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Abstract—Semantic communications (SEMCOM) is a novel
communication model that exploits neural networks or deep
learning techniques to convey the semantics of the data and
contextual reasoning, instead of transmitting full raw bits as in
the conventional transmission models. SEMCOM is anticipated
to significantly increase the effectiveness of cognitive communica-
tions beyond the Shannon theory limit, especially in multimedia
services. The transmission efficiency will largely rely on the
semantic encoding and decoding process with knowledge storage
references at the receiver and the transmitter. However, these
processes are highly susceptible to adversarial attacks, given the
nature of shared background knowledge without encryption and
the vulnerabilities of neural network models. This paper presents
two novel targeted and non-targeted adversarial attacks against
SEMCOM, e.g., channel inversion attack and naive attack. The
attacks are designed to cause maximum disruption to the signals
during decoding, aiming to alter the semantic interpretation
of recognition models at the receiver. The experimental results
indicate that attacks can significantly degrade the perceptual
evaluation of speech quality and increase data errors, with
semantic decoding performance suffering reductions of up to
2.9 times and 2.3 times, respectively. This degradation can
cause misrepresentation of semantic contents. Besides, targeted
attacks have a greater impact on speech semantic quality in
complex communication circumstances compared to non-targeted
attacks. We also suggest two potential defense methods against
these physical layer attacks. Accordingly, enhancing adversarial
training and removing residual values in the loss function are
straightforward solutions to improve the resilience of SEMCOM-
based systems.

Index Terms—Wireless channel, Adversarial attack, Semantic
communications, AI-based speech control.

I. INTRODUCTION

Semantic communications is one of the emerging technolo-

gies for addressing extremely high bandwidth demands from

ultra high-definition (UHD) or 4K/8K resolution video ser-

vices and holographic content providers in the sixth-generation

(6G) networks [1]–[4]. To increase the data rate, the research

community is leaning on three options: (1) exploring higher
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Fig. 1. Illustration of an adversarial attack by creating perturbations on
semantic communication systems to affect the semantic quality. After being
targeted, voice recognition/classification systems in AI-related applications
will be misrecognized/misclassified semantically.

wireless frequencies, such as Terahertz; (2) developing ad-

vanced modulation/physical coding techniques to compress

data and use existing communication channels; (3) exploring

artificial intelligence (AI)’s power to enable new cognitive

communications where context ‘updates’ or new knowledge

on the situation are transmitted only. In the first and second

transmission models, the data bits are sent across wired or

wireless channels for transfer to the recipients. The maximum

rate of a wireless channel is frequently influenced by physical

channel parameters such as channel bandwidth, carrier fre-

quency, and fading/noise. The rate is bounded by the Shannon

limit [3], i.e., there is a restriction on the quantity of data sent

by a signal with a certain amount of power.

The third transmission model represents a novel approach

that exploits context extraction through natural language pro-

cessing techniques and generative AI models to convey the

meaning of messages from the transmitter to the receiver. For

example, instead of transmitting bit sequences representing a

full UHD video and voice of “the kid in the kitchen”, semantic

communications only extracts the personalized text “the kid

in the kitchen” and transmit this necessary information to the

receiver. The full video can be reconstructed by generative

AI models (e.g., OpenAI Sora [5], CV-VAE [6]) based on

the sharing of stored knowledge between the transmitter and

the reviewer. The irrelevant information, such as the home

background (which is already known by the transmitter and

the receiver through the knowledge database), will be skipped

to decrease the amount of transferred data while maintaining

performance. Therefore, semantic communications will con-

siderably decrease the amount of raw data to pour into network

channels, e.g., speech transmission [3], [4], image transmission

[7], [8], and video transmission [4].

However, the major challenges of semantic communica-



tions are the nature of shared background knowledge without

encryption (AI can understand) and the vulnerabilities of

neural network-based semantic encoding models to adversarial

attacks [9]. Fig. 1 illustrates an example of adversarial attacks

on semantic communication systems to degrade the semantic

quality. As illustrated in Fig. 1, the ultimate goal of the

communication process is to transmit semantics from the

transmitter to the receiver through multiple path channels.

The attackers aim to deploy adversarial attack methods to

intercept information or cause misrecognition/misclassification

from semantic decoding by exploring the vulnerabilities in

the SEMCOM encoding process. For semantics, the encod-

ing/decoding process is vulnerable to adversarial attacks in

several ways, e.g., knowledge store poisoning and channel-

aware adversarial attacks [10], [11]. Adversaries can alter the

input data or insert hidden triggers under the type of bits with

text, signals with speech, and symbols of orthogonal frequency

division multiplexing (OFDM) to the deep neural networks

(DNNs)-based semantic communications. These outputs will

be reconstructed at the receiver, which includes both original

input and perturbation. Once the adversarial bits, signals, and

symbols of OFDM are reconstructed with clean input, the

final result is changed to misinterpret the semantic content.

Accordingly, voice recognition systems misclassify human

commands as a result of manipulated and unrecognizable

perturbations in input data. Many existing studies in semantic

communications rely on DNNs and advanced generative AI

models, such as GPT’s and LLM’s models [12], to extract

semantic features and transmit them to the receiver. However,

DNNs have been a well-known target for many studies on

adversarial attacks [13]. Semantic communications are also

in the early stages of development. Adversarial attacks in

semantic communications have not yet been well-explored.

This study presents novel physical-layer adversarial attacks

against semantic communications through wireless channels.

The proposed method selectively transmits semantic features

that are important for the intended transmission tasks and

penetrates the efficiency of several perturbation patterns in

various transmission contexts, e.g., line-of-sight (LoS) and

non-line-of-sight (NLoS). The perturbation patterns can cause

misinterpretation of semantic-based automated speech recog-

nition (ASR) in smart home applications or smart speakers.

The main contributions are presented briefly as follows.

1) The work is the first attempt to design the real end-to-

end semantic interpretation and extraction of a semantic

communication-based speech service in the wireless

channel. The system’s vulnerabilities in the semantic

interpretation process are also analyzed for designing

adversarial attacks. Implementation of the attacks and a

sample defense can provide a valuable starting point for

future studies.

2) This is the first attempt to propose two efficient ad-

versarial attacks, the targeted and non-targeted attack,

that aimed at degrading the quality of semantic com-

munications in the semantic interpretation process. The

semantic quality in decoding is significantly reduced up

to 2.9 times. Specifically, the signal-to-distortion scores

of the targeted attack on the AWGN, Rayleigh, and

Rician channels were reduced to 1.35, 2.68, and 3.02
times, respectively, compared to non-targeted attacks.

3) This study also provides a comprehensive evaluation

regarding the semantic interpretation that changes the

semantic quality before and after the attack on the

proposed system. Based on this analysis, we briefly

describe the defense mechanisms against adversarial

speech attacks. Generally, the study aims to evaluate and

safeguard the integrity and meaningfulness of communi-

cation despite potential attempts to disrupt or manipulate

the transmitted information.

The remainder of the study is organized as follows. Sec-

tion II discusses the related works. Section III describes the

proposed SEMCOM system model. Section IV presents the

proposed physical-layer adversarial attack process. Sections V

and VI present semantic-targeted and non-targeted adversar-

ial attacks on wireless channels, respectively. Section VII

evaluates the attack performance for the proposed system.

Section VIII concludes the paper.

II. RELATED WORKS

This section introduces related works on state-of-the-art

SEMCOM techniques and preliminary studies of adversarial

attacks in SEMCOM. The channel factors influencing adver-

sarial perturbations are also discussed. Table I summarizes sev-

eral typical studies on semantic communications, key features,

major contributions, influence factors, as well as semantic

quality evaluation compared to this study’s research position.

A. End-to-End semantic communication systems and prelimi-

nary studies of adversarial attacks

There are several studies on semantic communications and

their security vulnerabilities in the literature. For example,

the study in [14] presented the semantic error minimization

process by merging semantic inference and the physical layer

on both the transmitter and receiver. The authors of [15], [16]

developed a framework employing an edge server to categorize

pictures and decrease the required transmission bandwidth.

