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ABSTRACT Substantial improvements in the area of ultra reliable and low-latency communication
(URLLC) capabilities, as well as possibilities of meeting the rising demand for high-capacity and high-
speed connectivity are expected to be achieved with the deployment of next generation 6G wireless
communication networks. This thank to the adoption of key technologies such as unmanned aerial
vehicles (UAVs), reflective intelligent surfaces (RIS), and mobile edge computing (MEC), which hold
the potential to enhance coverage, signal quality, and computational efficiency. However, the integration
of these technologies presents new optimization challenges, particularly for ensuring network reliability
and maintaining stringent latency requirements. The Digital Twin (DT) paradigm, coupled with artificial
intelligence (AI) and deep reinforcement learning (DRL), is emerging as a promising solution, enabling
real-time optimization by digitally replicating network devices to support informed decision-making. This
paper reviews recent advances in DT-enabled URLLC frameworks, highlights critical challenges, and
suggests future research directions for realizing the full potential of 6G networks in supporting next-
generation services under URLLCs requirements.

INDEX TERMS 6G, Digital Twin, URLLCs.

I. INTRODUCTION

THE concept of URLLC has been regarded as one of the
most revolutionary use cases since researchers and industry
began working toward the deployment of fifth-generation
(5G) mobile communication systems. Since then, significant
improvements have been made to meet the stringent require-
ments of near-zero latency and ultra-reliable transmission,
meaning communication lags of less than 1 ms with a
communication error probability of less than 10−5 [1], [2].
However, the progress made so far in the field of URLLC
is insufficient to meet all the Key Performance Indicators
(KPIs) required by diverse mission-critical applications envi-
sioned to become a reality with the deployment of 6G mobile
networks. As highlighted in Table 1, 6G-based URLLC intro-
duces more stringent requirements compared to 5G, includ-

ing sub-millisecond latency, reliability of ≥ 99.99999%, and
data transmission rates of ≥ 100 Gb/s. These requirements
are essential for emerging 6G services such as industrial
automation, intelligent transportation, telemedicine, the Tac-
tile Internet, Virtual/Augmented Reality (VR/AR), and the
Metaverse, all of which hold the potential to significantly
enhance our everyday lives. [3].

In addition, 6G is expected to provide significantly greater
communication capacity to handle the massive surge in
data traffic. By 2030, the global mobile subscriber base is
projected to reach approximately 17 billion, with data traffic
increasing to around 5 zettabytes per month. Moreover,
exceptionally high levels of spectrum and energy efficiency,
as well as connection ubiquity, will be essential to support
the deployment of massive Internet-ofThings (IoT) devices.
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FIGURE 1: 6G ecosystem and related services

TABLE 1: A comparison between 5G and 6G KPI metrics

Key Performance Indicator 5G architecture 6G architecture
Peak Data Rate 20 Gbps 1 Tbps

User Experienced Data Rate 100 Mbps 1 Gbps

Area traffic capacity 10 Mbps/m2 1 Gbps/m2

Connection density 106 users/Km2 107 users/Km2

Latency 1- 10 ms 10 - 100 µs

Reliability 99.999 % 99.99999 %

Spectral Efficiency 30 bps/Hz 100 bps/Hz

Positioning accuracy 0.5 m 0.01 m

Meeting these requirements while adhering to URLLC
constraints will necessitate enhancing various aspects of
the underlying network, typically achieved by integrating
innovative technologies into traditional cellular networks [4],
[5]. As illustrated in Figure 1, incorporating satellites and
UAVs in addition to conventional terrestrial terminals holds
the potential for increased connection ubiquity and enhanced
communication performance [6]. Indeed, when compared to
traditional terrestrial base stations, UAVs, also known as
drones, offer highly cost-effective and flexible solutions that
extend coverage and enhance signal strength. These drones
enable the establishment of line-of-sight (LoS) communica-
tion links, delivering superior link quality characterized by
increased capacity and highly reliable data transmission [7],
[8]. In addition, deploying RIS on building facades creates
opportunities for smart propagation environments. These
environments can effectively mitigate path loss and channel
sparsity. This because, by leveraging external signals, RIS

technology reflects incident wireless waves in desired direc-
tions, optimizing connection links between base stations and
users, paving then the way towards more robust and efficient
communication networks [9].Last but not least, combining
the capabilities of RIS technology with UAVs gives rise
to the concept of RIS-equipped drones. These advanced
drones further enhance the communication performance of
next-generation wireless networks, offering unprecedented
improvements in coverage, capacity, and reliability [10].

In addition to integrating UAVs and RIS as part of
advanced physical layer technologies, the upper layers of the
6G network architecture are poised for significant upgrades.
One notable innovation is MEC, which has emerged as a
powerful solution to address the stringent latency require-
ments of 6G-based mobile services [11]–[13]. By leveraging
MEC, mobile devices can offload computationally intensive
tasks — either partially or entirely — to MEC servers strate-
gically located at the network edge. This enables devices
with limited computational power, such as IoT devices, to
meet the latency requirements of their specific applications
while conserving energy [14].

