A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang, “An overview of signal
processing techniques for RIS/IRS-aided wireless systems,” IEEE J. Sel.
Topics Sig. Process., vol. 16, no. 5, pp. 883–917, Aug. 2022.

[33] A. Fascista et.al, “RIS-aided joint localization and synchronization with
a single-antenna receiver: Beamforming design and low-complexity
estimation,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp.
1141–1156, 2022.

[34] S. P. Chepuri, N. Shlezinger, F. Liu, G. C. Alexandropoulos, S. Buzzi,
and Y. C. Eldar, “Integrated sensing and communications with reconfig-
urable intelligent surfaces,” arXiv preprint arXiv:2211.01003, 2022.

[35] R. P. Sankar, S. P. Chepuri, and Y. C. Eldar, “Beamforming in integrated
sensing and communication systems with reconfigurable intelligent
surfaces,” IEEE Trans. Wireless Commun., 2023.

[36] R. Liu, M. Li, and A. L. Swindlehurst, “Joint beamforming and reflection
design for RIS-assisted ISAC systems,” in Proc. 30th Eur. Signal
Process. Conf. (EUSIPCO). IEEE, 2022, pp. 997–1001.

[37] M. Hua, Q. Wu, C. He, S. Ma, and W. Chen, “Joint active and passive
beamforming design for IRS-aided radar-communication,” IEEE Trans.
Wireless Commun., vol. 22, no. 4, pp. 2278–2294, 2022.

[38] M. Wu et al., “Optimization design in RIS-assisted integrated satellite-
UAV-served 6G IoT: A deep reinforcement learning approach,” IEEE
Internet Things Mag., vol. 7, no. 1, pp. 12–18, Jan. 2024.

[39] Z. Lin et.al, “Refracting RIS-aided hybrid satellite-terrestrial relay
networks: Joint beamforming design and optimization,” IEEE Trans.
Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3717–3724, Aug. 2022.

[40] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS
versus passive RIS: Which is superior with the same power budget?”
IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.

[41] Z. Yu et al., “Active RIS-aided ISAC systems: Beamforming design
and performance analysis,” IEEE Trans. Commun., vol. 72, no. 3, pp.
1578–1595, Mar. 2024.

[42] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multi-
group precoding and user scheduling for frame-based satellite communi-
cations,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 4695–4707,
Sep. 2015.

[43] P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,”
IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.

[44] J. Pritzker, J. Ward, and Y. C. Eldar, “Transmit precoding for dual-
function radar-communication systems,” in 2021 55th Asilomar Confer-
ence on Signals, Systems, and Computers, 2021, pp. 1065–1070.

[45] L. Chen, Z. Wang, Y. Du, Y. Chen, and F. R. Yu, “Generalized
transceiver beamforming for DFRC with MIMO radar and MU-MIMO
communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1795–
1808, Jun. 2022.

[46] C. G. Tsinos, A. Arora, S. Chatzinotas, and B. Ottersten, “Joint
transmit waveform and receive filter design for dual-function radar-
communication systems,” IEEE J. Sel. Topics Signal Process., vol. 15,
no. 6, pp. 1378–1392, Nov. 2021.

[47] C.-Y. Chen and P. P. Vaidyanathan, “MIMO radar waveform optimization
with prior information of the extended target and clutter,” IEEE Trans.
Signal Process., vol. 57, no. 9, pp. 3533–3544, Sep. 2009.

[48] L. Wu, P. Babu, and D. P. Palomar, “Transmit waveform/receive filter
design for MIMO radar with multiple waveform constraints,” IEEE
Trans. Signal Process., vol. 66, no. 6, pp. 1526–1540, Mar. 2018.

[49] G. Cui, H. Li, and M. Rangaswamy, “MIMO radar waveform design
with constant modulus and similarity constraints,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 343–353, Jan. 2014.