The authors referred to these properties as semantics after

the system has extracted data from the input data. However,

the attacks on the systems to alter their semantics in wireless

channels have yet to be realized. A study in [17] proposed a

semantic attack on the physical layer. The authors focuses on

evaluating the semantic error rate in picture data poisoning and

provide little information on the contexts of wireless channel

sensitivity for semantic quality.

The study in [24] experimented with a speech semantic

system for indoor THz-wireless communications. However,

the authors did not address adversarial attacks or the influence

factors of wireless channel sensitivity on semantic quality.

Other studies in [3] and [14] examined the efficiency of

semantic communication systems for text and speech data.

However, the effect of adversarial attacks on each wireless

channel that impacts semantic quality has yet to be examined.

The authors have solely looked at the semantic error rate.

In the research [18], the authors proposed a robust system
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TABLE I
COMPARISON OF RELATED WORKS ON SEMANTIC QUALITY AND CHANNEL EFFECTS UNDER ATTACKS

Study Dataset Attack Defense
Attack

performance
Channel

effect
Semantic
quality

Measurement
metrics

Major contribution Limitation

[1] Text ✗ ✗ ✓ ✗ ✓ BLEU
Evaluate semantic quality on Internet of Things
(IoT) devices using channel state information.

Ignore adversarial attacks and char-
acter noise.

[3] Speech ✗ ✗ ✗ ✗ ✓ SDR, PESQ
Evaluate the recoverability of semantic features via
SDR and PESQ scores.

Not considering perturbation under
adversarial attacks.

[14] Text ✗ ✗ ✗ ✗ ✓ BLEU
Minimize the semantic errors by recovering the
meaning of sentences under BLEU score.

Ignore channel effects and charac-
ter noise.

[17] Image ✓ ✓ ✗ ✗ ✓ PSNR, SSIM
Evaluate the physical-layer adversarial robustness
under GAN attacks in SEMCOM systems.

High computation complexity
while training adversarial.

[18] Text ✗ ✗ ✓ ✗ ✗ BLEU Score
Evaluate the robustness of the semantic communi-
cation systems in terms text.

Not addressing the text corruption
due to channel effects.

[19] Radio ✓ ✓ ✗ ✓ ✗ AC
Provide significant insights into the susceptibility
of modulation classifiers to adversarial attacks.

Not cover all possible real-world
channel conditions.

[20] Signals ✓ ✗ ✗ ✗ ✗ AC
Evaluate the performance of adversarial attacks to
detect channel effects against modulation classi-
fiers via a deep learning model.

Not considering the semantic qual-
ity on each channel.

[21] Radio ✓ ✗ ✓ ✗ ✗ AC
Evaluate the efficiency of the white-box and black-
box adversarial attacks against the modulation clas-
sifiers for radio signals.

Not considering the semantic qual-
ity as well as the channels in the
system.

[22] Video ✓ ✗ ✓ ✗ ✗
FPR, PCK,
AC, TPR

Consider forgery attack detectability on supervised
video streams in the backdoor camera using the
channel state information.

The semantic quality was not con-
sidered or discussed.

[23] Signal ✗ ✗ ✗ ✗ ✓ PESQ, SDR
Evaluate the efficiency of the semantics when
transmitting signals on a wireless channel.

Not considering adversarial attacks
affecting semantic quality.

Our
paper

Speech ✓ ✓ ✓ ✓ ✓ SDR, PESQ,
DRE

- Attack the mean squared error (MSE) loss function
to change the semantic quality in SEMCOM systems.
- Discuss corresponding defense strategy to counter
adversarial attacks.

Target specific multimedia service
and open source AI platforms.

AC: Accuracy; BLEU: Bilingual evaluation understudy; PSNR: Peak signal-to-noise ratio; SSIM: Structural similarity index measure; BER: Bit-error rate;
FPR: False positive rate; TPR: True positive rate; PCK: Percentage of correct keypoint; DRE: Data Rate Error; ✓ is measured, ✗ is opposite.

for transmitting semantic voice data. However, the study did

not address the effect of artificial noise from intentional

attacks. The study in [25] considered a comprehensive error

performance comparison among wireless channels. However,

this comparison focused on static channels instead of the input

of dynamic semantic communications. In short, none of the

aforementioned studies are specified for adversarial attacks

against semantic communications with personalized contexts,

let alone exploit various characteristics of the wireless chan-

nels to directly impact the semantic quality.

B. Semantic data with the influence of channel sensitivity on

adversarial attacks

In SEMCOM, the attacker can listen to penetrate the channel

characteristics and related data, such as sampling rate, input

data type, and corresponding output. For example, many

studies on adversarial machine learning [9], [26] indicate that

channel sensitivity knowledge can be crucial to the success

rate of adversarial samples. The studies in [27], [28] also

highlight DNN-based techniques to learn the conveyed ability

in the channel models and generate proper channel noise. The

methods’ successful attack rates indicate credible performance.

However, there is a lack of discussion on channel sensitivity

on the impact of semantic quality in media services. The

authors in [29] proposed a new spectrum poisoning attack,

where the attacker can falsify a transmitter’s spectrum sensing

data over the air by transmitting adversarial noises during

the spectrum sensing period of the transmitter. Based on the

baseline, many studies expand the research to specific objects

such as spectrum sensing [30], [31] and IoT data aggregation

[32]. Besides, there are several studies on adversarial trojan

attacks in wireless communications [9], waveform [33], and

channel [34]. However, these works focused on a modulation

classifier and did not discuss channel sensitivity and transmis-

sion defects in an end-to-end semantic communication system.

Adversarial machine learning and attack techniques in the

fifth-generation (5G) networks have been studied in [35], [36]

to deploy spoofing attacks based on DNNs to fool signals

or disrupt channel authentication systems. Several attack tech-

niques in emerging communication techniques, such as 6G and

THz have also been studied and show promising results [37].

However, evaluating semantic quality in various channel mod-

els (e.g., AWGN channel) in semantic communication systems

has still not been considered, especially in intelligent speech

recognition services or 6G-related semantic applications.

III. SEMANTIC COMMUNICATION SYSTEM MODEL AND

ATTACK MODEL

Fig. 2 depicts a SEMCOM model structure that contains

three key parts: a transmitter, a wireless channel model, and

a receiver. The parts can be simulated by the convolutional

neural network (CNN). This work also uses this approach

to model the weight of speech transmission. In the channel

model, the semantic knowledge base is stored as weights

in CNN models (e.g., ResNet) after training with different

audio/voice datasets. The details of the three parts of the

SEMCOM model are presented in the following subsections.

A. Transmitter modeling

As the communication diagram of semantic-based speech

transmission systems illustrated in Fig. 2, the transmitter

includes two separate components, a semantic encoder’s CNN

and a channel encoder’s CNN. Assume that the learning

parameters of the semantic’s encoder and channel’s encoder

are δ and α, respectively. The semantic transmission process
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of the transmitter part is as follows. First, the input of

the transmitter is a clean speech sample framing sequence,

x = [x1, x2, . . . , xM ], with M samples, where xm is mth

element in x. Second, these input speech samples are mapped

and encoded to symbol sequence y which becomes the input

of the wireless channel and is given by

y = Cα(Sδ(x)), (1)

where Cα(.) and Sδ(.) are the channel encoder and semantic

encoder with respect to (w.r.t.) parameters α and δ, respec-

tively. We use θt = (α, δ) to represent the CNN’s parameter

of the transmitter, which will become the input of the wireless

channel. Before being transmitted to the wireless channels, the

altered data must be normalized to ensure that the transmitted

power remains at a constant value. The normalization formula

is computed by Pmax∥y∥2 = 1.

