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Abstract—Achieving real-time decision-making and efficient
resource management in dynamic, large-scale Internet-of-
Vehicles (IoV) networks is a significant challenge due to their
inherent complexity and scale. To address this, we propose a
digital twin (DT)-assisted IoV framework that integrates a novel
semi-synchronous adaptive federated learning (AdFL) approach
with multi-agent deep reinforcement learning, enhanced by
generative artificial intelligence (GenAI) techniques, specifically
conditional variational autoencoders (CVAE). The framework
optimizes partial task offloading across distributed mobile edge
computing (MEC) servers, ensuring scalable, efficient, and
accurate decision-making in heterogeneous vehicular networks.
By continuously mirroring the real-time states of vehicles and
roadside units (RSUs), the DT framework enables precise
resource allocation and adaptive task management. To tackle
the complexities of dynamic environments, we design a global
model with transformer layers embedded in the federated
learning (FL) process, capturing long-range dependencies. A
novel semi-synchronous aggregation mechanism is introduced
to balance timely updates with model quality. The proposed
adaptive federated multi-agent reinforcement learning (AF-
MARL) algorithm facilitates decentralized, collaborative learning
among vehicles and RSUs, optimizing overall cost, and energy
efficiency, reducing delay, and improving task completion
rates. Extensive simulations demonstrate the effectiveness of
the proposed framework against other existing approaches,
highlighting its potential to transform real-time decision-making
in IoV networks.

Index Terms—Internet-of-Vehicles (IoV), digital twin,
federated learning (FL), multi-agent reinforcement learning
(MARL), mobile edge computing.

I. INTRODUCTION

THE rapid growth of Internet-of-Vehicles (IoV) networks,
driven by the proliferation of autonomous vehicles
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and the increasing demand for intelligent transportation
systems (ITS), has exposed significant challenges in traditional
centralized computing models. Centralized cloud architectures
often struggle with latency, scalability, and reliability,
especially in the dynamic and data-intensive environments
of IoV networks. These limitations underscore the need for
decentralized edge intelligence, where decisions are made
closer to the data source to enhance responsiveness and
reduce latency. Mobile edge computing (MEC) has emerged
as a promising solution by bringing computational resources
closer to vehicles, and reducing dependence on distant
cloud servers. However, MEC still faces limitations due to
its reliance on centralized coordination, which can create
bottlenecks and single points of failure. Recent studies have
explored integrating MEC with IoV networks to improve real-
time decision-making. For instance, [1] proposes a security
solution for MEC in vehicular ad hoc networks, focusing on
safeguarding privacy and computational overhead in large-
scale deployments through a broadcast proxy re-encryption
scheme and decentralized trust management. Similarly, [2]
introduces a task offloading algorithm for dynamic vehicular
networks, leveraging multivariate long short-term memory
(LSTM) for workload prediction and distributed deep
reinforcement learning (DRL) to optimize resource allocation
in MEC environments. In another approach, [3] presents an
intelligent task offloading strategy for IoV networks using
reconfigurable intelligent surfaces (RISs) and MEC to enhance
resource allocation and communication quality, demonstrating
the versatility of MEC in different vehicular network contexts.

As vehicular networks evolve, the integration of digital twin
(DT) technology has become crucial for real-time monitoring
and predictive analytics. A DT is a virtual replica of a
physical entity that continuously updates with real-time data,
mirroring the state of vehicles and roadside units (RSUs)
in IoV networks [4], [5]. This real-time synchronization
significantly enhances decision-making at the network edge,
where decentralized edge intelligence is essential to handle
the high volume of data and ensure timely processing. Studies
such as [6] and [7] have demonstrated the effectiveness
of DTs in improving resource allocation in IoV networks
by providing accurate, real-time information on vehicle
states and network conditions. Additionally, intelligent task
offloading frameworks leveraging DTs, as proposed in [8]
and [9], highlight how DTs can optimize computational and
communication resources by predicting vehicular behavior and
network load. DTs also contribute to various other aspects of
IoV networks, including traffic management [10], security and
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privacy [11], and navigation [12], underscoring their potential
to transform IoV systems by enhancing operational efficiency
and safety.

In response to the limitations of centralized architectures,
decentralized machine learning (ML) approaches have gained
traction in vehicular networks. Among these, federated
learning (FL) has emerged as a promising paradigm that
enables vehicles to collaboratively learn a shared model
without exchanging raw data, thereby preserving privacy
and reducing communication overhead [13]. Traditional
FL methods, such as horizontal FL [14] and vertical
FL [15], have been adapted for vehicular networks, with
studies like [16] and [17] exploring their application in
autonomous driving and other vehicular scenarios. Horizontal
FL, where vehicles with similar data distributions participate
in learning, has shown promise in scenarios requiring
collaboration among homogeneous devices. On the other hand,
vertical FL, which deals with different features distributed
across vehicles, remains less common but presents unique
opportunities for scenarios where different types of data
are prevalent across the network [18]. However, these
FL approaches often face challenges in dynamic vehicular
environments, particularly concerning synchronization and
model aggregation. Synchronous FL, which requires all
participants to complete their updates before aggregation, can
lead to significant delays, especially in networks with varying
communication capabilities [19]. Asynchronous FL offers
some relief but can result in stale updates and convergence
issues in large-scale networks [20]. Although asynchronous
approaches tailored for vehicular networks, such as those
proposed in [21], [22], and [23], have demonstrated improved
scalability, fully asynchronous learning remains unstable
and unsuitable for realistic large-scale IoV frameworks due
to issues like redundant model exchanges and increased
operational costs. This has led to the exploration of semi-
synchronous approaches, as seen in studies like [24] and [25],
which balance timeliness and update quality by combining the
benefits of synchronous and asynchronous FL. Table I shows
the comparison between different FL approaches including the
FL method we propose in this study in the subsequent sections.

Beyond traditional ML, the integration of DRL in a
federated setting has shown promise for optimizing decision-
making in complex vehicular networks [26], [27]. Multi-
agent DRL (MADRL) allows vehicles to learn collaborative
strategies for tasks such as resource allocation and task
offloading [28]. When combined with FL, known as federated
DRL, leverages the strengths of both paradigms—FL’s
privacy-preserving collaboration and DRL’s adaptive decision-
making. Studies like [29], [30], and [31] have explored
federated DRL for task offloading in vehicular networks,
demonstrating the potential for improved scalability and
decision accuracy. However, in real-life IoV settings,
the deployment of these approaches faces challenges
in environments with heterogeneous agents and dynamic
conditions, where the assumptions of homogeneity and
stability do not hold. Moreover, the convergence of DRL in
a federated setting can be slow, particularly in networks with
high variability in agent behavior.

Despite the progress made with MEC, DT, FL and
DRL, significant research gaps remain, particularly concerning
their integration and application in large-scale, dynamic IoV
networks. Traditional FL and DRL approaches often assume
homogeneity and stability, which do not reflect the real-
world conditions of IoV environments. The inherent variability
in vehicle behavior, communication quality, and network
topology can lead to inefficiencies and reduced accuracy in
decision-making. Furthermore, while fully asynchronous FL
methods offer scalability, they often result in redundant model
exchanges and increased operational costs, making them
unsuitable for large-scale deployments. Semi-synchronous
approaches, although promising, require further exploration to
optimize the trade-offs between update timeliness and model
accuracy.

The introduction of generative artificial intelligence
(GenAI) techniques presents an opportunity to address these
challenges [32]. Generative models, such as conditional
variational autoencoders (CVAE) [33], [34] and generative
adversarial networks (GANs) [35], have shown promise in
enhancing the adaptability and robustness of ML models
in dynamic environments. In the context of IoV networks,
these techniques can be leveraged to improve the accuracy
and efficiency of FL and DRL frameworks by capturing the
complexities of real-time vehicular data and enabling more
responsive and adaptive decision-making processes. Although
this is a relatively new area with limited research focused
specifically on vehicular networks, studies such as [35]–[37]
demonstrate the potential of GenAI-enhanced FL frameworks
in various other wireless IoT network frameworks. For
instance, these studies propose architectures that incorporate
GenAI for distributed traffic flow prediction, tackle challenges
related to non-IID data using GANs, and implement distributed
model training that preserves privacy, reduces communication
costs, and decreases training latency.

