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Abstract—Mobile edge computing (MEC) is emerging as a
transformative enabler for the sixth-generation (6G) wireless
networks. This letter investigates the potential of a quantum-
centric optimisation approach for service placement in 6G MEC.
Specifically, we formulate a mixed-integer binary programming
problem that aims to minimise both service costs and delay by
optimising service placement decisions, subject to constraints on
service availability and the computing budget of edge servers.
The formulated problem is NP-hard, making it computationally
challenging for classical methods to solve. To address this, we
develop a quantum-centric optimisation solution that efficiently
finds optimal binary solutions for the problem, demonstrating
potential for tackling medium-to-large-scale instances. Simulation
results validate the effectiveness of the quantum-centric approach
by showcasing the convergence pattern of the optimisation
process on real quantum hardware and the associated increase
in running time compared to a classical method.

Index Terms—6G networks, mobile edge computing, QAOA,
quantum optimisation, service placement.

I. INTRODUCTION

Mobile edge computing has been considered as an im-
portant component for 6G wireless networks, providing the
advanced computing architecture needed to meet stringent
6G performance requirements, such as ultra-low latency, en-
hanced energy efficiency, and high reliability. By decentral-
ising resources and bringing critical infrastructure—such as
computing, storage, networking, and communication capabili-
ties—closer to end users, edge computing allows for rapid pro-
cessing and data exchange. This proximity to mobile devices
enables a new wave of responsive, data-intensive services,
including autonomous driving, virtual and augmented reality,
the industrial Internet-of-Things (IIoT), and smart healthcare,
all of which are foundational to the vision of 6G networks. As
a result, edge computing holds the potential to fundamentally
reshape network capabilities, extending 6G beyond traditional
connectivity to provide seamless, intelligent, and adaptable
services that respond in real time to users’ needs [1].

To fully realise the potential of edge computing within 6G
networks, however, several open challenges must be addressed,
including the co-design of computation and communication
processes, efficient resource scheduling, and dynamic service
provisioning. Among these, optimal service placement is cru-
cial, as it ensures dynamic adaptability, strengthens security,
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and maximises resource utilisation across distributed edge
servers [2]–[5]. Service placement involves determining the
ideal distribution of services to balance demand with available
resources effectively and efficiently. Recent research identifies
optimal service placement as a central challenge in edge com-
puting, primarily due to its inherent complexity; typically, it is
formulated as a mixed-integer programming (MIP) problem,
which is computationally intensive and often intractable for
classical optimisation techniques [6]. Addressing this chal-
lenge is essential for achieving the resource management and
operational flexibility required to support the demanding, real-
time applications that define the future of 6G networks.

With the rapid advancement of quantum computing technol-
ogy, quantum-centric optimisation has emerged as a promising
approach for addressing challenging combinatorial optimisa-
tion problems, particularly in the realm of MIP [7]. The advent
of quantum computing presents substantial opportunities to
address challenging combinatorial optimisation problems that
are intractable for classical methods. The quantum approxi-
mate optimisation algorithm (QAOA), first introduced in [8],
has attracted significant attention due to its potential to tackle
large-scale, classically intractable problems. Studies, such as
those in [9], [10], have shown that QAOA can effectively
navigate complex solution spaces, providing a feasible route
for optimising problems that exceed the computational limits
of classical algorithms. These findings offer strong evidence
for the practical utility of quantum optimisation across various
domains.

Recent work exploring quantum optimisation within edge
computing, such as in [11], demonstrates that quantum-
based solutions are poised to become a viable alternative
to classical algorithms. As edge computing in 6G networks
demands highly efficient resource allocation and service place-
ment—challenges often framed as MIP problems—quantum
optimisation presents a compelling new approach. By leverag-
ing quantum computing’s ability to process and solve complex
optimisation tasks at scale, quantum-centric solutions offer a
path forward for realising the full potential of edge computing
in next-generation networks.