While the integration of these innovative technologies
promises to revolutionize URLLC in next-generation wire-
less networks, it also presents additional challenges in meet-
ing the requirements of the underlying network. This is
primarily due to the introduction of new optimization con-
straints in resource allocation. For instance, in UAV-assisted
communications, the limited battery life of drones necessi-
tates critical optimization of their positions or flight paths
to maximize network coverage and extend operational time.
These challenges become even more complex when multiple
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UAVs are deployed in a single area. Similarly, the deploy-
ment of RIS requires precise tuning of reflective coefficients
to achieve the desired network performance. Furthermore,
MEC systems demand efficient resource allocation strategies,
including optimal distribution of computational resources for
each user and the development of effective user-association
policies. Although various optimization frameworks have
been proposed in literature to address each of these chal-
lenges either singularly or within a combined communication
infrastructure [15]–[23], the majority of them need to search
optimal solutions for resource management according to
dynamic wireless channel and traffic loads. This, due to the
complexity and size of 6G communication scenarios, will
bring to high computing delay, which cannot achieve the
requirements of URLLC. Furthermore, they are optimal only
for specific layers of the network — primarily the physical
and medium access control (MAC) layers — whereas it is
also essential to consider the stochastic nature of delays and
reliability issues in the upper layers of the network. Last
but not least, the theoretical models adopted for network
performance analysis are mainly based on simplified models
and assumptions, which often are not exactly the same as
real-world networks, leading then to suboptimal URLLC
management policies. Then, one can easily notice how
to overcome these URLLC related challenges, innovative
methodologies and solutions are urgently required for 6G
systems [24].

These may include sophisticated cross-layer optimization
technologies capable of identifying performance limits and
providing solutions to achieve the desired levels of end-to-
end (E2E) latency and communication reliability. Further-
more, the adoption of model-free machine learning methods
has demonstrated significant potential. Under these perspec-
tive, DT-based approaches, which leverage AI and DRL
mechanisms, have been identified as a keystone technol-
ogy for solving optimization challenges in complex future
wireless network scenarios, facilitating the delivery of 6G-
oriented services [25]–[28]. A DT-based approach involves
continuously collecting data from every physical device in
the network, enabling the device to be digitally replicated (or
’twinned’) on a server. This allows for real-time updates of
the device’s status and the overall network environment, of-
fering a significant advantage over analytical models, which,
as mentioned earlier, may result in suboptimal management
policies. Simultaneously, DTs are equipped with machine
learning capabilities that leverage the network status to
identify optimal cross-layer decision policies for network
resource allocation — including drone deployment, coverage
control, mobility management, optimal configuration of RIS
coefficients, and MEC resource allocation — with reduced
computing delay and better awareness of the underlying
system [29]. This makes it possible to potentially meet
URLLC requirements. Essentially, the DT-based approach
represents a shared intelligence concept across all devices,
paving the way for the successful deployment of increased

communication capacity with near-zero latency and ultra-
reliability requirements critical for next-generation 6G ser-
vices.

A. Motivation and Contributions
Building on the previous discussion, it becomes evident
that existing solutions in the literature fall short of fully
addressing the stringent requirements of URLLC in 6G
networks. This presents an urgent need for innovative, effi-
cient, and scalable approaches to overcome these challenges,
which could otherwise impede the widespread adoption
of 6G related services. In this context, the DT paradigm
has emerged as a transformative enabler for meeting the
demanding URLLC constraints in 6G services. Despite its
potential, there is a noticeable gap in the literature — no
comprehensive tutorials or review papers currently articulate
a clear and actionable vision of how DTs can deliver near-
zero latency and ultra-reliable communication. To address
this critical gap, this paper offers an in-depth review of
the most significant and current research on DT-enabled 6G
URLLC, providing a valuable resource for advancing 6G
communication infrastructures. More specifically, this paper
provide the following contributions:

• A brief but exhaustive overview about URLLCs re-
quirements for 6G-oriented services;

• An illustration how, thanks to its features, DT paradigm
represents a promising solution in terms of real-time
optimization;

• A review of the most promising DT-based architectures
enabling URLLCs currently available in literature;

• A discussion about the remaining challenges and future
directions in this research area.

The rest of the paper is organized as follow. Section II
provides a brief but exhaustive discussion about the main re-
quirements for the full roll-out of time-sensitive and mission
critical 6G-based URLLC services. An introduction about
the principles and potentialities of using a DT paradigm are
provided in section III. The paper continues in section IV,
which contains a review about recent works om DT-enabled
solutions for guaranteeing 6G based URLLC requirements.
Furthermore a use case scenario showing how effectively the
usage of DT can contribute in reducing the network latency is
provided in section V. Current challenges and future research
directions are discussed in section VI. Finally, the paper is
concluded in section VII.

II. PRINCIPLES AND ASPECTS FOR 6G-BASED URLLC
As previously mentioned, the advent of 6G wireless com-
munication networks will bring the widespread adoption
of new technologies and use cases poised to revolutionize
everyday life. However, enabling these innovative services
requires addressing significant challenges related to network
latency and reliability. This section briefly discusses the key
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requirements necessary to support the full deployment of
6G-based services constrained by URLLC.

A. Reliability requirements
The term reliability indicate the capacity of the communica-
tion link of transmitting a specific amount of data within a
predefined temporal window ad with an extremely low error
probability [30]. In the context of 5G communication tech-
nology, the level of reliability has been defined as the capac-
ity of maintaining a communication error probability of 10−5