Thus, to address this gap, we propose a DT-assisted IoV
framework that combines semi-synchronous FL with multi-
agent DRL, enhanced by GenAI, particularly CVAE, for
efficient partial task offloading. This framework is specifically
designed to handle the complexities of large-scale, dynamic
vehicular networks, overcoming the limitations of existing
approaches and enhancing the scalability, efficiency, and
accuracy of decision-making processes in IoV environments.
To highlight our approach’s distinct advantages and novelties
Table II systematically compares the key features of our model
against existing studies. The table outlines various critical
aspects such as the type of FL, handling of heterogeneous data,
incorporation of digital twins, use of genAI, support for real-
time decision-making, resource optimization, and scalability
in dynamic IoV networks. Our primary contributions are as
follows:

• We develop a DT-assisted framework that enhances
real-time decision-making and resource management in
dynamic vehicular networks by continuously mirroring
the real-time states of vehicles and RSUs, enabling
accurate information flow and supporting optimal task
offloading and adaptive resource allocation strategies.

• We introduce a GenAI-enhanced adaptive federated
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TABLE I: Comparison of the Proposed Framework with Federated Learning Types

FL Type Handles Non-IID Data Adapts to Agent
Variability

Supports Dynamic
Environments

Key Characteristics

Proposed
Framework

Yes (via CVAE + gradient
norm evaluation)

Yes (semi-synchronous
aggregation)

Yes (via real-time DT
updates)

Combines Digital Twins, Generative AI, and
Multi-Agent RL for IoV task offloading and
resource management

Synchronous FL Partial (requires IID or
near-IID data for stability)

Limited (requires
equal computational
capabilities)

No (fixed aggregation
intervals)

Aggregates updates only after all agents
have completed training, leading to
synchronization delays in dynamic IoV
settings

Asynchronous
FL

Yes (adapts to non-IID
data)

Yes (agents can update
independently)

Moderate (faster updates
but less coordinated)

Allows updates at different times;
suitable for heterogeneous agents but
may face convergence issues in dynamic
environments

Semi-
Synchronous
FL

Yes (balances IID and
non-IID settings)

Yes (dynamic aggregation
thresholds)

Yes (suitable for dynamic
networks)

Combines benefits of synchronous and
asynchronous FL, balancing timeliness and
model quality; used in the proposed AdFL

Horizontal FL Partial (requires IID data) Limited (same feature
space across agents)

No (limited to specific
tasks)

Suitable for agents with similar feature
distributions (e.g., IoV tasks requiring
identical sensors across vehicles)

Vertical FL Yes (handles
heterogeneous features)

Limited (requires feature
alignment)

No (applies to static
datasets)

Designed for scenarios where different
agents hold complementary features; not
ideal for IoV networks

Personalized FL
(pFL)

Yes (customized local
models)

No (focuses on
personalization, not
collaboration)

No (static environment
assumptions)

Trains separate models for each client to
address non-IID data but lacks collaboration
or dynamic adaptability

Clustered FL Yes (groups agents with
similar data)

No (fixed clusters) Low (suffers from
clustering overhead)

Groups agents based on data similarity;
unsuitable for dynamic IoV scenarios due to
clustering delays and inefficiency in highly
mobile networks

TABLE II: Comparison of Proposed Framework with Related Works

Feature/Aspect Proposed [4] [5] [14] [15] [16] [17] [19] [20]
FL Type Semi-

Sync
N/A N/A Horizontal Async,

Vertical
Horizontal Horizontal Sync Async

Heterogeneous Data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Digital Twin ✓ ✓ ✓ × × × × × ×
Generative AI ✓ × × × × × × × ×
Real-Time Decision ✓ ✓ ✓ × × ✓ ✓ ✓ ✓

Resource Optimization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adaptive Federated
Learning

✓ × × ✓ × × × ✓ ×

Context-Aware
Representations

✓ ✓ ✓ × × ✓ × ✓ ✓

Scalability in Dynamic
IoV

✓ ✓ ✓ × × ✓ × ✓ ✓

Energy-Efficient ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Traffic Condition
Adaptation

✓ ✓ ✓ × × ✓ × × ×

learning (AdFL) algorithm that leverages CVAE to
generate context-aware latent representations, allowing
the system to effectively capture the complexities
of dynamic vehicular environments and improve the
adaptability and scalability of the FL process.

• We design a global model with transformer layers to
capture long-range dependencies in the dynamic IoV
environment efficiently. We also introduce a novel semi-
synchronous aggregation mechanism within the AdFL
framework to balance timely updates with global model
quality.

• We propose an adaptive federated multi-agent
reinforcement learning (AF-MARL) algorithm that

optimizes task offloading by enabling vehicles and RSUs
to collaboratively learn optimal strategies in a distributed
manner, thereby enhancing system performance in
terms of energy efficiency, delay reduction, and task
completion rates.

• Finally, we evaluate the framework’s performance
through extensive simulations, demonstrating the
superiority of the proposed method for the IoV
framework.

Structure of the paper: The flow of the paper is organized
as follows: Section II describes the system model; Section III
introduces the task offloading model; Section IV focuses on
the problem formulation and solution approach; Section V
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Fig. 1: Illustration of the considered dynamic DT-assisted IoV network with distributed edge intelligence.

explores AdFL for dynamic vehicular networks; Section VI
explains the AF-MARL framework; Section VII provides
the performance evaluation; Section VIII presents the result
analysis. Finally, Section IX concludes the article.

II. SYSTEM MODEL

We consider a dynamic urban IoV network designed to
support real-time vehicular communication and computation,
leveraging a distributed edge intelligence framework as shown
in Fig. 1. This model ensures the system’s adaptability to
the highly dynamic and heterogeneous nature of vehicular
networks, where low latency and energy efficiency are
paramount. The urban area is modeled as a two-dimensional
plane of size X × X square kilometers, representing a city
with dense vehicular traffic and infrastructural support with
MEC servers. The network comprises N vehicles V =
V1, V2, . . . , VN , which are dynamically distributed throughout
the area, and M RSUs, R = R1, R2, . . . , RM , each equipped
with MEC capabilities. The RSUs are strategically positioned
to ensure full coverage and connectivity, forming a distributed
computing network that eliminates the need for centralized
cloud services.

The movement of vehicles is modeled as a continuous-time
stochastic process, reflecting realistic urban traffic dynamics.
Each vehicle Vn, where n ∈ 1, 2, . . . , N , is characterized by a
position vector pn(t) at time t, evolving based on its velocity

vector vn(t). To simulate the variability in traffic conditions,
we model the velocity as:

vn(t) = vavg
n (t) + vrand

n (t) , (1)

where vavg
n (t) represents the average velocity based on current

road conditions, and vrand
n (t) is a stochastic component

capturing random fluctuations due to factors such as traffic
congestion or sudden stops. The position update for vehicle
Vn is given by:

pn(t+∆t) = pn(t) + vn(t) ·∆t , (2)

where ∆t is a small time increment. This continuous change in
position affects the connectivity between vehicles and RSUs,
influencing task offloading decisions.

A. Distributed Edge Computing Architecture

The IoV network operates on a distributed edge computing
architecture. Each RSU with MEC serves as a local
computational hub, interfacing directly with vehicles within
its communication range. The distributed nature of the edge
computing framework ensures that computation is performed
closer to the data source, minimizing latency. Each vehicle
Vn is equipped with computational resources (e.g., central
processing unit (CPU) cycles per second fn), communication
capabilities (e.g., data rate rn), and energy capacity En.
Similarly, each RSU Rm has its computational power fm,
communication capability rm, and energy availability Em.
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The RSUs are connected in a mesh topology, enabling direct
communication between neighboring RSUs. This topology
enhances system robustness and reduces latency by allowing
tasks to be rerouted through multiple paths if network
congestion or failures occur. For instance, if an RSU
experiences high traffic, the system can dynamically shift task
offloading to neighboring RSUs, thereby balancing the load
and maintaining low latency.

B. Digital Twin Framework

Digital Twins (DTs) play a central role in the proposed
framework by providing real-time and historical data for
vehicles and RSUs. These DTs act as virtual representations of
physical IoV entities, enabling dynamic synchronization and
predictive modeling. This section explains the construction,
synchronization, and role of DTs in supporting the framework.
To effectively manage the dynamic and heterogeneous nature
of the IoV network, we implement a DT framework
that enhances real-time decision-making and resource
management. Each physical entity within the network, whether
a vehicle or an RSU, is associated with a corresponding DT.
The DT serves as a virtual replica of the physical entity,
continuously mirroring its real-time state and operational
parameters [4].

The DT of a vehicle Vn at time t, denoted as DTn(t),
encapsulates a comprehensive set of attributes that define the
vehicle’s current status. Specifically, this includes:

DTn(t) = {fn, rn, En,vn(t), Dn, Cn, Tn} , (3)

where the DT of each vehicle is characterized by several key
parameters, including the computational power fn (measured
in CPU cycles per second), communication capability rn (in
bits per second), energy capacity En (in joules), and the
velocity vector vn(t) at time t. Additionally, it includes the
data size of the current task Dn (in bits), the required CPU
cycles Cn for completing the task, and the maximum tolerable
delay Tn (in seconds) for task processing.