B. Semantic communication channel modeling

Fig. 2 illustrates a single semantic communication channel

between the transmitter and the receiver. Unlike the conven-

tional communication model with a full TCP/IP protocol stack,

this study assumes that SEMCOM uses built-in channel en-

coders and channel decoders without modulation and physical

layer encryption, which is common in pure AI-based wireless

communications [38]. Therefore, adversarial attacks against

speech recognition during the encoding and decoding process

will not be validated by integrity checks as in conventional

communication models. This study explores three cases of

communication with three corresponding channels: AWGN

channel, Rayleigh channel, and Rician channel. AWGN chan-

nel indicates the impairment to communication is a linear

addition of wideband or white noise with a constant spectral

density. The Rayleigh channel denotes the magnitude of a

signal that has passed through such a communication channel

will vary randomly, or fade, which is the radial component

of the sum of two uncorrelated Gaussian random variables.

Rician channel means there is a LoS propagation dominating

multipath components. In short, the channel model, denoted

by ph(z|y), will take y as the input and produce the output

as received signal z. As presented in Fig. 2, we may model

the signal transmission process from transmitter to receiver

through the channels, which can be generally described by

z = h ∗ y + g, (2)

where h is the linear channel coefficient. g ∼ CN (0, σ2I) is

the Gaussian noise, σ2 is the perturbation variations for each

channel and I is the identity matrix.

C. Receiver modeling

Similar to the transmitter model, the receiver also consists

of two cascaded parts, including the channel decoder and the

semantic decoder as illustrated in Fig. 2. To fit the computation

process, we assume that η and ω are the CNN parameters

of the semantic and channel decoders, respectively. With the

communication scenario from the output z, the received output

signal x will be expressed by

x = Sη(Cω(z)), (3)

where Sη(.) is the semantic decoder, and Cω(.) is the channel

decoder. Its received CNN parameter set is θr = (η, ω). The

final result of the communication system is that the speech

output signals will be decoded at the channel decoder and

reconstructed at the semantic decoder to be as close to the

original input format as possible. However, knowing “whether

the signals are manipulated to add new perturbations before

decoding” will be difficult. The attacker can inject adversarial

samples and the system will decode and reconstruct both

original signals and adversarial perturbated signals.

D. Threat Model

Adversarial attacks on semantic communication systems are

critical and feasible in several contexts. For example, the

authors in [39] created a novel approach for crafting physical

layer black-box adversarial attacks for SEMCOM systems. As

a result, the method can sharply decrease the classification

accuracy. The significant loss of communication efficiency

by only transmitting incorrect data shows potential risks for

applications like automatic driving, digital twins, and smart

health. Since the SEMCOM is based on neural networks, the

communication paradigm will focus on how the transmitted

symbols convey the desired meaning [40], instead of accurate

bits. In this work, we tamper the semantic decoder at the

device with adversarial signals. This attack threat is possible

since data is not encrypted before the AI-based devices per-

form encoding. For example, when a human speaks to a smart

speaker device, the voice is recorded and then semantically

encoded on the device. Semantic encoding at the smart device

can be misled by intentional noise and adversarial signals. The

neural network-based channel estimation for SEMCOM can be

also the target of adversarial signals.

IV. PROPOSED PHYSICAL-LAYER ADVERSARIAL ATTACKS

This section explains the steps to build physical-layer ad-

versarial attacks on wireless channel semantics. This work

assumes the generated perturbations are synchronized with the

transmitter’s signals, i.e., perturbation ϕk and input signal x
have 2n dimension vectors. As a result, each element of ϕk
must be added to the corresponding element of x to obtain

x ∗ H+ n+ ϕk.

A. Proposed semantic architecture and workflow

Fig. 3 presents the proposed architecture and system model

under adversarial attacks. The input data are voice sample

sequences, X = ⅁b×M , where X consists of the voice data
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TABLE II
THE DETAILED MODEL STRUCTURE FOR THE PROPOSED SYSTEM.

Component Layer Filters Action

Transmitter
6×SE-ResNet model 384 Relu layer

CNN layer 8 Conv. layer

Wireless channel
AWGN, Rayleigh,
and Rician channel

None None

Receiver
CNN layers 8 Conv. layer

6×SE-ResNet models 384 Relu layer
Last Layer (CNN) 1 Reshape layer

set x and b is the batch size of the input. Note that voice

samples f are framed with a fixed length for encoding. While

data transfers pass the semantic encoder, these voice signals

will be encoded. Semantic and outputs will be e ∈ ⅁b×k×l×d,

where k and l are the number and length for each voice sample

frame, respectively. d is the dimension of each frame. The

CNN layer is channel encoder and encode e to n ∈ ⅁b×k×2N ,

and n will be reshaped into symbol sequences and forward to

Y = ⅁b×kN×2, and then Y is the input of wireless channels.

These channels will receive the reshaped symbol sequences

from Y and its output becomes the input of Z at the receiver.

In this study Z is computed by

Z = H ∗ Y +N , (4)

where H is the channel fading coefficient vectors of h and

N refers to the Gaussian noise vectors of g. The receiver’s

decoder decodes the output signals Z with similar sizes to

the input, denoted by n, e, and f, and finally reconstructs f

into X via the inverse operation of framing. The semantic task

recognizer is an application/system that is used to recognize

the reconstructed signals at the receiver, e.g., the input is

“Open door for me” while the output is “Open floor for me”

(as in Fig. 3). The training model structure to transmit signals

from the transmitter and receiver is outlined in Table II. The

training and noise injection process in this work is briefly

described in the Algorithm 1.

B. The stages of adversarial attacks and problem formulation

The objective of this work is to generate perturbation signals

and merge them with semantic signals in wireless channels.

The mixed signals can mislead the recognition engine at the

receiver and lead to wrong conclusions. The processes are

summarized in the following stages.

(1) In the first stage, the transmitter sends speech signal

frames that contain the semantics of the speech to a wireless

Algorithm 1: Noise injection and attack training

1 Input: Speech data set X , noise Pn from attack

method below.

Result: Trained networks Cα(.), Sδ(.), Sη(.), Cω(.)
2 Convert speech (X) to framing f to fit with train.

3 while Stop criterion does not meet do

4 Cα(f) → e

5 Sδ(e) → Y

6 Transmit Y to physical channels + noise (ϕk) and

receiver Z = Y + ϕk +N .

7 Sη(Z) → e

8 Cω(e) → f

9 Convert f to framing X

10 Compute parameters θ = (σt, σr)
11 Recompute trainable parameters and add noise

12 Update parameters and noise (*noise-params, X)

13 Lt
k(θ

t) = 1
K

∑K
k=1(xk − xk)

2 + Pn

14 Lr
k(θ

r) = 1
K

∑K
k=1(xk − xk)

2 + Pn

15 k → k + 1
16 end

channel, where each frame contains one semantic class, such

as “Open door for me” in a smart home as shown in Fig. 3.

(2) The data is then enhanced with additive white Gaus-

sian noise and adversarial perturbations, i.e., perturbation ϕk,

where the first can be called natural perturbation, whereas

second perturbations attempt to assault the semantics, e.g.,

the semantic meaning of the word “Open door for me”. This

injection is feasible because the speech signal frame is always

mapped or transmitted under bit-level weight matrices on wire-

less channels. The perturbations are mapped to channels via

weight matrices, too. In this work, the adversarial perturbation

ϕk is assumed to be synced with the transmitter’s signal

and overlaid on the transmitted signal x at the receiver. The

attacker then makes replay attacks on the channels to change

the semantic quality at the receiver. To make it more practical,

the perturbations produced by the generator are input-agnostic.

(3) The receiver either receives signals directly from the

recognizer or reconstructs all received signals before sending

them to the recognizer, which outputs predictions based on

semantic information. In this study, we consider both targeted

and non-targeted attacks (detailed in the next sections), where

the signals sent to the channel contain both random and

targeted signals. The reconstructed signals, with added pertur-
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bations, will fool the system into making incorrect decisions.

