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Abstract

Among the phases constituting analog circuit design, circuit sizing is consid-
ered labor-intensive, formidable, and heavily experience-dependent due to its
non-linearity. As a result, design automation coupled with effective optimiza-
tion techniques has arisen as a feasible candidate to address challenges with
circuit design and satisfy the increasing need for high-performance circuits.
Among evolutionary algorithms, the combination of the genetic algorithm
(GA) and quantum computing techniques has yielded the hybrid quantum
genetic algorithm (HQGA) which has proven to be an effective optimiza-
tion method in many fields due to its convergence rate and near-optimal
solutions. This paper introduces an upgraded version of HQGA we call the
Auto-adjusting Hybrid Quantum Genetic Algorithm (AHQGA) which avoids
premature convergence and improves convergence speed through the use of an
additional best-fitness-based scheme for rotation angles. In particular, this
work proposes the utility of AHQGA for the multi-objective optimization
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of analog circuit sizing, with the two-stage Miller-compensated operational
amplifier (op-amp) used as a topological case study. Additionally, for an ob-
jective evaluation, optimization results by AHQGA are compared with those
by HQGA with fixed rotation angles and classical GA.

Keywords: Auto-adjusting hybrid quantum genetic algorithm, classical
genetic algorithm, hybrid quantum genetic algorithm, rotation angles,
two-stage Miller-compensated operational amplifier

1. Introduction

The design of analog integrated circuits (ICs) mainly consists of three
phases: topological-level design, circuit sizing (or parameter-level design)
and layout extraction [1, 2]. In the circuit sizing phase, due to the MOS-
FET’s characteristics and multidimensional trade-offs between various analog
performance metrics, the relationship between design parameters and circuit
variables is highly non-linear [3]. As a result, analog circuit design has been
considered a complicated and time-consuming process which depends heavily
on designer experience [4]. In order to reduce this reliance as well as fulfill
the increasing demand for high-performance circuits, analog design automa-
tion has arisen as a promising research area that captures the attention of
academia [5]. Regarding implementation, circuit sizing should be categorized
as a non-linear constrained and multi-objective optimization [3]. As a result,
before solving any optimization problem, determining the method, algorithm
as well as interface for the optimization process is considered essential.

Automated sizing methods for analog circuits can be mainly categorized
into equation-based and simulation-based methods [2]. In the former case,
equation-based methods utilize circuit analysis to derive posynomial or mono-
mial equations for targeted performance metrics. Despite fast execution time
and a high chance of global optimum assurance, obtaining such expressions
is viewed as laborious and demands high designer effort, especially for com-
plex circuits [6]. Furthermore, closed-form and explicit functions for circuit
parameters often require simplifications and approximations, which leads to
the sacrifice of MOSFET’s higher-order effects and a lack of precision for
the model [2]. In contrast, the simulation-based counterpart utilizes real-
time simulation data to evaluate the performance of a specific circuit, pro-
cess objective functions (or fitness functions), and design constraints in the
form of black-box functions. This helps the optimization process explore the
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search space in an oriented manner with a high degree of accuracy [2, 7].
This method is considered both flexible and convenient when compared with
equation-based optimization due to its adaptability to any circuit topology
and design specifications with a short set-up time [8], and the optimization
method of choice used in this work.

With the optimization method chosen, an appropriate optimization al-
gorithm should be then selected. Among numerous existing model-free op-
timization methods, the genetic algorithm (GA), based on the Darwinian
principle of natural selection and concepts of natural genetics, is commonly
used as an effective solution for large search spaces [2]. However, the ability
of GA to update its population is not oriented to the current best individual,
but in a highly random manner with a selection, crossover and mutation step
instead. To overcome this issue in our research, the auto-adjusting hybrid
quantum genetic algorithm (AHQGA) is introduced as an inter-discipline
algorithm inheriting GA’s characteristics and quantum computing concepts
[9]. Rather than expressing chromosomes in binary bits as GA, AHQGA
encodes chromosomes by quantum bits and updates them by quantum gates
[10]. Thanks to this encoding scheme, AHQGA can guide the exploration of
the whole quantum population in the search space toward the currently best
chromosomes. This might result in the large diversity of population, rapid
convergence and high global search capability of AHQGA [11].