Similarly, the DT of an RSU Rm, denoted as DTm(t),
maintains a real-time representation of the RSU’s operational
parameters:

DTm(t) = {fm, rm, Em} . (4)

The DTs continuously synchronize with their physical
counterparts, ensuring that the digital representations
accurately reflect the real-time state of the network.
The synchronization process occurs at regular intervals,
determined by the system’s requirements for accuracy and
responsiveness. While frequent synchronization ensures
up-to-date information, it also introduces additional energy
consumption and delay, denoted as EDT

n and tDT
n , respectively.

These contributions must be accounted for in the overall
energy and delay models, particularly in high-task offloading
scenarios where the DT’s decision-making process is critical.

In this study, the DTs aggregate real-time data and perform
predictive analysis to optimize offloading decisions, resource
allocation, and energy management strategies. Although the
actual computation and task execution occur in the physical

layer (i.e., within the vehicles and RSUs), the DTs provide the
necessary intelligence to guide these processes. The DTs also
facilitate the dynamic adaptation of the network to changing
conditions, ensuring that the system remains efficient and
responsive even under varying loads. The data generated by
DTs serves as the foundation for creating context-aware latent
representations using GenAI, as described in the subsequent
sections.

III. TASK OFFLOADING MODEL

In this section, we present the task offloading model
for vehicles in the IoV network. The model incorporates
the dynamic interplay between local computing and edge
offloading, enhanced by the DT framework [5].

A. Local Computing Model

When a vehicle Vn processes a task locally, the computation
delay tloc

n for a task requiring Cn CPU cycles is given by:

tloc
n =

Cn

fn
, (5)

where fn is the computational power of the vehicle. The
energy consumption for local task execution, Eloc

n , is modeled
as:

Eloc
n = κn · Cn , (6)

where κn represents the energy consumption coefficient,
accounting for both dynamic and static power
consumption [8].

B. Edge Computing Model

In the edge computing model, a vehicle Vn may offload
a fraction ρn of its task to an RSU or another vehicle
while processing the remaining portion (1− ρn) locally. The
total delay toff

n includes the upload delay tup
n , computation

delay tcomp
n , download delay tdown

n , and the DT-induced delay
tDT
n . The corresponding energy consumption Eoff

n accounts
for transmission energy, computation energy, and the DT
overhead.

1) Upload Delay and Energy: The upload delay tup
n for

transmitting data to the RSU or another vehicle is:

tup
n =

ρn ·Dn

rn
, (7)

where Dn is the data size of the task, and rn is the data
transmission rate:

rn = Wn log2

(
1 +

Pnd
−β
n h2

n

N0 + In

)
. (8)

Here, Wn is the bandwidth of the wireless channel, Pn is the
transmission power, dn represents the distance to the RSU or
another vehicle, β is the path loss exponent, hn is the channel
gain, N0 is the noise power, and In represents interference.

The corresponding energy consumption for data
transmission is:

Etx
n = Pn · tup

n . (9)



6

2) Computation Delay and Energy: The computation delay,
tcomp
n , depends on whether the task is offloaded to another

vehicle or an RSU:

tcomp
n =

{
ρnCn

f ′
n

if offloaded to another vehicle ,
ρnCn

f ′
m

if offloaded to an RSU ,
(10)

where f ′
n and f ′

m are the computational powers of
the receiving vehicle and RSU, respectively. The energy
consumption for computation during offloading is:

Ecomp
n = ρn · κ′

m · Cn + EDT
n , (11)

where κ′
m is the energy coefficient for the computational

resource used, and EDT
n is the additional energy consumed

by the DT framework.
3) Download Delay and Energy: The download delay tdown

n

for receiving the processed task results is:

tdown
n =

δDn

rn
. (12)

where δ is the ratio of output to input data size, typically δ ≪
1, making this delay often negligible. The energy consumed
during the download is:

Edown
n = Pn · tdown

n . (13)

4) Total Offloading Delay and Energy: The total delay and
energy consumption for offloading are given, respectively, as:

toff
n = max

(
tup
n + tcomp

n + tdown
n + tDT

n , tloc
n

)
, (14)

Eoff
n = Etx

n + Ecomp
n + Edown

n + EDT
n . (15)

C. Overall Energy and Delay Considerations

The overall energy consumption Etotal
n and delay ttotal

n for
a vehicle Vn are determined by comparing the local and
offloading options:

Etotal
n = min

(
Eloc

n , Eoff
n

)
, (16)

ttotal
n = min

(
tloc
n , toff

n

)
. (17)

D. Offloading Under Resource Constraints

In scenarios where a vehicle Vn lacks sufficient resources
to process a task locally, the DT framework mandates
task offloading. The DT continuously monitors the vehicle’s
computational power fn(t) and remaining energy En(t) to
determine the necessity for offloading:

fn(t) < Cn or En(t) < Eloc
n (t) . (18)

If offloading is required, the system recalculates the total
energy consumption, Eoff

n , and delay, toff
n :

Eoff
n = Etx

n + Ecomp
m + Erx

n , (19)

toff
n = ttx

n + tcomp
m + trx

n . (20)

If the nearest RSU or vehicle cannot meet the
delay constraints, the DT framework implements fallback
mechanisms, such as task splitting or partial local processing,
and may initiate an emergency broadcast to nearby nodes for
immediate assistance.

When vehicle Vn decides to offload a task, it must consider
the service cost Pn associated with the offloading. This cost
is proportional to the fraction ρn of the task that is offloaded
and is calculated as:

Pn = ρn · pn , (21)

where pn is the price per unit of offloaded computation.

IV. PROBLEM FORMULATION & SOLUTION APPROACH

In this section, we formulate the optimization problem for
intelligent task offloading in a distributed edge intelligence-
enabled IoV network. The objective is to minimize the
overall cost Ω, which balances delay, energy consumption,
and service cost while ensuring timely task completion and
efficient resource utilization. The total cost Ω integrates
three key factors: offloading delay toff

n , energy consumption
Etotal

n , and the offloading service cost Pn. To enable a
meaningful aggregation of these metrics into a single objective
function, each factor is normalized by its respective maximum
permissible value. The normalized offloading delay is given
by toff

n

Tn
, where Tn is the maximum tolerable delay. Similarly,

energy consumption is normalized as Etotal
n

Emax
, where Emax is

the maximum allowable energy consumption, and service cost
is normalized as Pn

Pmax
, where Pmax represents the maximum

allowable service cost. The resulting objective function is
expressed as:

Ω =

N∑
n=1

(
toff
n

Tn
+

Etotal
n

Emax
+
Pn

Pmax

)
. (22)

Normalization ensures that each term contributes
proportionally to the total cost, irrespective of its original
scale or unit. This prevents any single metric, such as delay
or energy consumption, from dominating the optimization
and ensures a balanced trade-off among the factors.

The optimization problem is mathematically formulated as:

(P1) : min
{ρn}

Ω =

N∑
n=1

(
toff
n

Tn
+

Etotal
n

Emax
+
Pn

Pmax

)
s.t. (C.1) toff

n ≤ Tn ∀n,
(C.2) If En(t) < Eloc

n , offload mandatory,∀n,
(C.3) 0 ≤ ρn ≤ 1, Pn = ρn · pn ∀n,
(C.4) 0 ≤ f ′

n, f
′
m ≤ fn, fm ∀n, ∀m,

(C.5)

N∑
i=1

ρi · f ′
n ≤ fn ∀n,

(C.6)

N∑
i=1

ρi · f ′
m ≤ fm ∀m,

(C.7) toff
n + tloc

n ≤ Tn ∀n. (23)

In this formulation, (C.1) ensures that the offloading
delay toff

n does not exceed the maximum tolerable delay
Tn for each vehicle. Constraint (C.2) governs energy
consumption, mandating offloading if the energy required for
local processing exceeds the available energy En(t), with the
total energy consumption Etotal

n being the minimum of the
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local and offloading energy costs. Constraint (C.3) enforces
that the offloading fraction ρn is within the range [0, 1], with
the offloading cost Pn directly proportional to ρn. Constraints
(C.4) through (C.6) ensure that the computational resources
allocated for offloading do not exceed the computational
capacities of the receiving vehicle or RSU, and that the
aggregate resources allocated by any vehicle Vn or RSU
Rm to all offloaded tasks remain within their respective total
capacities. Finally, (C.7) ensures that the combined delay from
offloading and local processing does not surpass Tn, thereby
guaranteeing the timely completion of tasks.