As simulated in Fig. 3, the phrase “Open door for me” can be

misrecognized as “Open floor for me” in a smart home under

adversarial attacks. This demonstrates that these signals have

been injected with a fixed perturbation signal that is hard for

humans to detect. The perturbation generation process mainly

relies on the adversarial perturbations ϕk for the signal, which

is computed by

arg min
φk

∥ϕk∥22

subject to Z(xk, ϕk) ̸= Z(xk), ∀xk
∥ϕk∥22 ≤ ϵ

(5)

where xk is the input signal kth and ϵ is a hyper parameter

for the perturbation’s upper-limitation, ∥ϕk∥22 is the squared

L2-norm of ϕk. However, the adversarial perturbation ϕk
is restricted by the power budget computed from ϵ. It is

important to note that the optimal solution is not always

reached when ∥ϕk∥22 = ϵ due to the DNN’s complicated

decision boundaries, which is determined by the power and

phase of the disturbance. Therefore, solving the optimization

problem in Equation (5) is challenging, and its complexity

is increasing today due to the nonlinearity and convexity of

the DNNs. There are various strategies developed, particularly

in the computer vision field, to estimate these adversarial

examples. For example, the Fast Gradient Method (FGM) [41]

is an efficient way to create adversarial attacks by linearizing

the loss function in the neighborhood of input x of a DNN

classifier. A key challenge in Equation (5) is its focus on

attacking content-oriented wireless networks while neglecting

semantic attacks, where the receiver relies on semantics for

accurate inference or action. This work introduces a novel

mechanism to generate perturbations and degrade semantic

quality in semantic-oriented wireless networks, detailed in the

following subsection.

C. The new perturbation generator for semantic networks

In the SEMCOM-based speech system, the human voice

is the source of the signals. Due to the different tone char-

acteristics of each human speaker, the attacker can easily

capture their speech signals and replay them. This work

assumes that the replayed signals are synchronized with the

transmitter’s original signals. The attacker can mislead the

speech recognition models by replaying the gathered signals

from the victim with perturbation patterns via an AI-based

virtual assistant, voice synthesizer, or when the victim is absent

(smart home). To conceal the attack factors, the attacker can

embed the noise generator in the devices connected to the

system, such as smartphones, speech recognition devices, and

compromised applications. In our system, semantics in the

communication system will be sent to the receiver as illustrated

in Equation (4). After attack, Equation (4) is rewritten as

Z(ϕk) = H ∗ Y + ϕk +N , (6)

where ϕk is the maximum perturbation between the original

sample x and the adversarial example according to attack

strategies. The main goal of the whole system focuses on

attacking semantics on channel models and evaluating the

semantic quality under attacks at the receiver. The accuracy of

the decoding process depends on the knowledge base of the

channel/semantic decoder, as well as the cleanliness of the

input voice data. The update process always depends on the

loss function during training. This also means that our speech

signal characteristics between x and x in Equation (4) are also

evaluated via mean-squared error (MSE) loss function Lmse

[3]. In detail, the loss function of kth element in the proposed

semantic system is given by

Lmse(θk) =
1

K

K
∑

k=1

(xk − xk)
2 =

K
∑

k=1

P (xk, θk)

with P =
1

K
(xk − xk)

2,

(7)

where xk and xk represent the input and the output signal,

respectively. K is the length of vectors x and x. Assume that

the NN models of the entire transceiver are differentiable in

terms of the appropriate parameters and can be tuned using

gradient descent based on Equation (8). Note that the semantic

and channel encoder/decoders are designed together. Also,

with given previous parameters of CSI, the system can adjust

both NN parameter sets σt, σr at the same time. Therefore, we

call the NN parameter set of the whole system, θ = (σt, σr).
From study [3], the NN parameter θ in the loss function of

the system will update iteratively, which is expressed by

θk+1 = θk − ρ▽θk Lmse(θk), (8)

where ρ > 0 is a learning rate and ▽ indicates the differential

operator. As shown in Fig. 3, the reconstructed signals are

based on Equation (8). Therefore, we attack the channel by

adding perturbation ϕk to Equation (6). To find perturbation

ϕk, this problem can be transferred to a constrained optimiza-

tion problem as in study [42]. Therefore ϕk is satisfied by

arg max
φk

∥ϕk∥22

subject to LMSE(xk, ϕk, θk) ̸= LMSE(xk, θk),
(9)

where LMSE(xk, θk) is the original loss function,

LMSE(xk, ϕk, θk) is the loss function after adding perturbation

ϕk. By combining Equations (7) and (9) for perturbation

element kth, it is expressed by

K
∑

k=1

P (xk, ϕk, θk) ̸=
K
∑

k=1

P (xk, θk) (10)

Because the recognizer is sensitive both the direction and the

power of perturbation, the squared error criterion will penalize

the candidates of ϕk that have more power with the direction

of the original example x. We set ϕk = γ×xk to search for all

magnitudes of the ϕk, where γ is a path loss coefficient that

can be optimized by line search. According study [19], the

distance between the original sample xk and the adversarial

example ϕk is given by

K
∑

k=1

(ϕk − γxk) (11)
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The main target is to maximize the perturbation on the

loss function, assuming that the intruder has limited signal

resources. In other words, the attacker only has ϵ chances to

launch attacks each time. To increase the attack performance as

much as possible, attackers seek to maximize the cost function.

Therefore, Equation (11) is expressed by

max
φk

K
∑

k=1

∥ϕk − γxk∥22

subject to

K
∑

k=1

∥ϕk∥22 ≤ ϵ

(12)

To maximum Equation (12), this study uses the Lagrangian

method [43] to optimize the convex problem. The Lagrangian

for (12) is given by

LMSE =

K
∑

k=1

∥(ϕk − γxk)∥22 + λ

(

K
∑

k=1

∥ϕk∥22 − ϵ

)

, (13)

where λ ≥ 0, and the Karush–Kuhn–Tucker (KKT) conditions

to get maximum value in (12) are expressed by

ϕ∗(ϕk − γxk) + λϕk = 0,with k = 1, ...,K (14)

From Equation (14), we can get the maximized perturbation

of LMSE for Equation (6), which is computed by

ϕk =
ϕ∗γxk
ϕ∗ + λ

, (15)

where ϕ∗ is the conjugate of perturbations, λ is determined by

the adversary’s power constraints. Designing perturbations in

this manner ensures that the received disturbance matches the

input signals while adhering to the adversary’s power limits.

D. Complexity analysis

To evaluate the computation complexity of the proposed

system, we quantify the complexity of the CNN-based model

in terms of the number of floating-point operations (FLOPs)

performed by the convolutional kernels and evaluate Algo-

rithm 1 in terms of its time and space complexities. First, to

compute the FLOPs of the CNN-based model, which is used to

transmit semantics in wireless channels, we calculate FLOPs

for a single 2D CNN module by [44]

C2DCNN = 2× w × h× (cin × k2 + 1)× cout, (16)

where w is the width and h is the height of CNN’s input feature

map. k represents the kernel size. cin is the number of the input

layers and cout is the number of the output layers1 of feature

maps. Based on Equation (16), we summarize the FLOPs

of the CNN-based model in this study and the traditional

model, as shown in Table III. We found that the CNN-based

systems require a higher computational cost than conventional

techniques. This is due to the complexity of neural network

training and the incorporation of the feature encoder/decoder

process during model training. With the traditional system, the

feature encoder takes speech samples as inputs, and its output

is supplied directly to the decoder. The received signals are

converted into semantic information.

1Here, the layers refers to the parameter of CNN

TABLE III
COMPARISON OF FLOPS IN TRADITIONAL, CNN-BASED SYSTEM

Component

Traditional
system

(1)

CNN-based
system

(2)

SE-ResNet
(our)

Change FLOPs
(1) ———- (2)

Transmitter 2.76× 10
9

4.45× 10
9

4.65× 10
9

1.69× 10
9 ⇑ −1.89× 10

9 ⇑

Wireless channel None None None None

Receiver 2.82× 10
9

4.50× 10
9

4.72× 10
9

1.68× 10
9 ⇑ −1.9× 10

9 ⇑

Note: The model structure of the traditional system follows that of [3], while
the other one is detailed in Table II.