Given the growing demands of 6G wireless networks, edge
computing has become essential to enable high-efficiency, low-
latency, and resource-intensive applications. However, achiev-
ing the adaptability and efficiency required for these next-
generation services necessitates solving complex optimisation
problems, often formulated as MIP tasks that are challenging
for classical computing. With the promising advancements in
quantum computing, quantum-centric optimisation solutions
offer a compelling approach to tackle these intractable prob-
lems. This study aims to explore the potential of quantum
optimisation in advancing the dynamic adaptability of future
edge computing systems, creating opportunities to enable a
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new generation of applications and transforming how 6G
networks manage resources. The main contributions of this
study are summarised as follows:

• We formulate the dynamic service placement problem in
6G edge computing as an optimisation task, addressing
the critical requirements for adaptability and resource
efficiency in next-generation networks.

• We transform this classical optimisation problem into
a quadratic unconstrained binary optimisation (QUBO)
format and a Hamiltonian representation, enabling com-
patibility with quantum processors.

• We develop and implement a quantum-centric optimisa-
tion approach to effectively solve the problem under the
constraints of edge computing environments.

• We conduct extensive simulations to evaluate the poten-
tial of quantum optimisation in solving computationally
intensive problems in wireless networks, demonstrating
its viability as a future solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this letter, we consider a typical edge computing system
comprising M edge servers (ES) and N user equipment (UE).
To execute computational tasks requested by the UEs, the ESs
must install the appropriate services. Only when the proper
service is installed on the ESs can the requested tasks from
the UEs be processed. An illustration of the considered system
model is provided in Fig. 1.

Fig. 1. An illustration of the service placement problem in edge computing.

A. Service Placement Model

In the considered system model, the computational task
requested by the n-th UE is characterised by three parameters:
Cn, the required CPU cycles to process the task; Dn, the
delay tolerance (i.e., the maximum allowable delay) of the
task; and tn, a binary parameter indicating whether the task
is requested (i.e., tn = 1) or not (i.e., tn = 0). In addition,
tasks are associated with a cost value, ρn, which models the
service cost. The objective of service placement is to determine
which service should be installed at each particular server. An
optimal service placement strategy can improve the system’s
dynamic adaptability, reduce service costs, and enhance the
security aspect of the system.

We assume that there are a total of N services in the system.
Let xmn be a binary decision variable, where xmn = 1 if the

m-th server hosts the service for the n UE, and xmn = 0
otherwise. This can be mathematically expressed as follows:

xmn =

{
1, if the n-th service is hosted at the m-th ES,
0, otherwise.

(1)

Due to limitations in computing resources, the total com-
putational load assigned to any server must not exceed its
capacity Fmax

m :
N∑

n=1

xmnfn ≤ Fmax
m , ∀m ∈ {1, 2, . . . ,M}, (2)

where fn denotes the computing resources required by the ES
to handle a single requested task from the UEs.

To ensure that each requested task from the UEs can be
processed, each requested service should be placed on at least
one server. This requirement can be expressed as follows:

M∑
m=1

xmn ≥ tn, ∀n ∈ {1, 2, . . . , N}. (3)

B. Delay Model

In this letter, we aim at minimising both the service cost
of service placement and the total latency for processing the
tasks. The delay includes wireless transmission delay and edge
processing delay. The wireless channel gain hmn between the
n-th UE and the m-th ES is modelled as hmn =

√
gmnh̃mn,

where gmn denotes the large-scale fading, and h̃mn accounts
for small-scale Rayleigh fading. For each UE-ES pair, the
transmission rate Rmn is calculated based on a dedicated band-
width allocation, assuming no interference from other UEs.
This non-interference assumption is achieved by allocating an
isolated bandwidth B to each UE-ES link, ensuring that all
transmissions operate independently. Consequently, the signal-
to-noise ratio (SNR), denoted by γmn, for each pair is given
by: γmn = |hmn|2Ptx

σ2 , where Ptx is the transmission power
and σ2 is the noise variance. Using γmn, the transmission rate
Rmn is computed as:

Rmn = B log2(1 + γmn), (4)

As a result, the end-to-end delay, including transmission delay
and the edge processing delay can be calculated as follows

Dmn =
Sn

Rmn
+

Cn

fn
, (5)

where Sn is the task size (bits); Rmn is the transmission rate
(bits/s); fn is the designed processing rate of the MEC for
each task.