Normalization also ensures fairness in balancing trade-
offs between delay, energy consumption, and service cost.
For example, if toff

n approaches Tn, its contribution to the
total cost increases, incentivizing strategies that reduce delay.
Similarly, if energy consumption Etotal

n or service costs Pn

are close to their respective maximums, the optimization
framework prioritizes minimizing these metrics to achieve
a balanced solution. This design enables the framework to
adapt to varying constraints and optimize task offloading under
dynamic IoV network conditions.

A. Solution Approach

The problem formulated above is NP-hard due to its
combinatorial nature and the complex interdependencies
between task offloading decisions, energy consumption, and
communication delays in a dynamic vehicular environment.
Traditional optimization methods are insufficient for real-time,
large-scale IoV networks.

To address the challenges of optimizing task offloading
in dynamic vehicular networks, we develop an innovative
federated deep reinforcement learning framework that
integrates advanced technologies from GenAI and deep
learning. This framework introduces a novel AdFL approach
to create a decentralized and adaptive learning environment.
Additionally, we employ a multi-agent DRL technique,
trained within this adaptive federated learning framework,
allowing agents to independently learn optimal task offloading
strategies. The detailed implementation of these approaches is
provided in the following sections.

V. ADAPTIVE FEDERATED LEARNING FOR DYNAMIC
VEHICULAR NETWORKS

In this section, we introduce the Adaptive Federated
Learning (AdFL) algorithm, specifically designed for the
dynamic and heterogeneous nature of IoV networks. The
AdFL framework is responsible for training decentralized
models across vehicles and RSUs using context-aware latent
representations. AdFL addresses the challenges of non-IID
data and dynamic network conditions by introducing client
selection criteria, semi-synchronous aggregation, and gradient
norm-based weighting. The need for low latency, energy
efficiency, and decentralized decision-making in IoV networks
necessitates a shift from traditional centralized approaches to a
more distributed and adaptive framework. Thus, the algorithm
leverages the capabilities of GenAI, specifically, CVAE, and
transformer layers to enhance learning efficiency, preserve

privacy, and adapt to the rapidly changing conditions of the
IoV. The integration of CVAE allows for context-aware latent
representations, while transformer layers excel in capturing
sequential dependencies and contextual relationships within
the data, making the AdFL algorithm highly responsive and
scalable.

This approach is crucial as it addresses the unique
challenges of IoV networks, where traditional federated
learning methods fall short. By enabling real-time adaptation
and decentralized learning, AdFL has the potential to
revolutionize vehicular network training, leading to more
efficient, reliable, and scalable systems. The steps in AdFL
are given in detail below.

A. Client Selection and Initialization

1) Client Selection Criteria: In the AdFL framework,
selecting vehicles (clients) for participation in the FL process
is critical. The selection process is based on several factors that
ensure the efficiency and effectiveness of the learning process:

• Computational Capability (fn): Each vehicle Vn must
possess a minimum computational power, fmin, to handle
the local training tasks effectively which ensures that
selected vehicles can contribute meaningful updates to
the global model.

• Energy Levels (En): The energy level of the vehicle
must exceed a predefined threshold, Emin which prevents
vehicles from depleting their energy resources during the
training process.

• Connectivity and Mobility (tstay
n ): Vehicles must maintain

stable connectivity within the communication range of
the RSU for a minimum duration, Tmin

Mathematically, a vehicle Vn is eligible for participation if:

fn ≥ fmin, En ≥ Emin, tstay
n ≥ Tmin . (24)

2) Global Model Initialization: In IoV networks,
traditional FL models, often based on simple neural networks,
struggle to capture the complex dependencies and dynamic
nature of the environment, limiting their effectiveness in
real-time decision-making. To overcome these limitations, we
design a global model that incorporates transformer layers,
capable of capturing long-range dependencies and contextual
relationships in the data. The algorithm for the construction
of the global model with transformer layers is given in
Algorithm 1.

The global model, denoted by w(0), is initialized
with parameters from a pre-trained IoV-relevant dataset.
This approach provides a strong foundation, accelerating
convergence during federated learning by leveraging
transformers to effectively model the intricate dependencies
inherent in IoV networks [38]. Transformers are integral to the
global model, enabling it to capture long-range dependencies
and contextual relationships between features such as vehicle
speed, energy levels, and communication capabilities [39].
The key components of the transformer’s architecture include
the following components:

• Input Embedding: Each input feature vector xn from the
DT representations of vehicles and RSUs is transformed
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Algorithm 1 Global Model with Transformer Layers

1: Input: Initial global model parameters w(0).
2: Embedding:
3: Transform input feature vector xn into high-dimensional

embedding using (25).
4: Positional Encoding:
5: Inject sequence information using (26).
6: Self-Attention Mechanism:
7: Compute attention weights and transform input features

using (27).
8: Feedforward Neural Network:
9: Capture non-linear relationships using (28).

10: Layer Normalization and Residual Connection:
11: Normalize and add residuals as per (29).
12: Output Layer:
13: Generate predictions using (30).
14: Output: Updated global model w(r).

into a high-dimensional embedding. This embedding
process is mathematically represented as:

en = Wexn + be , (25)

where We and be are the embedding matrix and bias
term.

• Positional Encoding: Since transformers are inherently
order-agnostic, we introduce positional encodings to
inject sequence information into the model [40]:

pn(i) =

{
sin

(
i

100002j/d

)
, if j is even ,

cos
(

i
100002j/d

)
, if j is odd ,

(26)

where i is the position, j indexes the dimension, and d
is the dimensionality of the model.

• Self-Attention Mechanism: The core of the transformer
is the self-attention mechanism, which allows the model
to weigh the importance of different input features
dynamically. The attention mechanism is computed as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V , (27)

where Q = Wqen, K = Wken, and V = Wven are the
query, key, and value matrices, respectively, and dk is the
dimensionality of the key vectors.

• Feedforward Neural Network (FFN): The output of the
self-attention layer is passed through a position-wise fully
connected feedforward network:

FFN(x) = ReLU(W1x+ b1)W2 + b2 , (28)

where W1 and W2 are weight matrices, and b1 and b2 are
bias terms. This allows the model to capture non-linear
relationships within the data.

• Layer Normalization and Residual Connection: To
stabilize and accelerate training, each sub-layer (self-
attention and FFN) is followed by a layer normalization
and a residual connection:

zn = LayerNorm(xn + FFN(Attention(Q,K, V ))) ,
(29)

where zn represents the output of the transformer layer.
• Output Layer: The output layer generates predictions for

the task at hand using a dense layer with linear activation.
The output is computed as follows, where Wo represents
the weight matrix and bo represents the bias vector:

yn = Wozn + bo . (30)

The global model update process employs a weighted
aggregation strategy to account for heterogeneous data
distributions across IoV nodes. In each training round, the
global model is updated using local updates from participating
clients as:

w(t+1) = w(t) +
1∑

n∈St αn

∑
n ∈ Stαn∆w(t)

n , (31)

where αn = |Dn| represents the weight for client n based
on its dataset size, and ∆w

(t)
n is the local model update.

This ensures that clients with larger datasets contribute
more substantially, addressing data heterogeneity effectively.
Furthermore, semi-synchronous aggregation triggers, either
time- or count-based, are used to balance timeliness and model
quality, accommodating varying traffic and communication
conditions.

The global model’s parameters are updated through the FL
process, with the initial parameters w(0) distributed to all
participating vehicles. The objective function for the global
model J(w) during training is to minimize the aggregate loss
across all participating vehicles:

J(w) =
1

N

N∑
n=1

Ln(w) , (32)

where Ln(w) is the local loss function for vehicle Vn. The
global model update rule during federated learning is:

w(t+1) = w(t) − η∇J(w(t)) , (33)

where η is the learning rate.
In the proposed framework, local updates uploaded by

vehicles are aggregated at the RSU using a weighted averaging
strategy to ensure that clients with larger datasets have a
proportionally greater influence on the global model. This is
expressed as:

w(r+1) =

∑
n∈Sr αnw

(r)
n∑

n ∈ Srαn
, , (34)

where w(r+1) is the updated global model after round r, Sr
is the set of participating clients, w(r)

n is the local model from
client n, and αn = |Dn| is the weight proportional to the size
of client n’s local dataset.

This aggregation mechanism ensures that updates
from clients with more representative datasets contribute
significantly to the global model, addressing data heterogeneity
across IoV networks. Upon receiving the local updates, the
RSU computes the weights αn and performs the aggregation.
The updated global model is then transmitted back to all
participating clients, enabling the next round of training. This
strategy enhances robustness and improves the alignment of
the global model with the overall data distribution.
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3) Digital Twin (DT) Initialization: Each vehicle Vn

and RSU Rm is paired with a DT, which mirrors the
real-time state of the physical entity. The DT framework
enhances the AdFL process by providing accurate, up-to-date
information on computational resources, energy levels, and
mobility characteristics. At time t, the DTs of Vn and Rm,
denoted as DTn(t) and DTm(t), encapsulate these properties:

DTn(t) = {fn, rn, En,vn(t), Dn, Cn, Tn}, (35)
DTm(t) = {fm, rm, Em}, (36)

where f , r, and E denote computational power,
communication capability, and energy levels, respectively.