Based on the input and output information, the MSE loss

is computed at the receiver, and the trainable parameters

of both the feature encoder and the feature decoder are

updated simultaneously. Therefore, their computational

complexity is lower than that of the CNN-based system,

such as ours. Second, to evaluate the time complexity of

Algorithm 1, we evaluate the time complexity in each

trained network. With Lα, Lδ , Lη , Lω representing the

number of layers, and nα, nδ , nη , nω representing the

number of neurons per layer of each trained network Cα(.),
Sδ(.), Sη(.), Cω(.), respectively. N is the sample size

and T is the number of iterations in the while loop. The

time complexity in four trained networks is approximately

O(T ime) = O(N × T × (Lαn
2
α + Lδn

2
δ + Lηn

2
η + Lωn

2
ω)).

The assignments and algebraic operations have approximately

complexity O(N). Therefore, the time complexity of

Algorithm 1 is O(T ime)+O(N) for training a single model.

For space complexity, storing the parameters in Algorithm 1

mainly is the liner computation. Therefore, space complexity

is approximately O(N + |θ|), where |θ| is the total number

of trainable parameters in the networks.

V. SEMANTIC-TARGETED ADVERSARIAL ATTACKS IN

WIRELESS NETWORKS AND CALIBRATIONS

This section mathematically evaluates the semantic quality

of a system by analyzing channel effects on speech, a factor

overlooked in previous studies. Other signals, like natural

sounds, are treated as natural noise affecting semantic com-

munication. Using the system from Section III, the process

involves: (1) inputting a predefined dataset, (2) transmitting

framed speech signals through three wireless channels (Fig. 3),

and (3) attacking the signals as outlined in Algorithm 1. This

study customizes targeted adversarial attack techniques—fast

gradient sign method (FGSM) and projected gradient descent

(PGD)—for semantic communications. Unlike their standard

computer vision versions, these techniques use a new pertur-

bation generator and are organized based on their impact on

random channel effects, detailed in the following subsections.

A. Fast gradient sign method with generated perturbations

The FGSM is known as an adversarial attack technique

[45] through the optimization of a neural network for the loss

function L(f(x), y), where f(x) is a function of the neural

networks, x and y are the original input and its real target,

respectively. The adversarial signals x∗ created from input x
are computed by

x∗ = x+ δsign(▽xL(f(x), y)), (17)
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where ▽xL(.) is the derivative of the loss function L on

x, sign(.) is the sign operation, δ is the attacking intensity

parameter, and x∗ is the adversarial sample on x.

Algorithm 2: Channel inversion attack and bisection

search in semantic communications

1 Input: Voice data set X , desired accuracy λacc, power

constraint value Pmax, C is the number of samples

and recognition model (M). Channel information h of

vector H .

Result: Adversarial perturbation of the input, Nadv .

2 Initialize: λacc = 0
3 for c in range(C) do

4 λmax = P
5 λmin = 0

6 δnorm = H.▽xM(θ,hi,z)
∥H.▽xM(θ,hi,z)∥2

7 while λmax − λmin > λacc do

8 λavg = (λmax + λmin)/2
9 xadv = channel − inver(x, λavg, δnorm)

10 if attack(xadv) = true then

11 λmin = λavg
12 end

13 else

14 λmax = λavg
15 end

16 end

17 λ[c] = λmax

18 end

19 target = argmin(λacc)
20 Nadv = −√

Pmax × δnorm[target]
21 Return Nadv

B. Channel inversion attack and bisection search

Unlike the FGSM attack, the channel inversion attack finds

the best-targeted attack with the least amount of disruption

by using a bisection search to find the scaling factor. This

technique is to make sure that misclassification happens within

the perturbation norm constraint, and then causes misrecog-

nition. The attacker can optimize the targeted adversarial

signals Nadv to mitigate semantic quality, which is obtained

by using Algorithm 2. First, the algorithm creates the normal

perturbation δnorm based on channel information h in line 6,

and then the values λavg are computed to match as closely as

possible with most inputs x from lines 7 to 15.

Accordingly, because the adversarial attack goes through

channel h, the ith element of the perturbation N be com-

puted as Ni =
Nadv

i

hi

such that its dimension has the same

dimension as Nadv
i after going through the channel model,

for i = 1, ..., p, p is the dimension of the complex-valued

(in-phase) inputs. Also, to meet the transmit power constraint

Pmax at the adversary, a scaling factor δ is added such that

Ndiv = −δ × N , where δ =
√
P

∥N∥2

. Thus, the perturbations

(N ) received in Equation (6) will be N = Ndiv = −δ×Nadv ,

where the minus indicates that the perturbation N is intended

to decrease the recognizer’s confidence in the true signals and

increase its confidence in the target signal.

Algorithm 3: Semantic-oriented gradient descent at-

tack in semantic communications

1 Input: Speech data set X , number of iteration α =

1000, perturbation budget ϵ = 0.001, step size λ =0.1.

Result: Adversarial perturbation Npgd.

2 Initialize:Npgd = 0
3 for each iteration in range(α) do

4 Calculate gradients in range of ϵ
5 grad = random.uniform(−ϵ, ϵ, size = data)
6 Computed the perturbation as a sign(.) of

gradients.

7 δ = sign(grad)
8 Add perturbation into data

9 Npgd = X + ϵδ
10 Clip Npgd to ensure within valid range

11 Npgd = fine− tuning(Npgd, X − ϵ,X + ϵ)
12 end

13 Return Npgd

C. Semantic-oriented gradient descent attack

The projected gradient descent (PGD) attack method [46]

is an iterative method that employs random initialization to

generate adversarial examples. This method is more effective

than the FGSM approach in increasing the impact of underfit-

ting adversarial examples. This is achieved through the use of a

linear approximation of the decision boundary around the data

point. However, this process can lose some important features

that limit the generated perturbations. The procedure for PGD

is outlined in Algorithm 3. In this algorithm, the computation

gradient and perturbation δ of each frame occurs in lines

from 4 to 7. The noise addition and perturbation limitation

are computed in lines 8–11, with a fine-tuning process to

generate robust perturbations. This iterative process enhances

attack efficiency, as detailed in Section VII. The tailored PGD

in this work targets semantic-based speech applications.

VI. SEMANTIC-NON-TARGETED ADVERSARIAL ATTACKS

AND CALIBRATIONS

The main goal of this section is to generate perturbation ϕk
to misguide the model and mispredict any voice command,

instead of specific commands as in the targeted attacks. Note

that, to launch the targeted attack, three conditions must be

met: the attacker knows (1) the exact input structure, (2)

channel information between the transmitter and the receiver,

and (3) the speech recognition model at the receiver. Those

assumptions are not always practical for wireless channels.

This section extends the attack capability by developing a

novel technique that can mispredict any voice commands.

A. Universal adversarial perturbation attack with input-

agnostic data in semantic communications

Adversarial perturbations are generated based on the in-

put, with each input x requiring a corresponding perturba-

tion to fool the model. This approach assumes knowledge

of the model’s input structure, which is often impractical,
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such as knowing all supported commands. Input-agnostic

methods address this by creating robust universal adversar-

ial perturbations (UAPs) that fool the model regardless of

input structure. In machine learning and computer vision,

this technique is called a “universal adversarial perturbation”

(UAP) [47]. It involves creating an adversarial sample in each

iteration, making it computationally expensive. To address this,

this study proposes a method to generate UAPs with lower

complexity and improved fooling ability on speech datasets

compared to the original UAPs. The fundamental rationale

underlying the algorithm is as follows: Assuming that the

subset {x1, . . . , xk} ∈ R is an arbitrary set of input, and

their corresponding noises are subset {nx1
, . . . , nxk

}, where

nxi
= ▽xi

L(α, xi, y)/∥ ▽xi
L(α, xi, y)∥2. The result of

nxi
is a noise matrix series of input subsets, where the first

element in this matrix will have maximum variance. Instead

of selecting a random element, this work chooses the largest

in the perturbation set to maximize the model’s fooling ability.