Moreover, it is worth noticing two key features of our AHQGA that might
address the shortcomings of several other works. Firstly, our work utilizes the
random coefficient p(α) for quantum measurement. Regarding observation
or measurement of quantum bits, [11] and [12] performed it with a constant
coefficient that practically deactivates the probabilistic mechanism of quan-
tum measurement, which in turn might degrade the algorithm’s performance.
Thus, to preserve the randomness of observation, our implementation is sim-
ilar to that presented in [13, 10] with p(α), which is further elucidated in
section 3. Secondly and more importantly, our research utilized an auto-
adjusting rotation scheme relative to the difference between the currently
considered chromosome of the population and the global best one. This
differentiates from the fixed rotation angles when updating quantum chro-
mosomes as in conventional hybrid quantum genetic algorithm (HQGA) of
[13, 14]. As a result, premature convergence can be prevented and AHQGA’s
efficiency can be improved to its greatest extent. In summary, thanks to its
noticeable advantages, AHQGA, with two aforementioned solutions to tackle
existing research gaps, is nominated as the algorithm for our optimization

3



process, which is virtually one of the leading scientific works on quantum-
based optimization for analog circuit sizing.

Last but not least, determining an optimization interface for the connec-
tion between the simulation-based method and AHQGA is crucial. In the
work presented in [15, 6], HSPICE was used as the circuit simulator for design
parameters’ value. Nevertheless, an extra step is typically needed to gather
necessary data by employing scripting languages [2]. The Spectre simulator
meanwhile enables the incorporation of the SKILL programming language’s
syntax within Ocean-based scripts, which does not require that step [2]. Con-
sidering the Spectre simulator’s role in the whole optimization system, the
adaptability of SKILL programming reflects the authors’ preference for Spec-
tre compared to its HSPICE counterpart in terms of manipulating output
data.

Being one of the fundamental blocks in analog IC design, two-stage Miller-
compensated op-amp is chosen as the typical case study that might demon-
strate the groundwork for quantum-inspired circuit sizing optimization in the
design automation of analog circuits. With only 100 iterations of AHQGA,
the optimized op-amp achieved a fitness value of 0.5654 at the 49th iteration,
which is chosen as

Fitness =
UGB× CL

Itotal
× tan(PM)

tan(PMREF )
, (1)

where UGB is the unity gain-bandwidth product, CL is the load capacitor
at the output node, Itotal is the total current, PM is the phase margin and
PMREF is the reference phase margin [16]. The achieved results are promis-
ing and comparable in terms of the fitness value and number of iterations to
achieve that optimal value. More significantly, considering the same set-up
and initial conditions, optimization results by AHQGA have been compared
with those by HQGA with fixed rotation angles and GA for an objective
assessment.

To sum up, the following are the technical contributions provided by this
paper:

1. The proposal of the AHQGA-Spectre model for the efficient optimiza-
tion of analog circuit sizing. This not only sets the foundation for
quantum-inspired optimization of analog circuit sizing but also over-
comes the issues of global optimum and convergence speed of tradi-
tional algorithms.
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2. The utilization of the Spectre simulator as the interface between the
AHQGA optimization algorithm and simulation-based optimization
method, which can effectively manipulate output simulation data dur-
ing the optimization process.

3. The introduction of the AHQGA with two fundamental characteristics
to facilitate the limitations of existing research. Firstly, a random coef-
ficient p(α) is applied to preserve the probabilistic manner of quantum
measurement, with a view to ensuring the algorithm’s performance.
Secondly, an auto-adjusting mechanism for the rotation angles to up-
date the population is presented for the sake of convergence speed and
globally optimal solutions.

4. The experimental results confirm the effectiveness of the proposed
AHQGA algorithm compared to that of HQGA with fixed rotation
angles and traditional GA.

The remainder of this paper is organized as follows. Sections 2 and 3 clar-
ify essential quantum computing theories and the procedure for AHQGA, re-
spectively. Subsequently, section 4 illustrates the optimization of the AHQGA
for analog circuit sizing while section 5 analyzes the case study of two-stage
Miller-compensated op-amp. Simulation results and discussion are presented
in section 6, followed by the conclusion of the paper in the last section.