C. Optimisation Problem Formulation

Based on the above development, the optimisation problem
addressed in this study is formulated as (6). The objective is
to minimise the total cost associated with service placement
and the total end-to-end delay by finding the optimal service
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placement decisions.

min
x

M∑
m=1

N∑
n=1

ρnxmn +

M∑
m=1

N∑
n=1

xmnDmn,

s.t.
N∑

n=1

xmnfn ≤ Fmax
m ,∀m,

M∑
m=1

xmn ≥ tn,∀n,

xmn ∈ {0, 1}, ∀m,n.

(6a)

(6b)

(6c)

(6d)

In (6), constraint (6b) represents the computing capacity
constraint for the ESs, while constraint (6c) ensures service
availability. The formulated problem is clearly a mixed-integer
(binary) programming problem, which is NP-hard and in-
tractable for classical optimisation methods.

III. PROPOSED QUANTUM-CENTRIC OPTIMISATION
SOLUTION

In this paper, we develop a quantum-centric optimisation
approach based on the quantum approximate optimisation
algorithm (QAOA) to tackle problem (6). To achieve this, we
first transform the classical integer program into a quadratic
unconstrained binary optimisation (QUBO) formulation. Then,
from the QUBO form, we convert it into a Hamiltonian
expression for execution on a quantum processor.

A. Transformation of Classical Problem to QUBO Problem

To transform the classical problem into a QUBO form, we
introduce penalty parameters λ0, λ1, λ2, and λ3 to reformulate
problem (6) as follows.

min
x

[
λ0

M∑
m=1

N∑
n=1

ρnxmn + λ1

M∑
m=1

(
N∑

n=1

xmnfn − Fmax
m

)2

+ λ2

N∑
n=1

(
tn −

M∑
m=1

xmn

)2

+ λ3

N∑
n=1

M∑
m=1

xmnDmn

]
. (7)

In this formulation, λ1 and λ2 are penalty parameters that
enforce the constraints on the computing capacity of the ESs,
(6b) and service availability, (6c), respectively. By setting λ1

and λ2 to sufficiently large values, the optimisation process
is guided toward feasible service placement decisions that
satisfy these constraints. Additionally, the parameters λ0 and
λ3 balance the trade-off between service cost and delay in the
objective function, ensuring that both aspects are considered
effectively in the optimisation process.

It is important to note that, in order to implement the
quantum-centric optimisation problem, the optimisation prob-
lem must be expressed in a quadratic form, given by

min
x

xT Qx. (8)

Therefore, we must construct the Q matrix based on the
formulation of the problem in (7). Details of the construction
process are provided in the Appendix.

B. Transformation of QUBO Problem to the Hamiltonian

In order to transform the QUBO problem into the the
Hamiltonian, we first convert the binary variables to spin
variables zmn ∈ {−1, 1}. We convert each binary variable
xmn ∈ {0, 1} to a spin variable zmn using:

xmn =
1− zmn

2
. (9)

Substituting this expression into the QUBO objective function
allows us to rewrite it in terms of spin variables.

Firstly, we substitute (9) into each part of the objective
function:

M∑
m=1

N∑
n=1

ρnxmn =

M∑
m=1

N∑
n=1

ρn
1− zmn

2

=
1

2

M∑
m=1

N∑
n=1

ρn − 1

2

M∑
m=1

N∑
n=1

ρnzmn. (10)

Then, we process the constraint (6b), the second term of (7)

λ1

M∑
m=1

(
N∑

n=1

xmnfn − Fmax
m

)2

= λ1

M∑
m=1

(
N∑

n=1

fn(1− zmn)

2
− Fmax

m

)2

. (11)

This will yield a combination of constants, linear terms in
zmn, and quadratic terms in zmnzmk. Similarly, the availability
penalty term is transformed as follows

λ2

N∑
n=1

(
tn −

M∑
m=1

xmn

)2

= λ2

N∑
n=1

(
tn −

M∑
m=1

1− zmn

2

)2

. (12)

Finally, the delay term in spin variables is given by

λ3

M∑
m=1

N∑
n=1

xmnDn =
λ3

2

M∑
m=1

N∑
n=1

Dn(1− zmn)

=
λ3

2

M∑
m=1

N∑
n=1

Dn − λ3

2

M∑
m=1

N∑
n=1

Dnzmn. (13)

After expanding all terms, we combine them into a Hamil-
tonian in terms of spin variables zmn. Each spin variable zmn

corresponds to a Pauli Z operator, where zmn = Zmn Thus,
each linear term in zmn translates to a single Zmn operator,
and each quadratic term in zmnzmk becomes a product of two
Pauli Z operators.