The computation process is detailed in Algorithm 4, where it

computes the first element v1 which corresponds to the domi-

nant right singular vector V e1 based on the first basis vector e1
in line 4. This vector captures the most significant perturbation

direction in the data. Then scale v1 to the maximum allowed

norm, Pmax, to ensure the perturbation remains within the

desired magnitude.

Algorithm 4: Universal adversarial perturbation attack

with input-agnostic data

1 Input: A random set of input data {x1, . . . , xk}, the

model M , maximum allowed perturbation norm Pmax

Result: UAP noise Nuap.

2 Initialize:Nuap = 0
3 Evaluate XK×p = {nx1

, . . . , nxk
}T

4 Compute the first element of X = U
∑

V T and

v1 = V e1.

5 Nuap = Pmaxv1
6 Return Nuap

B. Naive attack with lack of knowledge on channel informa-

tion and the victim’s model

Unlike the previous attack type, the objective of this method

is to generate perturbations that do not have any channel

information, e.g., the attacker has no knowledge about the

victim’s model [17]. They launch random attacks, resulting

in random negative impacts on the semantic quality at the

receiver. The attack process is outlined in Algorithm 5, which

includes several phases. First, based on the power value

Pmax, the attacker splits it into the number of iterations in

A and computes the loss function’s gradient used to distort

the transmitted signal on the channel. Second, the attacker

computes the gradient again from the transmitter and adds

perturbation. The attacker then adds another perturbation λ
with Pmax

A
into the signal (as shown in line 7 in Algorithm 5).

This step increases the values in the loss function, causing

important signals to be removed in the proposed system,

thus increasing the signal distortion ability. The attacker then

employs an iterative approach, repeating the method A times

and this value is updated in each iteration.

Algorithm 5: Naive attack with lack of knowledge on

channel information and the victim’s model

1 Input: Input X , number of interaction A = 1000,

power constraint Pmax.

Result: Adversarial perturbation Nnaive.

2 Initialize: Sum of gradient ∆ = 0, X → x
3 for i in range(A) do

4 Calculate gradients in the range of A

5 λ = ▽xL(α,x,z)
∥▽xL(α,x,z)∥2

6 Compute other noise into input data

7 x = x+
√

Pmax

A
hchλ

8 Computed ∆

9 ∆ = ∆+
√

Pmax

A
λ

10 end

11 Nnaive =
√
Pmax

β
∥β∥ 2

12 Return Nnaive

C. DeepFool attack against multiple classifiers

The DeepFool attack method is a non-targeted attack that

can be extended and implemented on general nonlinear classi-

fiers and multi-class classifiers [48]. Its objective is to generate

as smallest noise as possible by considering the minimizing

distance between the clean (original) speech and the upper

limitation of adversarial perturbations. The DeepFool method’s

perturbation, which is believed to be from a different input,

can easily lead to model misclassification. As a result, this

attack achieved high performance. In this study, we enhance

this technique to target multiple classifiers in semantic com-

munications, e.g., classifying spoken words into different com-

mands such as “play,” “pause,” “stop,” or identifying different

spoken commands in multilingual speech data. The equation

to generate a DeepFool adversarial example is computed by

Ndeepf = argmin
pi

∥pi∥2

subject to f(xi) + (∇f(xi))T pi = 0,
(18)

This algorithm stops when sign(f(xi)) ̸= sign(f(x0)), where

pi is the ith perturbation, the classifier f is the linear function,

xi is the ith sample, x0 is the clean sample.

VII. EVALUATION RESULTS AND ATTACK PERFORMANCE

This section details the evaluation results of the attacks’

performance on the semantic quality that is presented in

Sections V and VI. The system transmits the neural network’s

output, which we consider as the semantic features. The

quality of these semantic features is evaluated through PESQ’s

and SDR’s scores as well as the feature’s loss between before

and after the attack. Therefore, we train 1000 speech, including

800 files to train and 200 files to test from the Edinburgh

DataShare dataset 2, where set M = 16.384, sample frame

2https://datashare.ed.ac.uk/handle/10283/3061
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TABLE IV
TOTAL PESQ’S SCORE UNDER MULTIPLE CHANNEL ATTACKS

Targeted attacks Non-targeted attacks

Fading
Original

score FGSM
Channel
inversion

PGD
Corresponding
reduced score

UAP DeepFool Naive
Corresponding
Reduced score

(1) (2) (3) (1)-(2)-(3) (4) (5) (6) (4)-(5)-(6)

AWGN 91.16 90.30 80.53 90.66 0.85 - 10.62 - 0.49 82.76 90.94 88.95 8.39 - 0.21 - 2.20
Rayleigh 96.41 93.91 82.18 94.09 2.49 - 14.22 - 2.31 88.96 94.07 93.96 7.45 - 2.33 - 2.45
Rician 104.28 96.04 82.78 95.77 8.24 - 21.50 - 8.51 96.31 100.74 96.53 7.97 - 3.54 - 7.75

f = 128, and l = 12 is the length of each frame. All

attacks are tested with a perturbation budget of ϵ = 0.001,

batch size = 32, learning rate 0.0001, and γ = 1.0 will target

better [20] compared to other cases. The change in semantic

quality corresponds to the change in PESQ and SDR scores

under various attacks with SNR = 8dB. We only test the

proposed system at SNR = 8dB because it represents the

most suitable value for the telephone semantic communication

system [3]. The comparison clarifies which attack type causes

the most signal distortion in a semantic communication system

for speech data. Targeted (TA) and non-targeted (NTA) attacks

are evaluated under identical settings.

A. Fundamental performance metrics for measuring the effec-

tiveness of the proposed attacks

In our model, the system aims to evaluate semantic quality

after channels are attacked by three metrics. First, this study

uses the PESQ score to measure the semantic quality, as

proposed by the ITU-T [49]. The voice signal quality threshold

is set from -0.5 to 4.5 to meet the requirements for evaluating

performance. Second, SDR [50] score is calculated to evaluate

the change of score between the original speech x and the

attacked speech x, which is one of the commonly used metrics

for speech transmission and can be expressed by

SDR = 10 ∗ log10
⌊ ∥x∥2
∥x− x∥2

⌋

(19)

Based on this metric, if the SDR’s value is higher on each

channel, the voice information quality is better, i.e., human

voice can be recognized more easily. The SDR metric, which

stores the relative perturbation in relation to the noise, is used

to assess the influence on semantic quality when comparing

the changes in SDR scores on the channel. Additionally, the

semantic quality of speech signals is intuitively manifested by

a listening experience without latency and background noise,

i.e., face-to-face conversation. Third, we also introduce a new

metric, called data rate error (DRE) to evaluate the quality and

reliability of semantic communication system. It reflects how

efficiently data is transmitted and highlights potential issues

like data loss or corruption. In this study, its computation

formula is given by

DRE =
ψ − ψ

ψ
, (20)

where ψ represents the received data and ψ represents the total

data sent to receiver. In this metric, if DRE = 0, all data sent

was received correctly (no error). If DRE = 1, no data was

received (complete loss). If 0 < DRE < 1, it indicates the

fraction of data that was lost or not correctly received during

transmission.

B. Perceptual evaluation of speech quality performance

Before the attack, PESQ values increase linearly in the range

from SNR = 0dB to SNR = 20dB. This demonstrates that

the semantic quality is not affected and is an ideal environment

for any wireless semantic communication system. However,

this is not realistic because there are many potential risks that

attackers want to explore to capture the victim’s important

information. Therefore, attacks on multiple channel models are

deployed as to address challenges in this study. We simulate

the results of those attacks as shown in Fig. 4. For targeted

attacks, the PESQ scores are significantly lower compared to

non-targeted attacks.