The DTs dynamically synchronize their parameters with
real-time data from the SUMO simulation at fixed intervals
of 1 second. Additionally, they aggregate historical metrics
over a 10-second sliding window:

Historical DTn(t) =
1

10

t∑
k=t−10

DTn(k), (37)

including metrics such as average delays, energy consumption
trends, task success rates, and mobility patterns. These trends
help capture temporal dynamics, which are crucial for efficient
task offloading and learning.

The combined real-time and historical data provide a robust
basis for generating context-aware training samples used
in AdFL and AF-MARL. Each training sample combines
real-time states (e.g., DTn(t)), decision variables (e.g.,
offloading fractions ρn), and observed outcomes (e.g., delay,
energy consumption, reward). This ensures that models are
trained on data reflecting both instantaneous and aggregated
conditions, enabling effective decision-making in dynamic IoV
environments.

B. CVAE in Adaptive Federated Learning

To handle the high dimensionality and non-linearity of IoV
data, the GenAI component utilizes CVAE. These models
transform raw DT data into compact, context-aware latent
representations that capture complex dependencies, such as
the interplay between energy consumption, mobility, and task-
specific requirements.

The incorporation of CVAE into the AdFL process
significantly enhances learning efficiency by generating
context-aware latent representations that better capture the
dynamic environment of IoV networks.

The encoder in the CVAE maps the input data xn(t) and
context cn(t) to a latent representation zn(t) [41], as:

qϕ(zn(t) | xn(t), cn(t)) = N (zn(t) | µn(t), σ
2
n(t)) , (38)

where µn(t) and σ2
n(t) are the mean and variance of the latent

distribution, respectively. Next, the decoder reconstructs the
input data from the latent representation:

pθ(xn(t) | zn(t), cn(t)) = N (xn(t) | µ̂n(t), σ̂
2
n(t)) . (39)

Algorithm 2 CVAE Process

1: Input: Training data xn(t) and context cn(t).
2: Encoder:
3: Compute latent representation zn(t) using (38).
4: Decoder:
5: Reconstruct input data xn(t) from zn(t) using (39).
6: Loss Function:
7: Minimize the combined loss (40).
8: Output: Latent representation zn(t).

The CVAE is trained by minimizing a loss function that
combines the reconstruction loss and the Kullback-Leibler
(KL) divergence:

LCVAE = Eqϕ(zn(t)|xn(t),cn(t)) [log pθ(xn(t) | zn(t), cn(t))]
−DKL (qϕ(zn(t) | xn(t), cn(t)) ∥ p(zn(t))) .

(40)
The latent representations generated by the CVAE are
derived from xn(t) = DTn(t) (real-time state) and
cn(t) = Historical DTn(t) (historical context). These features
enable decentralized training of models tailored to the
specific conditions of each vehicle and RSU. By capturing
nonlinear relationships, such as the interplay between energy
consumption and task deadlines, these latent representations
enhance the contextual relevance of AdFL.

The CVAE process is detailed in Algorithm 2.
1) Role of Digital Twins in Training Data Preparation: The

DT framework plays a pivotal role in enabling the training and
operationalization of the AdFL and AF-MARL frameworks by
serving as the primary source of real-time and historical data.
Each vehicle Vn and RSU Rm is paired with a DT, which
mirrors its state and aggregates key metrics as in Eqs. (35)
and (36).

The DTs generate training samples by combining real-time
states, decision variables, and observed outcomes. Real-time
states are captured at specific time instances (e.g., DTn(t) for
vehicles and DTm(t) for RSUs), decision variables include
task offloading fractions ρn, and observed outcomes comprise
delay, energy consumption, or reward values from previous
actions. These training samples enable the AdFL and AF-
MARL frameworks to address heterogeneity and dynamic
conditions in IoV networks effectively.

The AdFL framework leverages the DT-generated data by
combining real-time states and aggregated historical data to
train decentralized models that reflect the unique operating
conditions of each vehicle or RSU. This integration ensures
that the AdFL process can adapt to varying environmental
conditions. For the AF-MARL framework, the DT data defines
the state space representations of agents, which are further
processed through the CVAE module to produce context-
aware latent representations. These representations encapsulate
complex dependencies, such as the interplay between energy
consumption, task deadlines, and mobility metrics, providing
agents with a comprehensive view of their environment. This
integration of DT data ensures efficient and robust task-
offloading decisions, optimizing delay, energy consumption,
and cost trade-offs.
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C. Local Model Training

Once the vehicles are selected, and their DTs initialized,
each vehicle Vn trains its local model using the context-aware
latent representations generated by the CVAE. The local model
updates are computed using stochastic gradient descent (SGD)
on the local dataset Dn:

w(t)
n = w(t−1) − η∇Ln(w

(t−1);Dn) , (41)

where η is the learning rate, and Ln(w;Dn) is the local loss
function for vehicle Vn.

The local training process enables each vehicle to adapt
the global model to its specific environment, capturing the
unique characteristics and challenges of its operational context,
such as variations in traffic density, signal strength, and energy
consumption patterns.

D. Gradient Norm Assessment

To evaluate the contribution potential of each vehicle’s local
model to the global model, AdFL incorporates a gradient norm
assessment across multiple layers. This approach provides a
more comprehensive view of the model’s training progress and
ensures that only the most relevant updates are included in the
global model aggregation. The gradient norm for a specific
layer l of the local model is calculated as:

σ
(t)
n,l =

∣∣∣∣∣ ∂Ln

∂w
(t)
l,n

∣∣∣∣∣
2

, (42)

where w
(t)
l,n represents the weights of layer l at time t. The

overall contribution potential σ
(t)
n is then computed as a

weighted sum of the gradient norms across the selected layers:

σ(t)
n =

∑
l∈L

ωlσ
(t)
n,l , (43)

where ωl is the weight assigned to layer l, and L is the set of
layers considered for evaluation.

E. Semi-Synchronous Model Aggregation Triggers

Given the dynamic nature of IoV networks, the aggregation
of local model updates in AdFL is performed in a semi-
synchronous and distributed manner. This approach allows the
system to balance the trade-off between timely updates and
the quality of the global model. Two primary mechanisms are
employed for triggering the aggregation:

• Time-Based Trigger: During high traffic periods, the
RSU delays aggregation for a fixed time interval τagg,
ensuring regular global model updates even if all vehicles
have not completed their local training.

• Count-Based Trigger: In lower traffic conditions, the
RSU aggregates updates after receiving a sufficient
number of updates Nagg from the participating vehicles.
This mechanism ensures that the global model is
updated only when enough new information is available,
preserving computational resources.

The global model update following the aggregation is:

w(t+1) = w(t) +
1

|St|
∑
n∈St

∆w(t)
n , (44)

Algorithm 3 CVAE Enhanced Adaptive Federated Learning

1: Initialize global model w(0) and other parameters.
2: for r ← 1 to Rmax do
3: Client Selection:
4: for each vehicle Vn do
5: Calculate fn, En, tstay

n .
6: if fn ≥ fmin ∧ En ≥ Emin ∧ tstay

n ≥ Tmin then
7: Select vehicle Vn for local training.
8: end if
9: end for

10: if no vehicles are selected then
11: Continue to the next round.
12: end if
13: Global Model Initialization:
14: Construct the global model w(r) using Algorithm 1.
15: Local Model Training:
16: for each selected vehicle Vn do
17: Initialize local model w(r)

n .
18: Generate context-aware latent representations

using Algorithm 2.
19: for each training epoch k do
20: Select local dataset Dn.
21: Update local model w(r,k)

n using SGD (41).
22: Compute local loss Ln(w

(r,k)
n ;Dn).

23: end for
24: Upload updated local model w(r)

n to the RSU.
25: end for
26: Gradient Norm Assessment:
27: for each selected vehicle Vn do
28: for each layer l ∈ L of local model do
29: Calculate gradient norm σ

(t)
n,l as per (42).

30: end for
31: Compute overall contribution potential σ(t)

n (43).
32: end for
33: Semi-Synchronous Aggregation:
34: if Time-based aggregation (high traffic) then
35: Wait for a fixed time interval τagg.
36: else if Count-based aggregation (low traffic) then
37: Wait until Nagg updates are received.
38: end if
39: Aggregate global model w(r+1) using (44).
40: Adaptive Model Adjustment:
41: Dynamically adjust σmin, τagg, and Nagg as (45).
42: Update CVAE latent space (38), (39), (40).
43: end for
44: Output: Final global model w(Rmax).

where St is the set of vehicles whose updates are aggregated
at time t, and ∆w

(t)
n represents the update from vehicle Vn.