while transmitting 32 byte of a communication frame within
1 ms temporal window [31]. Although this represents a very
strict and challenging requirement to achieve, the reliability
requirements are expected to be pushed towards lower levels
of error probabilities with the advent of 6G communication
technology. More specifically, for 6G-oriented services such
as telesurgery, intelligent transportation, AV/VR, and smart
manufacturing, it is expected to achieve around 10−5 and
10−9 of communication reliability [32]. This requires the
investigation and design of physical layer technologies with
more optimal and efficient capabilities than the ones adopted
in the 4G/5G communication networks. These ranges form
the design of new channel coding schemes to the definition
of new channel estimation techniques. As regards the realm
of channel coding techniques, so far the most promising
approach, already proposed in the context of 5G networks,
seems to be the usage of low-density parity check (LDPC)
codes for data transmission and polar codes for transmissions
within the control channels [33], [34]. However, 6G-oriented
services will be based on the usage of energy constrained
IoT devices and applications with a wide variety of rate
requirements, meaning that also a focus on energy efficiency
during encoding, as well as flexibility in both length and
rate will be required. In other words, it will result necessary
to develop new coding techniques possessing characteristics
that allow higher levels of flexibility for decoders meeting
various KPI trade-offs. For instance, specific decoders may
excel in low-latency scenarios while others prioritize higher
throughput, despite offering similar reliability for a given
length and rate. This is recently put the lights on the concept
of unified coding as a possible enabler for competitive
6G channel coding [35]. On the other hand, techniques
such as random matrix theory, high-dimensional covariance
estimation schemes, as well as the usage of AI/ML, are
gaining a lot of attention as channel estimation techniques
for 6G networks [36].

B. Latency requirements
In the context of communication systems, latency refers to
the time it takes for a data packet to complete a round-
trip over-the-air transmission between the communication
ends. This encompasses various phases, as a packet trav-
eling from the transmitter (Tx) to the receiver (Rx) can
encounter different types of latency, such as control plane
latency, user plane latency, and E2E latency. Among these,

the E2E latency represents the most complicated since it
involves different phases of the communication protocol
stack like data processing, queuing, scheduling, and possible
re-transmission.

In the context of 5G and beyond 5G (B5G) communi-
cation technologies, it is expected that for certain types of
delay-sensitive services the maximum packet transmission
time interval (TTI) should not be exceed 1 ms [37]. To
accomplish this, the concept of short time slots that span
only a fraction of a millisecond — typically consisting of
2, 4, or 7 symbols, instead of the traditional long TTI of
14 symbols — has been introduced. These shorter slots
are well-suited for short-packet communications typically
representing the traffic originated from sensors involved
in machine-type communications [7]. However this implies
the usage of a different approach compared to the one
adopted in 4G/5G networks. For instance, the authors in [38]
demonstrated that an extremely short preamble, consisting of
just one orthogonal frequency division multiplexing (OFDM)
symbol, can meet the latency requirements of B5G factory
automation systems while still ensuring accurate packet de-
tection and channel estimation. However, in order to meet the
latency requirements of other types of 6G-oriented services,
in addition to investigate new types of modulation schemes,
it will result necessary to investigate new techniques, ranging
from the optimization of network slicing procedures to the
usage of federated learning and edge computing [39].

C. Network availability
Network availability is a critical requirement for deploying
classical URLLC services such as tele-surgery, autonomous
vehicles, and remote robotic control. It is defined as the
coverage probability with high throughput and specific Qual-
ity of Service (QoS) constraints. High levels of network
availability are essential for ensuring the quality and sta-
bility of remote operation controls, particularly in scenarios
involving tele-operated and autonomous driving activities.
For example, in the case of autonomous driving, continuous
and seamless flow of operational data facilitated by high
network availability enhances road safety by enabling the
sharing of critical information such as potential accidents and
adverse climate conditions. Current network infrastructure
are able to guarantee 95% of network availability and only
for small-scale networks, while 6G-based URLLC services
will require a guarantee of 99% of networks availability [40].
[40]–[42]. For this reason, the primary challenges lay in
significantly enhancing network availability and developing
effective methods to analyze and enhance it in large-scale
networks. Additionally, security considerations are crucial
for URLLC-related services to prevent potential risks such
as unauthorized control of devices through spoofed signals
or intentional dissemination of malicious messages within
the networks under consideration.
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FIGURE 2: A representation of digital twin architecture.

III. DIGITAL TWIN: PRINCIPLE AND POTENTIALITIES
This section will provide a brief overview about the concept
of DT. More specifically, a high level representation that
summarize all the main involved entities is firstly provided.
Subsequently the potentialities that this paradigm holds as
key enabler technology for next generation networks are also
illustrated.

A. Brief overview
Although the concept of DT is becoming very popular within
the last few year, its origin are rooted in the second half
of 20th century. More precisely in 1970 during the launch
of Apollo 13 shuttle to the moon. On that occasion, the
lunar landing was aborted after an oxygen tank explosion
in the service module two days after the mission, disabling
electrical and life-support system within the shuttle. Then in
order to find the best way for getting Apollo 13 crew back
to earth alive, NASA created a computer-based version of
the shuttle allowing to run several simulations that permitted
to find the best landing strategy [26]. However, the first
formal definition of DT started to arrive later within the
start of 21th century, with the definition of a product life
management (PLM) provided by Michael Grives [43], and
subsequently improved by Framling, where the DT was
defined as an agent-based architecture in which each product
item has a corresponding virtual counterpart/agent associated
with it [44]. However, the more official definition is the one
provided by NASA in 2010, where the DT can be seen as
a set of computer-based models that constantly collect data
from their physical twin (PT) counterpart in order to run sim-
ulations/emulations representing the life-cycle of the PT as

well as its possible evolution in the future based on particular
circumstances [45], [46]. Indeed, according to this definition
and the illustrative high-level representation provided in
Figure 2, DTs have continuous interaction with their physical
counterparts and the external environment. Within the DT
paradigm it will be possible to create a digital replica of a live
network which will be constantly updated with data collected
from the real-world developments through dedicated asset for
data exchange. This means that DTs will be able to track the
life cycle of their PTs and enhance their inner processes and
functions through closed-loop optimization. Additionally, by
simulating new configurations and employing AI and Big
Data analytics tools, a DT can forecast future conditions
such as system defects, damages, and failures. This foresight
empowers proactive maintenance operations or the activation
of self-healing mechanisms.