The FGSM and PGD attack methods perform less effec-

tively, even worse than non-targeted attack methods when

working on Rayleigh and Rician channels. We have listed

these changes in PESQ scores in Table IV, where the most

influenced results are highlighted in blue. Its PESQ score

exhibits minimal variation compared to the original baseline

(no attack). For non-target attacks, the PESQ scores for the

DeepFool and UAP attacks uniformly decrease within a fixed

range across all three channels across all SNR values, as illus-

trated in Table IV. However, the semantic features still increase

linearly along with the increasing SNR. This demonstrates

that the PESQ values change significantly, but the semantic

quality remains smooth on the channel, i.e., the receiver does

not perceive that the signal has been compromised compared

with the original signal (no attack). As shown in Table

IV, the UAP no-target attack significantly degraded semantic

quality, reflected in the reduced PESQ score, due to the UAP

algorithm’s robustness and multi-directional attack capability.

Furthermore, the UAP method is deployed based on the

PCA optimization processing, which also enhances the ro-

bustness of this attack method. Therefore, this attack method

performs better compared to other attacks in terms of semantic

quality and channel effects, while the other attack methods

perform poorly for the majority of the SNR values. The

obtained results are due to the non-targeted hostile attack’s

ability to move in any direction. For targeted attacks, we

know that there are only ten distinct orientations because there

are eleven corresponding modulation types [19]. However, the
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Fig. 4. PESQ score versus SNR on the proposed system under non-targeted attacks (pink lines) and targeted attacks (blue lines) for speech-based telephone
communication. The average score ratio of channels AWGN, Rayleigh, and Rician is significantly reduced.
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Fig. 5. The SDR score changes after attacking the proposed system under non-targeted attacks (pink lines) and targeted attacks (blue lines) versus SNR
for speech-based telephone communications. The semantic quality in Rayleigh and Rician channels is most affected by targeted attacks, while non-targeted
attacks primarily affect the AWGN and Rician channels.

TABLE V
TOTAL SDR SCORE UNDER MULTIPLE CHANNEL ATTACKS

Targeted attacks Non-targeted attacks

Fading
Original

score FGSM
Channel
inversion

PGD
Corresponding
reduced score

UAP DeepFool Naive
Corresponding
Reduced score

(1) (2) (3) (1)-(2)-(3) (4) (5) (6) (4)-(5)-(6)

AWGN 758.69 681.38 274.92 569.12 77.31 - 483.77 - 189.57 504.93 483.77 556.96 253.76 - 274.92 201.73
Rayleigh 840.02 681.23 362.14 573.56 158.79 - 477.88 - 266.46 580.00 627.75 569.12 260.02 - 212.27 - 270.90

Rician 900.71 630.46 380.13 569.12 270.25 - 520.58 - 331.59 628.98 610.85 680.88 271.73 - 289.86 - 219.83

non-targeted attacks do not have such limitations. As a result, it

is more likely that the non-targeted attack will choose a better

way to force misrecognition, leading to changes in the series

on the semantic quality in semantic communication systems.

In addition, the computing complexity of non-targeted attacks

is much lower than that of targeted attacks, which require

iterations to achieve the desired accuracy. Finally, we observe

that when the SNR level increases for the attacks, the semantic

quality of the Rician channel decreases the most, followed

by the Rayleigh and AWGN channels. Additionally, both TA

and NTA attacks will only affect some specific areas from

SNR = 12 to SNR = 19 on each channel, as shown

in Fig. 4. The semantic quality in these areas will change

the most. Based on the findings, we discovered that targeted

assaults impair speech semantic quality for wireless systems

in complex communication scenarios more than non-targeted

attack techniques, particularly in the low SNR regime.

C. Signal-to-distortion ratio performance results

The SDR score is used to assess the semantic quality on

each channel: a higher SDR score indicates that the semantic

quality is better, i.e., the receiver can clearly receive the

semantics in the signal. Fig. 5 shows the impacts of TAs

and NTAs on the change in SDR scores under the AWGN,

Rayleigh, and Rician channels, with the SNR score adjusted

from 0dB to 19dB. The figure shows that the targeted attacks

achieved higher performance and reduced the SDR score

more than the non-targeted attacks under all tested channel

environments, while its performance remains reliable when

SNR is high. The SDR score reduces more with channels

that have higher fading, as shown in Fig. 5 b) and c). Also,

the targeted attacks based on the obtained information, e.g.,

channel information or model parameters, always have high

performance. Therefore, the adversarial attack performance

achieved such differences. This is explained by the targeted
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hostile attack’s ability to move only in the targeted-selection

direction instead of the free direction in non-targeted attacks.

However, the computational complexity for targeted attacks

is higher compared to non-targeted attacks. The main reason

is the iterations required to reach the desired accuracy. In our

experiments, their semantic quality changes under semantic

targeted attack are presented in Table V. The SDR score of

targeted attacks on the AWGN channel is reduced to 1.35
times compared to non-targeted attacks. This rate on Rayleigh

and Rician channels is 2.68 and 3.02 times, respectively. As

a result, the semantic quality on the Rayleigh and Rician

channels is mostly reduced under targeted attacks, followed

by the AWGN channel. These changes mainly involve their

propagation environment (i.e., with LOS/NLOS paths) on each

corresponding channel. This also significantly impacts the

semantic quality of telephone SEMCOM systems.

To mitigate the impact of these attacks and maintain the

PESQ’s and SDR’s score in SEMCOM system, it is crucial to

create tailored adaptive security systems for each communica-

tion channel. This will significantly minimize the vulnerabil-

ities of the system. For example, the human can speak near

the smart received device to avoid the strong manipulation

of the attackers by injecting malicious signals into one of

the NLOS paths. However, this may create inconvenience

for users using their automatic features in smart homes and

smart healthcare. Alternatively, encryption and authentication

mechanisms can secure channel access, ensuring voice data

integrity, confidentiality, and high-quality transmission.

D. Data rate error evaluation

DRE is used to evaluate the efficiency of a semantic

communication system by indicating the amount of data errors

over total transmitter data from the sender to the receiver. An

attack causing higher DRE means more efficiency than that

with lower DRE. The evaluation results in Fig. 6 show that the

error rate of transmitted data on channel modeling is changed

significantly among targeted and non-targeted attacks under

various channels, i.e., comparison among AWGN, Rayleigh,

and Rician channels. For non-targeted attacks, UAP and Deep-

Fool both result in higher DRE values compared to the non-

targeted attack scenario, especially at lower SNR values (near

0dB). This indicates that these attacks increase data rate errors,

making communication less reliable. The naive attack also

causes elevated DRE values, but its performance appears to

be comparable to or slightly less effective than DeepFool

and UAP in disrupting the signal at lower SNR. In short, as

SNR increases beyond 8dB, the DRE values for all attacks

(UAP, DeepFool, and Naive) tend to stabilize, indicating that

at higher SNR, the effect of these attacks is less pronounced.

For targeted attacks, all three attacks show significant increases

in DRE from 0dB to 4dB, with FGSM and inversion attack

methods being more impactful (higher DRE values) than PGD.

The DRE values for all attacks converge quickly as SNR rises,

reaching similar levels to the no-attack case by around 6dB.

This also indicates that the synchronization of the noise signs

with input speech only causes the signal obfuscation at SNR

lower, i.e., SNR in the range 0dB to 8dB. This could be a sign

that your data has been compromised. For SNR values above

6dB, the DRE values for all attack scenarios stabilize close to

the No-attack DRE level, around 0.3×10−4. This suggests that

at higher SNRs, the attacks have minimal additional impact on

DRE, and the system becomes more resilient to adversarial

perturbations. The receiver makes it very difficult to detect

the difference between input speech and noise added.