The Hamiltonian takes the form:

HC =
∑
i

IiZi +
∑
i<j

JijZiZj , (14)

where Ii are coefficients for each linear Zi term (from the
linear terms in zmn) and Jij are coefficients for each quadratic
ZiZj term.

C. Proposed Algorithm

Based on the above development, we propose a quantum-
centric optimisation algorithm to solve the formulated service
placement problem, as presented in Algorithm 1. The algo-
rithm begins by taking as input the system parameters, penalty
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parameters, and quantum backend settings. Next, we construct
the parameterised quantum circuit (ansatz) for quantum mea-
surement. The optimisation process then aims to optimise the
parameters (β,γ) on the ansatz to minimise the objective
value. This process is repeated until convergence is reached
or the maximum number of iterations is attained.

Algorithm 1 : Proposed quantum-centric optimisation algo-
rithm for solving the service placement problem (6).

1: Input: Problem parameters M , N , ρ, fn, Fmax
m , tn, Dn;

penalty coefficients λ0, λ1, λ2, λ3; quantum backend;
classical optimiser.

2: Design a parameterised ansatz circuit with number of
layers p, initialized with parameter vector (β0,γ0).

3: Initialise a classical optimiser (e.g., COBYLA) for itera-
tive parameter adjustment.

4: Implement a function Obj(β,γ) to:
• Bind parameters (β,γ) to the ansatz circuit.
• Execute the circuit on the quantum backend to com-

pute ⟨β,γ|HC |β,γ⟩.
• Return the measured expectation value as the objec-

tive for optimisation.
5: Optimise Ansatz Parameters
6: repeat
7: Update (β,γ) using the classical optimiser on Obj.
8: Track the objective function values to observe conver-

gence.
9: until convergence

10: Output: Optimised binary service placement matrix x,
minimised objective value.

Fig. 2. A example of the parameterised quantum circuit in the quantum-
centric optimisation solution for the 6-qubit service placement problem.

Regarding the design of the ansatz, Fig. 2 illustrates an
example of the parameterised quantum circuit for a problem
with six variables (6 qubits). The circuit consists of p layers,
starting with Hadamard gates H⊗n|0⟩ to create superposi-
tions. Each layer applies two key components: UC(γk) =
exp(−iγkHC), which encodes the cost function into the cir-
cuit, and RX(βk) = exp(−iβkHM ), which explores the solu-
tion space by introducing mixing. The circuit is parameterised
by angles γ1, . . . , γp and β1, . . . , βp, and the optimisation
process adjusts these parameters to minimise the objective
function.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Parameter Setting

For simulations, we consider a system model with M = 3
ESs and N = {2, 3, . . . , 7} UEs. The transmission power
of the UEs is set to 20 dBm, and the allocated bandwidth
for each UE-ES link is 1 MHz. The large-scale fading for
the wireless transmission between the n-th UE and the m-th
ES is modeled as gmn = 10PL(dmn)/10, where PL(dmn) =
−35.3− 37.6 log10 dmn and dmn is the distance between the
n-th UE and the m-th ES [6]. The processing rate of each ES
for handling tasks is set to 2 GHz, while the maximum com-
puting capacity of each server is 3 GHz. The simulations are
conducted in a Python environment, utilising packages such
as qiskit, qiskit_algorithms, and matplotlib to
implement the proposed algorithm and visualise the numerical
results. For real quantum hardware processing, we run the code
on the ibm_quebec backend.