[50] L. Yin and B. Clerckx, “Rate-splitting multiple access for satellite-
terrestrial integrated networks: Benefits of coordination and coopera-
tion,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 317–332, Jan.
2023.

[51] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[52] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[53] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[54] W. Xu, J. An, C. Huang, L. Gan, and C. Yuen, “Deep reinforcement
learning based on location-aware imitation environment for RIS-aided
mmwave MIMO systems,” IEEE Wireless Commun. Lett., vol. 11, no. 7,
pp. 1493–1497, Jul. 2022.

[55] Z. Peng, Z. Zhang, L. Kong, C. Pan, L. Li, and J. Wang, “Deep
reinforcement learning for RIS-aided multiuser full-duplex secure com-
munications with hardware impairments,” IEEE Internet Things J.,
vol. 9, no. 21, pp. 21 121–21 135, Nov. 2022.

[56] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface
assisted multiuser miso systems exploiting deep reinforcement learning,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, Aug. 2020.

[57] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning-based intelligent reflecting surface for secure
wireless communications,” IEEE Trans. Wireless Commun., vol. 20,
no. 1, pp. 375–388, Jan. 2021.

[58] Z. Liu, L. Yin, W. Shin, and B. Clerckx, “Max-min fair energy-efficient
beam design for quantized isac leo satellite systems: A rate-splitting
approach,” arXiv preprint arXiv:2402.09253, 2024.

[59] R. Zhang, K. Xiong, Y. Lu, P. Fan, D. W. K. Ng, and K. B. Letaief,
“Energy efficiency maximization in RIS-assisted SWIPT networks with
RSMA: A PPO-based approach,” IEEE J. Sel. Areas in Commun.,
vol. 41, no. 5, pp. 1413–1430, May 2023.

[60] S. Pala et al., “Robust design of RIS-aided full-duplex RSMA system for
V2X communication: A DRL approach,” in Proc. IEEE Glob. Commun.
Conf., Dec. 2023, pp. 2420–2425.

[61] Z. Lin, M. Lin, J.-B. Wang, T. de Cola, and J. Wang, “Joint beamforming
and power allocation for satellite-terrestrial integrated networks with
non-orthogonal multiple access,” IEEE J. Sel. Topics Signal Process.,
vol. 13, no. 3, pp. 657–670, Jun. 2019.

[62] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[63] F. D. Calabrese et al., “Learning radio resource management in
RANs: Framework, opportunities, and challenges,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 138–145, 2018.

[64] D. Nguyen, L.-N. Tran, P. Pirinen, and M. Latva-aho, “On the spectral
efficiency of full-duplex small cell wireless systems,” IEEE Trans.
Wireless Commun., vol. 13, no. 9, pp. 4896–4910, Sep. 2014.

[65] S. Pala, K. Singh, M. Katwe, and C.-P. Li, “Joint optimization of
URLLC parameters and beamforming design for multi-RIS-aided MU-
MISO URLLC system,” IEEE Wireless Commun. Lett., vol. 12, no. 1,
pp. 148–152, Jan. 2023.

[66] L. Chai, L. Bai, T. Bai, J. Shi, and A. Nallanathan, “Secure RIS-aided
MISO-NOMA system design in the presence of active eavesdropping,”
IEEE Internet Things J., vol. 10, no. 22, pp. 19 479–19 494, Nov. 2023.

[67] P. Saikia, S. Pala, K. Singh, S. K. Singh, and W.-J. Huang, “Proximal
policy optimization for RIS-assisted full duplex 6G-V2X communica-
tions,” IEEE Trans. Intell. Veh., pp. 1–16, 2023.



15

[68] S. Pala, M. Katwe, K. Singh, B. Clerckx, and C.-P. Li, “Spectral-
efficient RIS-aided RSMA URLLC: Toward mobile broadband reliable
low latency communication (mBRLLC) system,” IEEE Trans. Wireless
Commun., vol. 23, no. 4, pp. 3507–3524, Apr. 2024.