B. Benefits of DT-based solutions
As evident from our previous discussion, the concept of DT
represents a powerful approach for proactive management
of real physical devices. The possibility of continuously
collecting data from these devices, in conjunction with the
most recent and advanced AI/ML-based big data analytic
techniques that empower DT, enables the acquisition of
valuable knowledge aimed at improving the performance of
physical systems. For these reasons, the usage of DT has
been highlighted as a key enabling technology for achieving
optimal resource allocation in 6G-based networks, enabling
then the possibilities to meet the KPIs of specific URLLC
services, especially those based on IoT and autonomous
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driving, which involve real-time resource optimization of
various network resources [26].

For example, most IoT-based sensor applications are en-
visioned to rely on the usage of MEC servers, which allow
those sensors to offload either partly or entirely computation-
ally intensive tasks at the server side, permitting them to save
energy and fulfill time constraints of a specific application.
Such approach requires an optimal resource allocation policy
in terms of users association with a specific server as well as
the computational resource associated to each user-specific
task. In this regard, the application of DT based solution
has been proven to be an effective solutions to find the
optimal policy that permits to increase processing efficiency
and prolong battery lifetime of sensors, as well as network
and efficiency and service specific delays [47]–[49].

On the other hand, within the context of autonomous driv-
ing, commonly referred to as the Internet of Vehicles (IoV),
a continuous evolution and implementation of DT for man-
aging traffic data is envisioned for the near future. Indeed,
leveraging DT to analyze vast IoV data enables the possi-
bility of informed decisions aimed at mitigating/minimizing
traffic congestion. Furthermore, it allows for addressing
specific challenges such as limited data availability due to
severe weather-related exceptions or battery issues in vehicle
sensors, which cannot guarantee 100% data availability [50].
Additionally, it promotes the adoption of social-aware prin-
ciples, a very recent data-collection paradigm which have
proven to be effective for task-specific data collection and
analysis [51], [52].

Last but not least, the DT principle has been highlighted
as a powerful enabler for Industrial IoT. More specifically in
the context of smart manufacturing. Indeed, within this area
the usage of DT can be exploited in multiple ways, ranging
from the monitoring and prediction about the behavior of
the corresponding factory entity, to the recommendation of
optimal actions for both workers and machines in order
to enhance the entire industrial process. This approach
enables then the creation of platform-independent services,
facilitating collaboration between machinery and humans to
establish an efficient, agile, and intelligent manufacturing
environment [53], [54].

IV. RECENT WORKS ON DT FOR 6G ORIENTED URLLC
This section offers a structured review of recent, significant
research on DT-enabled URLLC systems tailored for 6G-
oriented applications. The works are categorized according
to the primary areas where DT potential has been exten-
sively explored. A dedicated subsection for each category is
provided. Tables 2 and 3 present concise summaries of each
study.

A. DT for heterogeneous resource allocation
As already anticipated, with the advent of next generation
wireless communication technology three main groups of
services are envisioned to be delivered, hich can be broadly

categorized into enhanced mobile broad band (eMBB), mas-
sive machine-type communications (mMTC), and URLLC,
each of them with specific requirements. Indeed eMBB based
services are expected to provide improved data rate,, mMTC
aims at serving IoT devices, while URLLC are necessary for
services that requires latency not greater than 1 millisecond
and connection reliability higher than 99.999%. However, all
these types of services are expected to be delivered within
the same bandwidth, meaning that appropriate scheduling
mechanisms able to guarantee for example both eMBB and
URLLC requirements will be necessary. This is primarily
driven by the fact that, compared with eMBB, URLLC traffic
is unpredictable and scattered in practice, necessitating the
dynamic and intelligent allocation of resources through real-
time interaction with the environment. To tackle this pressing
issue, which could impede future service deployment, and
inspired by the capability DRL to derive optimal policies in
non-stationary settings, a DT-enabled DRL framework was
proposed for the joint scheduling of URLLC and eMBB
in [55]. With this approach, the scheduling problem is
formulated as an optimization task aimed at identifying the
ideal Resource Block (RB) allocation for eMBB users and
an optimal subset for URLLC users, while ensuring fairness
among all users. Given the complexity of this optimization
problem, a DRL-based solution running offline within the
DT was proposed to explore the optimal allocation policy for
a range of conditions. This strategy demonstrated how the
DT-based approach mitigates the risk of failing to guarantee
URLLC services in real-world networks. The effectiveness
of this method has been validated through numerical simu-
lations, showing that the DRL algorithm not only converges
well but also meets the stringent latency requirements of
URLLC while maintaining eMBB reliability.

B. DT for MEC-based services
A digital twin approach for optimizing user association,
resource allocation, and offloading probabilities in a MEC
system, subject to URLLC constraints, has been proposed
in [56]. In this case, authors considered a MEC scenario
where a set of M access points (AP) have to serve a set
of K = Ku + Kb users that can heave either URLLC
requirements (Ku) or have access to delay tolerant services
(Kb). For such scenario, a DT-replica of the underlying
network is created in a central server where an offline
trained deep-learning based algorithm is trained in order to
provide the best user association policy. In addition they also
designed a low-complexity optimization algorithm aimed
at optimizing the resource allocation policy and offloading
probabilities at each AP. The resulting framework resulted
able to minimize the energy consumption by 87% when com-
pared with other baselines, while guaranteeing both URLLC
and delay-tolerant service requirements. Authors in [57],
[58] considered a DT-based approach as potential solution
to minimize the communication latency of an Industrial
IoT communication scenario subject to URLLC constraints.
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TABLE 2: . Summary of current state of the art works on DT-assisted URLLCs in 6G: Part-1.