B. Numerical Results

1) Convergence behaviour of the proposed algorithm:
Fig. 3 illustrates the convergence behaviour of the proposed
algorithm in a scenario with 9 optimisation variables, eval-
uated on both a simulator and real IBM quantum hardware
(ibm_quebec). The plot presents the objective function
value over 60 iterations, comparing the performance between
the Qiskit Aer simulator and ibm_quebec backend. Initially,
both platforms exhibit significant fluctuations in the objec-
tive function values, reflecting the exploration phase of the
optimisation process. After approximately 30 iterations, both
the simulator and real quantum hardware begin to converge
towards minimised objective function values. Notably, the final
objective value obtained on the simulator is slightly lower than
that on the real IBM hardware, indicating better optimisation
performance in the simulated environment. This difference can
be attributed to the noise and decoherence effects inherent in
quantum hardware, which can slightly degrade the optimisa-
tion accuracy. Despite these hardware limitations, the overall
convergence trend on ibm_quebec closely aligns with the
simulator, demonstrating the algorithm’s robustness and effec-
tiveness in both simulated and real quantum environments.
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Fig. 3. Convergence behaviour of the proposed algorithm with the scenario of
9 optimisation variables on Qiskit Aer simulator and IBM quantum computer
(PINQ2).
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Fig. 4. The multiplicative increase of running time and the approximation
ratio of the proposed solution compared with the classical solution.

2) Running time comparisons and approximation ratio
analysis: Fig. 4 illustrates the multiplicative increase in run-
ning time for both the proposed quantum-centric method and
the brute-force method as the number of variables increases
from 6 to 21. The x-axis denotes the range of variables in
steps, while the y-axis (left) represents how many times the
running time increases when moving from 6 variables to the
indicated number of variables. The figure clearly demonstrates
the rapid increase in the brute-force method’s running time,
which rises significantly as the number of variables increases,
peaking at approximately 21,560 times for the increase of
15 variables from 6 to 21 scenario. In contrast, the running
time for quantum-based method increases more moderately,
reaching 3956 times for the same case. A zoomed-in inset
highlights the results for smaller variable ranges (6→9, 6→12,
and 6→15), where the differences between the two methods
are less pronounced. In addition, the right y-axis plots the
approximation ratio (brute-force solution over quantum-centric
solution), which remains at 1 for most cases, except for a slight
dip (0.98) in the last case. This indicates that QAOA pro-
vides near-optimal solutions for most instances. Importantly,
the results reveal that the quantum-centric solution has the
potential to provide near-optimal solutions for problems that
are classically intractable.

V. CONCLUSION

In this letter, we have explored the potential of quantum-
centric optimisation for addressing the service placement
problem in 6G edge computing. The formulated optimisation
problem minimises both service placement costs and total de-
lay while meeting the computing capacity constraints of edge
servers and ensuring service availability. Numerical results
demonstrate the effectiveness of our approach, showing clear
convergence behaviour and a multiplicative increase in runtime
efficiency compared to classical solutions as the system model
scales. In future work, we will extend our quantum-centric
optimisation approach to dynamic 6G networks, compare it
with classical algorithms, and evaluate its scalability with
advancing quantum hardware.

APPENDIX: CONSTRUCTION OF THE Q MATRIX FOR THE
QUBO FORMULATION

The Q matrix for the QUBO problem represents the ob-
jective function for optimising service placement in an edge

computing network. Given binary variables xmn, where M is
the number of edge servers (ESs) and N is the number of user
equipment (UEs), the matrix entries are defined as follows:

The diagonal entries Q(m,n),(m,n) represent linear terms
associated with individual placement decisions and are calcu-
lated as:

Q(m,n),(m,n) = λ0ρn − 2λ1F
max
m fn − 2λ2tn + λ3Dmn (15)

where λ0ρn applies a service cost penalty with ρn as the
cost for the n-th UE, −2λ1F

max
m fn enforces a penalty related

to the ES’s maximum capacity Fmax
m when serving the n-th

UE with computing requirement fn, and −2λ2tn applies an
availability penalty when a service request tn is active for the
n-th UE. The delay penalty term λ3Dmn penalizes the delay
between the n-th UE and ES m, where Dmn represents the
delay cost.

The off-diagonal entries Q(m,n),(p,j) represent quadratic
interactions between placement decisions and are given by:

Q(m,n),(p,j) =


λ1fnfj , if m = p and n ̸= j,

λ2, if m ̸= p and n = j,

0, otherwise.
(16)

where λ1fnfj is the capacity constraint penalty applied when
different UEs n and j are served by the same ES m (thus
controlling for total computational load). The term λ2 is an
availability constraint penalty applied when the same the n-th
UE is placed on different ESs m and p, ensuring that each
requested service is only placed once. All other off-diagonal
terms are set to zero, as they represent independent decisions
without interaction.
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