[69] G. Zhou et al., “A framework of robust transmission design for IRS-
aided MISO communications with imperfect cascaded channels,” IEEE
Trans. Signal Process., vol. 68, pp. 5092–5106, 2020.

Sonia Pala (Member, IEEE) received her B.Tech
degree in Electronics and Communication Engi-
neering from NIT, Andhra Pradesh, India in 2019
and M.Tech degree in Communication System En-
gineering from VNIT Nagpur, India in 2021. She
is currently a Ph.D. Scholar at the Institute of
Communications Engineering, National Sun Yat-
sen University (NSYSU), Taiwan. Her current re-
search interests include resource allocation, ultra-
reliable low-latency communication, reconfigurable
intelligent surfaces-assisted communications, V2X

communications, rate splitting multiple access, machine learning for wireless
communications, and full-duplex wireless systems.

Keshav Singh (Member, IEEE) received the Ph.D.
degree in Communication Engineering from Na-
tional Central University, Taiwan, in 2015. He is
currently with the Institute of Communications Engi-
neering, National Sun Yat-sen University (NSYSU),
Taiwan, as an Associate Professor. He is also an Ad-
junct Professor at the Memorial University, Canada.
Prior to this, he held the position of Research
Associate from 2016 to 2019 at the Institute of
Digital Communications, University of Edinburgh,
U.K. From 2019 to 2020, he was associated with the

University College Dublin, Ireland as a Research Fellow. He leads research in
the areas of green communications, resource allocation, transceiver design for
full-duplex radio, ultra-reliable low-latency communication, non-orthogonal
multiple access, machine learning for wireless communications, integrated
sensing and communications, non-terrestrial networks, and large intelligent
surface-assisted communications.

Dr. Singh chaired workshops on conferences like IEEE GLOBECOM 2023
and IEEE WCNC 2024. He also serves as leading guest editor for IEEE
Transactions on Green Communications and Networking Special Issue on
Design of Green Near-Field Wireless Communication Networks and IEEE
Internet of Things Journal Special Issue on Positioning and Sensing for Near-
Filed (NF)-driven Internet-of-Everything.

Chih-Peng Li (Fellow, IEEE) received the B.S. de-
gree in Physics from National Tsing Hua University,
Hsin Chu, Taiwan, in 1989, and the Ph.D. degree in
Electrical Engineering from Cornell University, NY,
USA, in 1997.

Dr. Li was a Member of Technical Staff with
Lucent Technologies. Since 2002, he has been with
National Sun Yat-sen University (NSYSU), Kaohsi-
ung, Taiwan, where he is currently a Distinguished
Professor. Dr. Li has served various positions with
NSYSU, including the Chairperson of Electrical

Engineering Department, the VP of General Affairs, the Dean of Engineering
College, and the VP of Academic Affairs. He has also once served as the
Director General of the Engineering and Technologies Department, National
Science and Technology Council, Taiwan. He is currently the president of
NSYSU. His research interests include wireless communications, baseband
signal processing, and data networks.

Dr. Li is currently the Chapter Chair of IEEE Broadcasting Technology
Society Tainan Section. Dr. Li has also served as the Chapter Chair of IEEE
Communication Society Tainan Section, the President of Taiwan Institute
of Electrical and Electronics Engineering, the Editor of IEEE Transactions
on Wireless Communications, the Associate Editor of IEEE Transactions on
Broadcasting, and the Member of Board of Governors with IEEE Tainan
Section. Dr. Li has received various awards, including the Outstanding
Research Award of Ministry of Science and Technology and Outstanding
Engineering Professor Award of Chinese Institute of Engineer. Dr. Li is a
Fellow of the IEEE.

Octavia A. Dobre (Fellow, IEEE) is a Professor
and Tier-1 Canada Research Chair with Memorial
University, Canada. She was a Visiting Professor
with Massachusetts Institute of Technology, USA
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