Work reference Investigated Scenario/Objective Results and Insights
[55] An optimization problem aimed at determining the optimal

allocation of Resource Blocks (RBs) to ensure eMBB and
URLLC requirements, as well as fairness among users sharing
the same bandwidth

The work demonstrates how a DRL-based approach, capable
of running offline within the DT, enables the exploration
of optimal allocation policies for various conditions. The
DRL algorithm exhibits strong convergence performance and
effectively meets the strict latency requirements of URLLC
while ensuring the reliability of eMBB.

[56] A digital twin-based approach for optimizing user association,
resource allocation, and offloading probabilities in a MEC sys-
tem, while ensuring compliance with URLLC requirements.

The resulting framework was able to minimize energy con-
sumption by 87% compared to other baselines, while meeting
both URLLC and delay-tolerant service requirements

[57], [58] A DT-based approach as a potential solution to minimize
communication latency in an Industrial IoT communication
scenario, while adhering to URLLC constraints.

It has been demonstrated that, through an efficient optimization
algorithm based on the AO approach and IA, the DT-aided
method intelligently utilizes available resources to minimize
worst-case communication latency.

[59] An investigation into how the lack of synchronization between
physical entities and their DT representations impacts the
entire system. In this case, the deviation between the digital
representation and the real system’s parameters is modeled as
a normal distribution.

The design of a DT-assisted robust task offloading scheme
based on machine learning, which, compared to other bench-
mark schemes, significantly reduces task offloading latency
and energy consumption, while also accounting for potential
uncertainties and deviations.

[60], [61] An investigation into the feasibility of implementing a DT-
based solution using a distributed approach, with the main
objective of solving a fairness-aware latency minimization
problem for the underlying network, subject to URLLC con-
straints.

The study showed how the proposed distributed approach was
able to reach the same performances of a centralised one, but
with reduced execution time.

More specifically, they considered a communication scenario
where a set of K Industrial IoT devices that need to offload
some tasks to a particular edge server embedded within
each multi-antenna AP. Leveraging the digital replica of the
network, the DT can identify the optimal solution for mini-
mizing worst-case communication latency. This is achieved
by jointly optimizing the transmit power of IoT devices, their
association with APs, the partitioning of tasks for offloading,
and the processing rates of both users and edge servers. Such
solution was made possible by designing an efficient opti-
mization algorithm that combines an alternating optimization
(AO) approach with inner approximation (IA) techniques.
The effectiveness of this approach was demonstrated through
numerical results, showing how intelligently the DT-aided
approach uses the available resources to minimize the worst-
case communication latency.

More recently, authors in [59] considered the effects
caused by the lack of synchronization between physical
entities and the respective DT representations, evaluating
in how this would impact the entire real-world system. In
their study, they addressed the challenge of optimizing task
offloading, resource allocation, and power management for
mobile devices in a DT-assisted URLLC-enabled mobile
edge network, while accounting for deviations between ac-
tual values and those estimated by the DT. Deviations in
the digital representation were modeled as a normal distri-
bution. Based on this setup, they formulated an optimization

problem to minimize latency and energy consumption under
uncertainty by optimizing task offloading, resource alloca-
tion, and power management. To solve this, they developed
a DT-assisted robust task offloading scheme using machine
learning, which, compared to benchmark schemes, achieved
a substantial reduction in task offloading latency and energy
consumption, even considering the deviations from real-
world parameters.

The approaches discussed so far have been based on
the assumption of a centralised DT solution. However this
approach will not result efficient as the size of the network
increases as well as in cases when the edge serves (ES) are
deployed within widely distributed areas. Motivated by this,
authors in [60], [61] investigated the possibility of a DT-
based solution with distributed approach. The investigation
about the possibility of using a distributed approach was
twofold. From one side it was investigated as possible
suitable solutions for large scale scenarios. Alternatively,
this approach was employed as an effective solution for ad-
dressing complex, non-convex resource allocation problems
in next-generation wireless networks. The primary goal was
to achieve fairness-aware latency minimization within the
network, while meeting the key URLLC constraints. This
was accomplished by jointly optimizing various communica-
tion and computation parameters, including communication
bandwidth, transmission power, task offloading portions, and
the processing rates of UEs and ESs. Through numerical
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TABLE 3: . Summary of current state of the art works on DT-assisted URLLCs in 6G: Part-2.

Work reference Investigated Scenario/Objective Results and Insights
[62] Development and evaluation of a MEC-based URLLC DT

architecture designed to deliver a robust computing infrastruc-
ture by simultaneously optimizing task offloading and caching
strategies on nearby edge servers, while ensuring stringent
reliability and low-latency requirements essential for future
Metaverse services.

The proposed DT model employs an alternating optimization-
based solution to determine the optimal configuration that
meets network requirements. Additionally, this study demon-
strates how leveraging caching techniques can mitigate the
impact of synchronization discrepancies between the DT and
the physical environment.

[63] A blockchain-supported hierarchical digital twin framework
designed to learn optimal computation and communication
allocation policy for IoT networks under URLLCs constraints.

This study illustrates how using a distributed blockchain
environment allows the DT to balance system delay and energy
consumption while improving system reliability/security and
learning accuracy.

[64] Authors propose a DT-based approach for RIS-aided MEC
system under URLLCs constraints. A DDPPG-based policy is
implemented at the DT level to find the optimal solution which
minimise the total E2E latency by jointly optimising beam-
forming vector at RIS, transmit power of users, bandwidth
allocation, processing rates, and task offloading parameters.