The channel inversion attack performs the best across all

channels. As the results indicated in Figs. 4, 5, and 6, the

attack’s PESQ, SDR scores, and DRE are the lowest compared

to other attack methods. This is because the attackers captured

the distribution of the channel hi between the sender and the

receiver and attacked by applying the noise set Ni =
Nadv

i

hi

to

channel h of the SEMCOM system. Channel information is

fully utilized to generate robust perturbations Nadv . We found

that non-targeted attacks ignoring channel effects perform

poorly. This is because the wireless channel alters the phase

and magnitude of perturbations at the receiver, with variations

across channels affecting attackers’ ability to capture infor-

mation. This leads to signal degradation, differing in AWGN,

Rayleigh, and Rician channels. In addition, the targeted chan-

nel inversion attack outperforms the non-targeted naive attack,

which is limited by its lack of channel information. This

indicates that the received power of perturbations significantly

influences the performance of the classifier at the receiver

during these attacks. The degradation rate of semantic quality

depends on the channel information captured by the attacker.

Thus, channel information is vital for data transmission, and

its capture by an attacker poses security risks to the victim.

E. Loss function results

To demonstrate the efficiency of our method in maximizing

perturbations on the loss function, we simulate the impact

of noise on loss function under attacks, as shown in Fig. 7.

This change is reflected in the relationship between the MSE

loss values and the number of epochs. We can observe that

the MSE loss changes significantly in both types of attacks.

After approximately 400 epochs, the variation of these signals

decreases with an SNR = 8dB. In any communication

system, as this loss value approaches 0 after iterating through

epochs, the accuracy of the system increases. In Fig. 7, The

initial value of the system’s loss function for the original

signals (no attack) is closest to zero. After the attack, the loss

values of the proposed system increasingly far from both the

value of 0 and the initial system’s loss values on all channels.

This difference is illustrated by the red arrow in Fig. 7.

The loss value increases if the number of epochs increases.

We observed that these loss values are increasing on each

channel, with the Rician channel experiencing the greatest

increase (i.e., its distance is largest from the value of 0).

For semantic quality, it is evident that the Rician channel is

more impacted compared to another channel with the same

attack type, leading to a substantial degradation in semantic

quality at the receiver. This also makes it difficult to find

convergence between adversarial signals and original signals.

This is a significant limitation of adversarial examples because

if this convergence is achieved, it indicates that the attacker
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Fig. 6. The results of the data rate error values for the proposed system under targeted (bottom) and non-targeted (top) attacks. The targeted attacks cause
the most signal degradation compared with original signals on AWGN and Rician channels. The data loss rate in target attacks calculated in bytes is up to
5% compared with non-target attacks. The reliability of the data under Rayleigh and Rician channels in targeted attacks is significantly lower compared to
non-targeted attacks because their sample median is the closest to the minimum values.
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has successfully crafted adversarial examples that can bypass

the model’s defenses and potentially cause extremely harmful

outcomes, such as misclassification or incorrect decision-

making. This also is an advantage of the non-targeted attacks

in selecting the most efficient attack direction. Additionally,

we found that the UAP attack increasingly impacts the system

more significantly as the number of epochs increases, ranging

from 200 to 300 epochs. This is due to the fact that the UAP

attack algorithm is supported by the PCA algorithm during

perturbation optimal processing. This impact will be reduced

with other attacks. In the targeted attacks visualized at the

bottom of Fig. 7, we observe that the loss mainly focuses on

AWGN and Rician channels. The channel inversion attacks

cause the most significant loss, followed by FGSM attacks,

compared with non-targeted attacks, as indicated by the red

double arrow. Therefore, the semantic features are significantly

reduced under targeted attacks on both channels. For SHAP
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Fig. 8. The changes of the SHAP value occur during the entire speech
training of the system under all attacks. Each dot in the plots represents a
semantic feature. The colors used indicate the magnitude of the semantic
feature value (red representing important values and blue representing less
important values). Finally, the position on the horizontal axis represents the
impact of the semantic feature value on the prediction of the target.

values, Fig. 8 presents a summary of Shapley plots for all

adversarial attacks on the system. This summary plot illustrates

the positive and negative relationships with the quality of

semantics, which are impacted after attacks. We notice that

the most crucial semantic features exhibit higher SHAP values.

This suggests that these features are more attack-ability and

prone to easy changes after each training epoch. Overall, the

markers red dot has the greatest influence on the decision-

making of our model in recognition semantics in the telephone

semantic communication systems. If these values are altered

through an attack, the semantic quality will subsequently

change. In addition to training the model with a larger set

of adversarial examples to mitigate attack performance, we

can also combine the properties of MSE and MAE (Mean

Absolute Error) in the speech signal reconstruction process to

make the system less sensitive to residual.

F. Fine-tuning the sensitivity to residuals for adversarial de-

fense in wireless SEMCOM

The defense mechanism can be achieved partially with the

desired confidence by using selected smoothing in the sensitive

SNR ranges, i.e., ranges 2dB − 6dB and 12dB − 16dB in

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
SNR(dB)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

PE
SQ

 S
co

re

AWGN channel
No-attack
FGSM_TA
PGD_TA
Inversion_TA

UAP_NTA
DeepFool_NTA
Naive_NTA

Fig. 9. Fine-tuning by removing the sensitive noise ranges (range marked by
red) of weights on AWGN transmission channel on SNR’s value. The final
target is to make smooth for weights on the transmission channel.

Fig. 9. Based on this range, we can apply the fine-tuning

method to achieve a smooth range. For example, we can

remove the residual value Lδ(a) according to Huber loss as

in Equation (21) below, where a = x− y (difference between

the x actual and y predicted values) based on a threshold δ
which is identified by the user’s system.

Lδ(a) =

{

1
2a

2 for |a| ≤ δ

δ(|a| − 1
2δ) for |a| > δ

(21)

However, this method is not the perfect approach either

because selecting the threshold δ to remove the residual values

is also challenging. If we choose a value that is too large,

important features will be eliminated. Conversely, if we choose

a value that is too small, the redundant values will not be

effectively removed as desired. In our study, selecting and

identifying the a = ϕk to apply on Equation (21) is chal-

lenging. Because the perturbation signals are synchronized and

trained with the input signals. The potential approach is to fix

the weight range for sensitive noise signals based on the SNR’s

metrics as in Fig. 9. Then we can remove the mutant values

in these ranges to give the smooth values for the channel.

We can consider that the removed values are noise signals

from attackers. The values without being removed still contain

the perturbation, however, this noise proportion will not be

significant because the clear input samples will occupy a larger

proportion. As a result, the misclassification/misrecognition

rate of the AI-enabled models will be almost zero.

VIII. CONCLUSION

As the implementation of deep learning models in semantic

communication systems becomes more prevalent, it is vital

to consider these applications from a security and robustness

perspective. This is the first work to highlight the potential

risks of wireless-based semantic communication systems. We

simulate two types of physical-layer attacks against the seman-

tic communication system that cause semantic quality changes

at the receiver on AWGN, Rayleigh, and Rician channel
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models. Additionally, we evaluate adversarial attacks to assess

the semantic quality impact after attacking. Experiment results

show that both targeted and non-targeted attacks significantly

affect semantics at the receiver. Overall, the Rayleigh is fading,

and Rician channels are more impacted (i.e., their score is re-

duced) than AWGN when there is prior information about the

system. Furthermore, the reliability of the data under Rayleigh

and Rician channels in targeted attacks is also significantly

lower, by about 2.9 times, compared to the original input

data (i.e., their sample median is the closest to the minimum

values). This demonstrates that CNNs used for modulation

classification are vulnerable to adversarial attacks in the low

SNR regime. In addition, we discuss some of the specific

defense methods to mitigate risks from adversarial attacks.

Future research needs to focus on hardening SEMCOM sys-

tems using psychoacoustic models or previously authenticated

voices to prevent attacks. The attacks should be also tested

on commercial SEMCOM systems, e.g., machine-to-machine

communications in smart factories, to enhance semantic qual-

ity on wireless channels. Given that these communications are

likely to become key technologies in 6G intelligent networks,

developing novel and efficient defense techniques represents a

highly promising research area.
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