F. Adaptive Model Adjustment and Feedback

1) Adaptive Threshold Adjustment: The AdFL framework
dynamically adjusts gradient norms and aggregation triggers
based on real-time feedback, ensuring the learning process
remains efficient and responsive to the evolving conditions of
the vehicular network.
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The adjustment of the minimum gradient norm threshold,
σmin, time-based trigger interval, τagg, and count-based trigger
threshold, Nagg, is performed as follows:

σ
(t+1)
min = σ

(t)
min +∆σ(t) ,

τ (t+1)
agg = τ (t)agg +∆τ(t) ,

N (t+1)
agg = N (t)

agg +∆N(t) .

(45)

2) CVAE-Driven Adaptation: The CVAE continuously
updates its latent space representations to adapt to changing
contexts, ensuring that the federated learning process remains
sensitive to variations in vehicular conditions, such as
traffic load, energy availability, and communication quality.
Integrating CVAE with the AdFL framework enhances
the accuracy and contextual relevance of updates, thereby
improving the overall effectiveness of the global model.

The models trained using AdFL are further utilized in
the AF-MARL framework, which optimizes task offloading
decisions, as described in the next section. The procedure of
AdFL is detailed in Algorithm 3.

VI. ADAPTIVE FEDERATED MULTI-AGENT
REINFORCEMENT LEARNING

In this section, we introduce the Adaptive Federated
Multi-Agent Reinforcement Learning (AF-MARL) algorithm,
a cutting-edge approach specifically designed to optimize
task offloading to minimize overall costs, including energy
consumption and delay, while maximizing task completion
rates in dynamic vehicular networks. Building on the
outputs of AdFL, the AF-MARL framework focuses on
optimizing task offloading strategies. This module combines
reinforcement learning with federated learning principles
to handle the decentralized nature of IoV networks while
accounting for real-time and predictive metrics provided by
DTs. AF-MARL is distinguished by its advanced features,
specifically tailored to address the complexities of IoV
networks. It employs a continuous action space, which allows
for precise decision-making, and utilizes policy-based learning
to dynamically map states to actions, enabling the system to
adapt effectively to real-time changes in the network. The
algorithm is built on an actor-critic architecture, where the
actor-network selects actions and the critic network evaluates
them, facilitating iterative refinement of decision-making.

A. Actor-Critic Architecture for AF-MARL

In the AF-MARL framework, each agent represents a
vehicle or RSU within the IoV network, operating in a
dynamic environment where states continuously evolve based
on real-time conditions. These agents interact with their
environment, making decisions on task offloading and resource
allocation based on their observed states and predefined
policies. The interactions among agents are modeled within
a Markov game framework, ensuring that decisions are
influenced by the states and actions of other agents in the
network. The main properties of the environment are listed
below:

1) Decentralized Agent Coordination: The distributed
design of AF-MARL allows each agent, whether a vehicle
or RSU, to function independently while coordinating
through decentralized learning and decision-making. By
relying on local observations and interactions, agents
reduce communication overhead and enhance scalability and
robustness [42], [43]. This approach enables the system to
swiftly adapt to dynamic changes in network topology, such as
vehicle mobility, RSU failures, or variations in communication
quality, without relying on a centralized controller.

2) State and Action Spaces: Each agent observes its
dynamically updated state sn(t), represented as:

sn(t) = {fn(t), rn(t), En(t), Dn, Cn, Tn,AdFL context} .
(46)

The action space an(t) for each agent includes continuous
decisions such as the task offloading fraction ρn(t):

an(t) = {ρn(t)}, ρn(t) ∈ [0, 1] . (47)

Algorithm 4 Adaptive Federated Multi-Agent Reinforcement
Learning

1: procedure AF-MARL(γ, τ,Nagg, τagg)
2: Initialize actor network µθ and critic networks

Qθ1 , Qθ2 .
3: Initialize target networks µθ′(s), Qθ′

1
(s, a), Qθ′

2
(s, a)

with θ′ ← θ.
4: for each episode e do
5: Initialize state sn(t) for each agent Vn

6: for each timestep t do
7: Action Selection:
8: Select action an(t) = µθ(sn(t)) for each agent.
9: Execute an(t), observe reward rn(t) and next

state sn(t+ 1).
10: Store transition (sn(t), an(t), rn(t), sn(t+1))

in replay buffer D.
11: Critic Update:
12: Sample random minibatch of transitions

(s, a, r, s′) from replay buffer D.
13: Compute target value (49).
14: Update critic networks by minimizing (50).
15: Actor Update:
16: Update actor network µθ(s) using (51).
17: Target Networks Soft Update:
18: Update target networks using (52).
19: Aggregation:
20: if Count-Based: Nagg updates received then
21: Aggregate local models as (44).
22: else if Time-Based: τagg elapsed then
23: Aggregate local models as (44).
24: end if
25: end for
26: end for
27: Return global model w(t+1)

28: end procedure
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B. Integration of AdFL with Actor-Critic-Based AF-MARL

The AF-MARL algorithm employs a dual-critic architecture
to stabilize learning. The actor network µθ(s) selects actions,
while two critic networks Qθ1(s, a) and Qθ2(s, a) evaluate the
actions. The critics are trained to minimize the Bellman error:

Lcritici(θi) = E(s,a,r,s′)

[
(Qθi(s, a)− y)

2
]
, (48)

y = r + γ min
i=1,2

Qθ′
i
(s′, µθ′(s′)) , (49)

where γ is the discount factor and θ′i are the parameters of
the target networks.

The two critics, Qθ1 and Qθ2 , are independent networks
with no shared parameters or states. This design ensures that
each critic provides an unbiased evaluation of the action-
state pairs, enhancing the robustness of the training process.
The synchronization between the critics occurs only through
periodic updates to their respective target networks, Qθ′

1
and

Qθ′
2
, using a soft update mechanism:

θ′i ← τθi + (1− τ)θ′i, (50)

where τ ≪ 1 is the soft update rate. This approach ensures
stable target values for the Bellman update while maintaining
the independence of the critic networks. The independence
of the critics reduces overestimation bias by leveraging the
minimum of their evaluations in the target computation.

The policy gradient is computed as:

∇θJ(µθ) = Es∼D

[
∇aQθ1(s, a)

∣∣
a=µθ(s)

∇θµθ(s)
]
. (51)

Next, to maintain stability during training, target networks
are used. The target networks for both the actor and the critics
are updated using a soft update mechanism:

θ′i ← τθi + (1− τ)θ′i , (52)

where τ ≪ 1 is the soft update rate.
The reward function R

(t)
n is designed to minimize the overall

cost Ωn(t), which includes the offloading delay toff
n (t), energy

consumption Etotal
n (t), and the offloading service cost Pn(t):

R(t)
n =

1

Ωn(t)
=

1(
toff
n (t)
Tn

+
Etotal

n (t)
Emax

+ Pn(t)
Pmax

) . (53)

The gradients for the actor network are computed to
maximize the expected cumulative reward:

Lactor(θ) = −Es∼D [Qθ1(s, µθ(s))] . (54)

The critic networks minimize the Bellman error through their
respective loss functions, ensuring accurate value estimation
for the chosen actions as:

Lcritic(θi) = E(s,a,r,s′)

[
(Qθi(s, a)− y)

2
]
. (55)

In AF-MARL, local model updates are aggregated using a
semi-synchronous approach, which ensures a balance between
timely updates and communication efficiency. The aggregation
process employs two distinct triggers: a count-based trigger
that initiates aggregation once a predefined number of updates
are received, and a time-based trigger that aggregates updates
at fixed time intervals, as explained in Section V-E. After the

reinforcement learning process, the global model is updated
based on the aggregated local models as (44). The AF-MARL
algorithm is detailed in Algorithm 4.

The effectiveness of the integrated framework, including
DTs, GenAI, AdFL, and AF-MARL, is evaluated through
extensive simulations, as detailed in the following sections.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
AdFL-based AF-MARL frameworks in dynamic vehicular
networks. The evaluation is conducted through extensive
simulations designed to reflect real-world conditions. We begin
by describing the dataset preparation process, followed by
the simulation setup used to assess the performance of our
approach.