When compared to the scheme without a RIS, the proposed
method achieves up to 60% lower transmission delay and 20%
lower energy consumption.

[65], [66] Idea of a DT agent aimed at minimising the overall commu-
nication latency of the underlying UAV-assisted and MEC-
enabled network infrastructure under URLLCs requirements.

The DT agent is able to find the optimal solution which
jointly optimise the transmit power, offloading factors, and the
processing rate of IoT devices and ES in order to minimise
the overall communication latency.

[67] Spatial-Information DTN defined as a dynamic satellite net-
work used to observe, simulate, and forecast real-world situa-
tions and behaviors through designated protocols, algorithms,
and tools.

Thi DT-based approach has been validated, showing an ef-
fective capability in improving the URLLC performances of
Space-Air-Ground Integrated Networks.

simulations it has been outlined how the proposed distributed
approach was able to reach the same performances of a
centralised one in terms of guaranteeing the URLLC re-
quirements but with reduced computational time. It is also
worth mentioning that this work also highlighted how to a
divergence in the DT representation respect to the real world
corresponds a deprecation of the system performances.

All the DT-enabled solutions for MEC service provision-
ing previously introduced may result not fully suitable to
metaverse applications like AR/VR. Indeed these type of
services may require storage of data at the edge of the
network i.e., edge data caching [68], while the previously
illustrated work only optimised edge computing and task
offloading. With respect to this, an innovative DT scheme for
the support of metaverse oriented services support was pro-
posed in [62]. In particular authors designed a MEC-based
URLLC DT architecture able to provide powerful computing
infrastructure for jointly optimizing task offloading, and task
caching techniques in nearby edge servers, while guaran-
teeing stringent requirements of reliability and low latency
envisaged to be mandatory for the future networked systems.
In doing so, using the digital representation of the underlying
network, the DT uses an alternating optimization (AO)-based
solution to find the optimal solution able to meet the network
requirements. Also in this case authors illustrated the effects
of the deviation between the estimated parameters at the DT

and the real parameters in the network,showing that caching
represents an effective possible solutions to alleviate this.

Although DT has been recognized as powerful solution to
guarantee sustainable computing at the edge of the network
by fulfilling the URLLC requirements, data privacy and
protection for data exchange between IoT devices and ES,
as well as security and trust when a distributed approach
is performed like in [61], represents aspect of paramount
importance to take into account during the design of a
DT system. In this regards, authors in [63] proposed a
blockchain-supported hierarchical digital twin for IoT net-
works to achieve secure and reliable computation while guar-
anteeing the possibility of real-time interaction with under-
lying URLLC constraints. More specifically, they proposed a
DRL method based on proximal policy optimization (PPO)
to learn optimal computation and communication allocation
policy within a distributed blockchain digital environment,
which balance system delay and energy consumption while
improving system reliability based on ensuring the learning
accuracy of IoT devices.

C. DT for RIS, UAV and satellite assisted URLLCs
RIS have recently emerged as a crucial technology for
enabling smart propagation environments. This technology
is based on passive reflective elements, or metasurfaces,
which are linked to a control unit that adjusts the reflective
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properties of each element. By doing so, the RIS can direct
incoming radio signals toward a specified target, enhancing
signal control and optimizing the propagation environment.
This result ultimately beneficial in improving the propagation
characteristics, i.e., increased signal-to-noise ratio at the
receiver, in context with poor channel and with energy-
constrained devices [69]. In this regards, the possibility
of including RIS technology into DT-based infrastructure
is gaining attention [28]. Under this perspective, a DT-
based and RIS-assisted MEC system operating under spe-
cific URLLC constraints was examined in [64]. The DT
replica incorporates a DRL mechanism, specifically a Deep
Deterministic Policy Gradient (DDPG) algorithm, designed
in order to identify the optimal solution for minimising
the system’s total end-to-end latency. This is achieved by
jointly optimizing the beamforming vector at the RIS, user
transmit power, bandwidth allocation, processing rates, and
task offloading parameters. The authors demonstrated that
their approach reduced transmission delay by up to 60% and
energy consumption by 20% compared to a setup without
RIS. Furthermore, the DDPG approach outperformed other
deep learning methods, such as Proximal Policy Optimiza-
tion (PPO), as well as conventional alternating optimization
techniques.

The possibility of using the benefits UAV-assisted com-
munications in order to create MEC services able to support
mission critical services with URLLCs requirements has
received attention from the research community [70], [71].
Based on this, authors in [65], [66] proposed a DT-assisted
UAV-based edge networks. In this context they exploited
the idea of a DT agent aimed at jointly optimising the
transmit power, offloading factors, and the processing rate
of IoT devices and ES in order to minimise the overall
communication latency of the underlying communication
infrastructure, required to meet URLLC requirements. Sim-
ulation results illustrated the sensibility of the system in
performing the optimal resource allocations in order to meet
the requirements and reduce the communication latency.