A. Simulation Setup

The simulations were conducted on a high-performance
computing system configured with an NVIDIA T400 GPU
4GB, a 512GB SSD, and an Intel(R) Core(TM) i7-14700
CPU with 20 cores and a base speed of 2.10 GHz. Python
3.8 was used as the programming environment, with libraries
such as NumPy, Matplotlib, and TensorFlow employed for
implementing the AdFL and AF-MARL algorithms.

To simulate the dynamic environment of IoV networks, we
used SUMO (Simulation of Urban MObility) integrated with
Python via the Traffic Control Interface (TRACI) [24], [44].
The simulation modeled a 5 km × 5 km urban area, including
realistic city layouts with intersections and traffic controls.
Traffic scenarios included high density at 60 vehicles/km2 for
peak hours, low density at 20 vehicles/km2 for off-peak times,
and mixed conditions varying between 20 to 60 vehicles/km2.

For the simulation in this paper, the criteria for selecting
vehicles (clients) in the FL process were determined
based on computational capability, energy levels, and
connectivity/mobility thresholds. A minimum computational
capability of fmin = 1.5 GHz ensures that vehicles can
complete local training tasks within a reasonable time frame
(e.g., a task requiring 1011 FLOPs would take 67 seconds
on a 1.5 GHz processor). An energy threshold of Emin =
150 Wh accounts for the energy consumed during training
and communication, ensuring sufficient reserves for reliable
participation without impacting primary vehicle operations.
For connectivity, Tmin = 2 seconds ensures adequate time to
transmit model updates to RSUs (e.g., a 2 MB update at 10
Mbps takes 1.6 seconds, leaving a margin for synchronization).
These thresholds, derived from empirical observations and
simulation studies, ensure efficient and reliable client selection
while addressing the dynamic nature of IoV environments.

To enhance realism, the DT framework was implemented
to provide a virtual replica of each vehicle and RSU,
capturing their real-time states and historical metrics. Each
DT was structured as a vector of parameters, including
computational power, communication capability, energy level,
mobility characteristics (e.g., velocity and position), and task-
specific details such as task size and deadlines.
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TABLE III: SUMO Simulation Setup

Parameter Value

Vehicle Types Cars, Buses, Trucks
Max Speed 13 m/s

Acceleration 3 m/s2

Deceleration 9 m/s2

Lane Configuration 3 lanes per direction
Traffic Control Traffic lights, Stop signs

Communication Range Up to 1000 meters
Computation Power 1.5− 3.5 GHz

Energy Capacity 200− 1500 Wh
Stay Time 2− 10 seconds
Task Size 0.5− 2.0 MB

CPU Cycles 0.5− 1.5 GHz

TABLE IV: Simulation Parameters

Param. Value Param. Value

X ×X 5× 5 km2 N 200

M 20 fn 1.5− 2.5 GHz
fm 2.5− 3.5 GHz rn [20− 50] Mbps
rm [100− 150] Mbps En 200− 300 Wh
Em 1000− 1500 Wh v

avg
n 10− 20 m/s

vrand
n [−2, 2] m/s ∆t 1 s
Tn 0.1− 1.0 s Cn 0.5− 1.5 GHz
Dn 0.5− 2.0 MB Pn 0.1 W
Wn 10 MHz β 3

hn 10−7 − 10−8 N0 −174 dBm/Hz
κn 10−6 δ 0.1

ρn [0, 1] dn [50− 1000] m

The synchronization process was implemented using the
TraCI API, which facilitated real-time data exchange between
SUMO and the DT framework at a fixed interval of
1 second. Updates to DT attributes reflected data such
as vehicle positions, speeds, communication ranges, and
task-processing energy consumption. Additionally, the DTs
aggregated historical data over a 10-second sliding window,
which included task success rates, average delays, and energy
consumption trends. This historical data was utilized for
predictive modeling, including training the CVAE to generate
latent representations capturing nonlinear relationships among
vehicular parameters. The SUMO parameters are provided in
Table III.

The detailed parameters and hyperparameters used in the
simulation of this study are listed in Table IV and Table V,
respectively.

B. Deployment Feasibility in Real-World Environments
The integration of advanced components such as CVAE,

transformer layers, and multi-agent DRL in the proposed
framework necessitates careful consideration for real-world
deployment. Below, we outline the strategies employed to
address the associated challenges and ensure scalability and
adaptability in diverse IoV network conditions:

• Resource Management Across Nodes: Computationally
intensive tasks, such as CVAE-based encoding and
global model training, are offloaded to MEC servers

TABLE V: Hyperparameters for AdFL, CVAE, and AF-MARL

Param. Value Param. Value

AdFL
fmin 1.5 GHz Emin 150 Wh
Tmin 2 s τagg 5 s
Nagg 10 ηAdFL 0.01

Batch Size (AdFL) 64 Optimizer Adam
Activation (Transformer) ReLU ηGlobal 0.01

CVAE
Latent Dim. 64 ηCVAE 0.001

Batch Size (CVAE) 32 KL Coefficient 0.1

Encoder Layers 3 Decoder Layers 3

Activation (CVAE) ReLU Output Activation Sigmoid
Regularization L2 Dropout Rate 0.2

AF-MARL
γ 0.99 τ 0.005

ηCritic1 0.001 ηCritic2 0.001

ηActor 0.001 Buffer Size 100, 000

Batch Size (AF-MARL) 64 Noise Std. Dev. 0.2

Noise Decay 0.99 Discount Factor 0.99

Soft Update Rate 0.005 Reward Scaling 1.0

Critic Layers 2 Actor Layers 2

Activation (Critic) ReLU Activation (Actor) Tanh
Optimizer (AF-MARL) Adam Exploration Rate 0.15

or RSUs, which have higher computational capacities.
Vehicles execute lightweight decision-making models
locally, reducing the burden on resource-constrained
nodes and aligning with the hierarchical design of IoV
networks.

• Semi-Synchronous Aggregation: To address
synchronization delays caused by node heterogeneity,
the AdFL framework employs a semi-synchronous
aggregation mechanism. This allows faster nodes to
proceed without waiting indefinitely for slower nodes,
striking a balance between update quality and timeliness
in dynamic vehicular environments.

• Real-Time Decision-Making and Scalability: Digital
twins (DTs) maintain up-to-date representations of
vehicles and edge servers, enabling efficient resource
allocation and task offloading. The decentralized design
of the multi-agent DRL framework supports independent
agent operations, reducing reliance on centralized
coordination and ensuring scalability in large-scale
deployments.

• Adaptation to Node Variability: The task offloading
process dynamically adjusts to account for differences
in computational and communication capabilities. Nodes
with lower resources prioritize offloading to RSUs or
nearby vehicles with higher capacities. Sliding-window
aggregation of historical data in DTs further enhances
adaptability by capturing temporal patterns.

• Future Validation Efforts: Future work involves validating
the framework through hardware-in-the-loop (HiL)
simulations and pilot deployments in controlled vehicular
testbeds. These efforts aim to address challenges
such as communication unreliability and hardware
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Fig. 2: Total cost analysis for the parameters D, batch size, LR, Tn.
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Fig. 3: Total cost analysis for different task sizes, RSU computation capacity, and traffic conditions.

failures, guiding further improvements for large-scale IoV
applications.

This multi-faceted approach ensures that the proposed
framework is resource-efficient, scalable, and adaptable,
making it viable for deployment in real-world IoV
environments.

C. Benchmark Schemes

We compare the proposed framework against the following
methods:

1) AFL-MADDPG: Asynchronous federated learning
(AFL) proposed in [23], with multi-agent deep
deterministic policy gradient (MADDPG).

2) SFL-PPO: Synchronous federated learning (SFL), where
all vehicles synchronize updates at each iteration,
utilizing proximal policy optimization (PPO) for decision-
making.

3) DDQN: Double Deep Q-Network (DDQN), a non-
distributed DRL approach that learns task offloading
strategies without the benefits of federated learning or
multi-agent coordination.

4) non-DRL: This approach offloads tasks to the closest
RSU with the lowest current load, optimizing for
immediate resource availability but without considering
long-term impacts.

VIII. RESULT ANALYSIS

In this section, we present the simulation results and
analysis of the proposed digital twin-assisted IoV framework.

A. Total cost analysis

1) Cost Analysis Across Different Parameter Setting: Fig.
2(a) shows that a replay buffer size of 100, 000 yields the
lowest total cost across episodes in the AF-MARL framework,
balancing recent experience exploitation with data diversity.
The 50, 000 buffer, while effective, leads to slightly higher
costs due to limited data variety, whereas the 200, 000
buffer causes slower convergence and fluctuations, likely
from overfitting to outdated experiences. In Fig. 2(b), the
batch size of 64 achieves the lowest total cost by effectively
balancing learning efficiency and stability. The smaller batch
size of 32 leads to slower convergence and higher costs
due to insufficient data variability, while the larger size of
256 stabilizes learning but includes too much older data,
causing slower initial learning and higher overall costs.
Fig. 2(c) shows that the learning rate (LR) combination
[ηActor, ηCritic1, ηCritic2] = [0.001, 0.001, 0.001] achieves the best
performance, with rapid cost reduction and stable convergence.
Moderate learning rates enable effective policy learning
and robust updates, while higher rates [0.01, 0.01, 0.01]
cause instability due to aggressive updates, and lower rates
[0.0001, 0.01, 0.01] slow convergence, limiting adaptability.
Fig. 2(d) examines the impact of different task deadlines Tn on
the total cost. With a uniform deadline across tasks, the results
show that a relaxed deadline (Tn = 1.0 s) allows for optimal
resource allocation, minimizing total costs. A tighter deadline
(Tn = 0.1 s) restricts scheduling flexibility, leading to higher
costs, while the intermediate Tn = 0.5 s offers a balanced
performance. In subsequent experiments, task deadlines are
dynamically varied between 0.1 and 1.0 seconds to better
reflect realistic vehicular network conditions.
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Thus, based on these findings, we select a replay buffer size
of 100, 000, batch size of 64, and learning rate combination
of [0.001, 0.001, 0.001] for optimal performance in our
framework.

2) Cost Analysis Across Varying Conditions: In Fig. 3(a),
total costs increase with task size across all methods. AF-
MARL consistently achieves the lowest costs due to its
AdFL mechanism combined with multi-agent DRL, which
effectively manages the increased computational demand.
AFL-MADDPG and SFL-PPO incur higher costs because their
static, less context-aware strategies struggle with larger tasks.
DDQN performs the worst, particularly as task size grows,
due to its inefficiency in handling larger data loads. Fig.
3(b) demonstrates that increasing the RSU computation power
from 2.5 GHz to 3.5 GHz results in a reduction of total
costs across all methods. The AF-MARL framework exhibits
the most significant cost reduction, leveraging its real-time,
context-aware decision-making capabilities facilitated by the
DT framework. AFL-MADDPG and SFL-PPO benefit less
due to their inflexible offloading strategies, while DDQN
shows minimal improvement, unable to fully leverage the
increased computational capacity. In Fig. 3(c), total costs
rise with increasing traffic density. AF-MARL adapts well
to varying traffic conditions, leveraging its semi-synchronous
FL and multi-agent DRL framework to adjust dynamically
to real-time traffic, minimizing costs even under high-density
scenarios. AFL-MADDPG and SFL-PPO struggle more with
mixed or high-traffic conditions due to their less responsive
learning frameworks, while DDQN’s performance deteriorates
significantly under heavy traffic, leading to inefficient task
allocation and higher costs.

It is important to note that fixed conditions considered in
Fig. 3 are specific to this particular assessment, while our
framework generally considers heterogeneous conditions as
outlined in Table IV.

B. Loss

In Fig. 4, the loss trends for CVAE, AdFL, and AF-
MARL are compared across episodes. The CVAE loss starts
the highest and gradually decreases, reflecting the process of
learning effective latent representations for the task. However,
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Fig. 5: Ratio of successful offloaded tasks.

its stabilization at a higher loss level compared to AdFL and
AF-MARL indicates that, while effective, CVAE alone does
not fully optimize the overall learning objective. The AdFL
loss begins at a lower level and decreases more rapidly than
the CVAE loss, stabilizing around episode 50. This suggests
that the AdFL process efficiently utilizes the context-aware
representations generated by the CVAE to fine-tune the model,
leading to improved performance. The AF-MARL loss starts
at the lowest level and decreases the fastest, stabilizing much
earlier than both the CVAE and AdFL losses. This rapid
decline and lower stabilization point demonstrate the strength
of the integrated multi-agent DRL approach within the AF-
MARL framework. By effectively combining the adaptive
federated learning and context-aware latent representations,
AF-MARL achieves superior optimization, minimizing loss
more effectively and ensuring robust performance in dynamic
vehicular environments. This emphasizes the efficiency and
effectiveness of the proposed framework, with all components
working together to achieve optimal system performance.

C. Task Success Rate

In Fig. 5(a), the task success rate for various algorithms is
shown, reflecting the percentage of offloaded tasks completed
over time. AF-MARL consistently achieves the highest task
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success rate, approaching 100% as the episodes progress. This
is due to its advanced features such as the AdFL mechanism,
multi-agent DRL, CVAE, and transformer layers, which
together enable effective context-aware decision-making and
adaptability in dynamic environments. AFL-MADDPG also
performs well but shows limitations in adaptability because
vehicles train independently and asynchronously, which can
lead to suboptimal task offloading decisions under varying
conditions. SFL-PPO performs moderately, benefiting from
policy optimization but lacking the context-aware capabilities
of AF-MARL. DDQN and non-DRL approaches exhibit the
lowest success rates, particularly as task complexity increases,
due to their lack of collaborative and adaptive mechanisms.

Fig. 5(b) examines the task success rate under varying
traffic intensity. AF-MARL maintains the highest success rate
even as traffic intensity increases, demonstrating its ability
to adapt through real-time context awareness and efficient
resource management. AFL-MADDPG, while still effective,
shows a slight decline at higher traffic densities due to the lack
of synchronized updates across vehicles. SFL-PPO’s success
rate drops more noticeably with increased traffic, as its less
adaptive resource allocation struggles under heavier loads.
DDQN and non-DRL methods experience significant declines
in success rate under higher traffic, as they are less equipped
to manage the increased complexity and demand.

D. Total Energy Consumption & Delay

In Fig. 6(a), the total delay across various algorithms
is presented, showcasing the efficiency of each method in
minimizing task processing times. AF-MARL consistently
achieves the lowest delay, leveraging the integration of CVAE
and transformer layers for rapid, context-aware decision-
making that optimizes task offloading and processing. AFL-
MADDPG, while effective, incurs slightly higher delays
due to its asynchronous nature, which, while reducing
synchronization time, can lead to less coordinated decision-
making across vehicles.

In Fig. 6(b), we observe the total energy consumption
across the different methods over training episodes. AF-MARL
again demonstrates the lowest energy consumption, benefiting
from its ability to dynamically adjust to network conditions
and distribute tasks efficiently. AFL-MADDPG and SFL-PPO
show a trade-off in energy consumption. SFL-PPO, with its
synchronous updates, ensures consistent global model updates,
but the required coordination introduces additional energy
overhead. AFL-MADDPG, on the other hand, reduces this
overhead through asynchronous updates, though at the cost
of potentially less optimal task decisions in real-time due
to the lack of simultaneous updates. Both DDQN and non-
DRL methods exhibit significantly higher delays and energy
consumption. DDQN’s lack of collaborative learning leads to
bottlenecks and inefficiencies, while the non-DRL approach,
relying on static rules without real-time optimization, is slow
to adapt to network changes, resulting in the highest delays
and energy use.

Overall, Fig. 6 highlights the superiority of our proposed
AF-MARL framework in effectively minimizing both delay
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Fig. 6: Total energy consumption & overall delay.

and energy consumption, demonstrating its ability to balance
dynamic network demands better than the other methods.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel DT-assisted IoV
framework designed to address the challenges of real-time
decision-making and efficient resource management in large-
scale, dynamic vehicular networks. By integrating AdFL and
AF-MARL, enhanced with CVAE and transformer layers,
the framework effectively optimizes partial task offloading
and resource allocation across distributed MEC servers. The
extensive simulation results demonstrated that the proposed
framework consistently outperforms existing methods across
various metrics, including total cost, task success rate, energy
consumption, and delay. Specifically, AF-MARL exhibited
superior adaptability and efficiency, achieving the lowest
costs and highest task success rates, even under varying task
sizes, RSU computational capacities, and traffic densities.
The results also revealed important trade-offs, particularly
between AFL-MADDPG and SFL-PPO, highlighting the
balance between synchronous and asynchronous learning
approaches in managing energy consumption and delay.
The proposed framework’s ability to dynamically adjust to
real-time conditions, utilize context-aware decision-making,
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and efficiently distribute computational tasks underscores its
potential to significantly enhance IoV networks’ performance
and scalability.

This framework can be extended to real-world scenarios
through pilot deployments in controlled vehicular testbeds or
HiL simulations, combining real hardware components with
virtual testing environments. These efforts would evaluate its
adaptability to real-time challenges such as fluctuating network
quality, dynamic traffic patterns, and hardware limitations.
Additionally, partial integration with real-world IoV datasets
could refine the framework, providing critical insights for
large-scale deployments while addressing practical issues like
communication reliability and scalability. Such extensions
would bridge the gap between simulation-based validation and
real-world applicability.
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