Within all its vision, as illustrated in Figure 1, the de-
ployment of 6G networks is envisaged to provide a uni-
fied network infrastructure where terrestrial communications,
satellite systems, and aerial networks are all interconnected
to provide seamless connectivity trough the ubiquitous in-
ternet. This vision is referred as Space-Air-Ground Inte-
grated Networks (SAGIN) [72]. Then, in contrast to single
network systems and UAV-assisted communication, from
one side the SAGIN architecture will provide more ex-
tended coverage, higher flexibility and efficiency. But on the
other hand it faces new challenges such as time variability,
management of heterogenous devices and self-organization
networks, which can drastically penalise its capabilities of
guaranteeing URLLC requirements. One potential solution
to overcome these challenges is through the creation of a
digital representation of the SAGIN architecture, enabling
simulations and predictions of the future state of physical

entities to prevent potential network failures. This approach
was explored by the authors in [67], who introduced the
concept of a Spatial-Information Digital Twins Network
(DTN). With such approach it is indeed it is possible to
monitor, simulate, and forecast real-world conditions and be-
haviors using specialized protocols, algorithms, and tools for
such dynamic satellite system. The insights gained from this
analysis can then be fed back into the physical network to
assist with resource allocation and equipment maintenance,
ultimately optimizing the entire network. Building on this
idea, the authors demonstrated its effectiveness in enhancing
URLLC performance in SAGIN networks by developing
an Intelligent Coordinated Scheduling Algorithm (ICSA).
This algorithm schedules various heterogeneous tasks while
taking into account crucial information about the physical
network. They showed how the ICSA can be implemented
on the DTN to determine the optimal policy, maximizing
total priority and completion rates while meeting URLLC
requirements.

V. A DT-ENABLED URLLC USE CASE
In this section, we illustrate the performances of a DT
technology in 6G-based URLLC for industrial automation.
Specifically, DT is used to replicate the computing capacity
of Industrial Internet of Things (IIoT) devices and edge
servers.

For our simulations, we consider a small-scale au-
tonomous factory scenario, where a multi-antenna base
station serves multiple single-antenna IIoT devices. The
computational tasks from these IIoT devices can be partially
offloaded to the edge server associated with the base station
for execution. The computing capacities are set to 3 GHz
for the IIoT devices and 15 GHz for the edge server.
Additionally, the energy budget for each IIoT device is 1000
J. The reliability requirement for URLLC transmissions is
10−9 [58].
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FIGURE 3: Impacts of digital twin estimation error on the
end-to-end latency of task processing.
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To demonstrate how DT estimation error affects the E2E
latency of IIoT devices, we ran simulations with varying
settings for the required CPU cycles to process a task.
Figure 3 shows the worst-case E2E latency among IIoT
devices over a range of required CPU cycles with different
levels of DT estimation error. Specifically, as the required
CPU cycles for a task increase, the worst-case e2e latency
gradually rises. Additionally, Figure 3 highlights the impact
of DT estimation error on the latency obtained. The more
accurately the DT estimates the processing rate of the
physical system, the better the performance achieved. This
finding reflects the practical application of DT technology in
real-world scenarios.

VI. CHALLENGES AND RESEARCH DIRECTIONS
Within the last two subsections, it has been illustrated how
the adoption of DT-based solutions holds a very valuable
potential toward the realization of URLLC for 6G-related
services. However, as one can easily notice from section IV,
this represents an early stage research field where only few
studies have been conducted so far. This means that there are
still some challenges and issues that need to be addressed
in order to make the usage of DT for URLLC-based 6G
networks service a reality. The most relevant and critical are
discussed within this section.

A. Computational infrastructures
At the highest level of the DT architecture, one of the
most critical challenges for ensuring the deployment and full
utilization of DT potential lies in providing powerful com-
putational infrastructures. These are essential for enabling
DTs to execute and manage resource-intensive, computation-
hungry AI/ML frameworks designed to identify optimal
decision policies and extract meaningful insights from data
collected by various physical devices. To achieve this, it will
be necessary to deploy edge/cloud servers equipped with
high-performance GPUs, which currently have an average
cost of around $10,000, depending on specific requirements.
This presents a significant capital expenditure (CAPEX)
challenge for network service providers. One potential so-
lution to address this challenge is the adoption of the GPU
as a Service model. Leading AI/ML computing companies,
such as Amazon, Microsoft, and Google, are expected to
alleviate the high CAPEX barrier by offering on-demand
GPU services similar to existing cloud-based applications.

In addition to CAPEX, another significant challenge re-
lated to computational infrastructure is the curse of di-
mensionality. The widespread adoption of IoT devices will
inevitably result in highly complex optimization problems
and tasks that must be solved within strict time constraints.
To address this, Quantum-Based Computing (QBC) has
emerged as a promising solution that is gaining substantial
attention from both academia and industry. By leverag-
ing the principles of quantum superposition, entanglement,
and parallelism, QBC demonstrates significant potential for

achieving rapid learning speeds when processing large-scale
datasets in probabilistic environments [73], [74].

B. Data consistency and synchronization
In addition to provide high-performance computational re-
sources, another important requirement for the deployment
of DT technology that needs attention is the process of
collecting data from the corresponding PT counterpart. The
main challenges in this process can be broadly classified
into two main categories: i) availability of real-time data
and ii) managing missing data from sensors. In the first
case, guaranteeing the data exchange between the DT and its
corresponding PT results essential to have an high fidelity
representation of all the processes running into the physical
entity. This in turn permit to provide the optimal decision
policy for the considered system. If real-time synchronization
is not provided, this can cause sub-optimality configurations
of the PT or even worse system performance deprecation.
For example, the lack of real-time synchronization can
cause an parameter estimation errors, which, as illustrated
in Section V, may result in suboptimal decision policies that
fail to meet the URLLC requirements. Similarly, missing
temporarily data from some sensors and/or other end-user
devices would result in having incomplete and sparse data
collection, raising then big challenge in terms of data anal-
ysis which can potentially lead the AI engine to take the
wrong decision even if it has a real-time representation of
all the network components. Then, it will result necessary to
provide adequate strategies for guaranteeing synchronization
between DT and corresponding PT, as well as consistency
of data collected from ed-users in order to provide the
optimal configurations for the underlying network. Authors
in [62] demonstrated that increasing the caching capacity of
a MEC-based URLLC digital twin architecture can reduce
communication latency in the presence of estimation errors.
This indicates that utilizing MEC servers with appropriate
caching capabilities can help address E2E issues arising from
the lack of synchronization. However, research in this area
is still in its infancy, and further contributions are needed to
advance the field.

C. Data annotation and compliance
To date, the process of labeling or tagging data with relevant
information to make it understandable and usable for AI/ML
algorithms, i.e. data annotation, is performed manually by
human operators. In the context of DT-based application for
6G networks, this process may result to be very tedious
and time consuming due to the vast amount of data that
the DT will constantly receive, hindering its capability to
fulfill the URLLC requirements. Then, the main challenge
here will be to provide reliable and scalable frameworks for
the autonomous provision of data annotation functionalities.
Indeed, scalability represents the requirements in order to
face the exponential increase of data to manage. On the other
hand, reliability refers to the ability of providing correct
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annotation in order to guarantee accurate prediction as well
as reliable visualization services of the data itself.

Another aspect that will require attention is related to the
concept of data compliance. Indeed, the data used in the
DT ecosystems must firstly be treated in line with local data
protection regulations such as the General Data Protection
Regulation (GDPR) in the European Union, the California
Consumer Privacy Act (CCPA) in the United States. This in
the vision of safeguarding the privacy and security of sensi-
tive information collected and processed within digital twin
systems. In addition, ensuring compliance with cross-border
data transfer regulations and vendor/partner agreements is
essential for maintaining compliance throughout the digital
twin ecosystem and mitigating risks associated with data
handling practices. These aspects are mainly necessary in
order to ensure the deployment of trusted DT systems that
analyze data by guaranteeing accountability, sustainability
and safe operation of the underlying network.

D. Data security and privacy
The implementation of DT systems holds immense potential
to transform network management through the application
of AI-driven logic. Nevertheless, the incorporation of AI
introduces notable security and privacy considerations. A
primary concern revolves around data privacy, as the de-
ployment of DT-based networks requires the gathering of
extensive user data for training AI/ML models, often without
users being fully informed or having control over how
their data is managed by external systems. This increases
the vulnerability to unauthorized access or potential data
breaches. Moreover, the transmission of user data to DTs
is susceptible to various attacks, including data poisoning
attacks that manipulate ML models, thereby compromis-
ing system performance and integrity. Additionally, AI-
based systems may be targeted to exploit vulnerabilities
in network nodes, exacerbating security risks. To confront
these challenges, promising approaches such as federated
learning, homomorphic encryption, differential privacy, and
adversarial ML techniques offer avenues to enhance security
and privacy safeguards in DT systems. However, further
research is essential to comprehensively explore and refine
these solutions, ensuring effective mitigation of security and
privacy risks in DT deployments.

E. DT Scalability
Another significant challenge that must be addressed is the
efficient scalability of DT solutions to adapt to the massive
proliferation of IoT devices while ensuring optimal decision
policies that meet URLLC requirements. This is a non-trivial
issue. With the rapid growth of mobile IoT devices, the
volume of data to be processed will increase drastically.
Additionally, communication scenarios will become more
complex. Together, these factors may lead to increased
computational time required to determine optimal resource

allocation policies, potentially failing to meet URLLC re-
quirements.

Recently, the adoption of distributed approaches for build-
ing DT solutions has been identified as a promising method
to address scalability challenges. As highlighted in [60], [61],
distributed approaches can achieve similar performance to
centralized systems while requiring less computational time.
However, further investigation is needed to assess the feasi-
bility of distributed DT solutions. Specifically, implementing
distributed approaches requires optimal strategies for the
underlying physical network, such as determining the best
locations for edge or cloud servers.

In addition to distributed approaches and proper network
planning, managing the vast amounts of data generated
by physical devices is another critical aspect for ensuring
the efficient scalability of DT-based systems. In this con-
text, quantum-based computing is emerging as a promising
solution. Leveraging principles of quantum superposition,
entanglement, and parallelism, quantum-based computing
has shown significant potential for achieving high processing
speeds for large-scale datasets in probabilistic environments
[73], [74]. Another promising technology to address the
data management challenges in 6G networks is semantic
communication (SC). Unlike traditional communication sys-
tems, SC focuses on extracting and transmitting only the
essential meaning of a message, which is then interpreted at
the destination. By reducing the volume of transmitted data,
SC enables the efficient management and control of a vast
number of devices [75], [76].

Then, it is clear how the adoption of distributed ap-
proaches, quantum-based computing, and semantic commu-
nication represent promising strategies for tackling DT scal-
ability challenges. However, further research is required to
fully realize these approaches, particularly in implementing
robust distributed systems and developing practical quantum-
based and semantic communication solutions.

VII. CONCLUSIONS
The deployment of the 6G wireless networks represents
an unprecedented opportunity to address the demands for
URLLC, then fostering the deployment of innovative ser-
vices, which are expected to change our everyday lives.
Under these perspectives, this paper provided an in-depth
review of current DT-enabled URLLC frameworks. This
because DT paradigm, enhanced by AI and DRL stands
out as a transformative approach capable of providing real-
time decision-making and optimization capabilities neces-
sary to meet ambitious near-zero latency and ultra-reliability
standards within complex 6G communication environments.
Alongside, a use case study aimed at illustrating the effec-
tiveness of DT in reducing the latency for 6G communi-
cation scenarios is also provided. The paper concludes by
discussing the critical challenges and future directions which
need to be undertaken in order to fully exploit the potential
of DT in delivering URLLCs services.
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