2. Basics of Quantum Computing for AHQGA

Although there are many concepts and principles in the field of quantum
computing, we restrict our discussion on quantum fundamentals to those
which are essential for the AHQGA. These include essential quantum char-
acteristics and operation quantum gates only.

2.1. Quantum states

Classical computing makes use of bits as the basic unit of information,
which has a state of either 0 or 1. On the other hand, quantum computing
utilizes the quantum bit (i.e., qubit), which exist as a quantum superposition
of these classical bits. Upon measuring the qubit, it will collapse to either
the |0⟩ and |1⟩ state [17].

The state of a general qubit |ψ⟩ can be any linear superposition state of
|0⟩ and |1⟩ and can be expressed as

|ψ⟩ = α |0⟩+ β |1⟩ , (2)
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where |α|2 + |β|2 = 1, |α|2 and |β|2 are the probabilities that |ψ⟩ collapses to
|0⟩ and |1⟩, respectively. |ψ⟩ can also be written in vector form

|ψ⟩ = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
, (3)

where |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

2.2. The Bloch sphere

In the Bloch spherical coordinates, the above qubit state |ψ⟩ can be de-
fined as

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ , (4)

where cos
(
θ
2

)
, eiϕ sin

(
θ
2

)
are complex numbers representing probability am-

plitudes of the qubit, and θ and ϕ are the polar angle and azimuthal angle of
a spherical coordinate, respectively. Each real value of θ and ϕ corresponds
to a three-dimensional point P of a particular qubit on the Bloch sphere [17],
as illustrated in Figure 1.

Figure 1: Representation of a single qubit on the Bloch sphere.

2.3. Quantum gates

A quantum gate is a gate that performs a unitary operation on a given
qubit. To obtain the new quantum state after applying such a transforma-
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tion, the matrix representation of the quantum gate is multiplied by the ini-
tial qubit vector. There are various quantum gates implemented in quantum
computing, however, below we focus on introducing the three fundamental
quantum gates utilized by AHQGA; the Hadamard, rotation, and Pauli X
gate.

2.3.1. Hadamard gate

The Hadamard gate is a 1-qubit gate used to create a superposition of
the |0⟩ and |1⟩ basis states. It is defined by the matrix

H =
1√
2

(
1 1
1 −1

)
. (5)

2.3.2. Rotation gate

Applying the rotation gate on a given qubit will rotate the qubit around
the Bloch sphere to a new state (see Fig. 1). The rotation gate depends on
θ and depending on the axial rotation required, will be defined as

Rx(θ) =

(
cos( θ

2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

)
,

Ry(θ) =

(
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

)
,

Rz(θ) =

(
e

−iθ
2 0

0 e
iθ
2

)
,

(6)

where Rx(θ), Ry(θ), and Rz(θ) correspond to rotations around the x-, y-,
and z-axis.

2.3.3. Pauli X gate

For the standard basis |0⟩ and |1⟩, the Pauli X gate performs the Boolean
NOT operation that maps |0⟩ → |1⟩ and |1⟩ → |0⟩. The Pauli X gate is
defined by

X =

(
0 1
1 0

)
. (7)
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3. AHQGA

The HQGA is a cross-disciplinary algorithm that incorporates princi-
ples of quantum computing and features of classical GA. Since qubits offer
higher capability of computation and speed, classical information is encoded
into qubits in HQGA to exploit that advantage. In our improved version
of HQGA, AHQGA, we utilize an auto-adjusting scheme for rotation angles
to improve the convergence speed and avoid premature convergence. The
AHQGA flowchart is presented in Figure 2, with subsequent elaboration of
each implementation step in the following subsections.

The optimization framework takes the setup parameters for the popula-
tion as well as the algorithm as its inputs. Furthermore, the stop condition is
chosen as the maximum number of iterations for each optimization process.
When the stop condition is satisfied, optimal values for the design variables
are produced as the output.

3.1. Quantum Population Initialization

A quantum population consists of many quantum chromosomes. The ith

chromosome, or individual, is defined by an n-qubit sequence as

|ψ⟩i =
∑
j

ci |ψj⟩ =
(
α1 α2 ... αj ... αn

β1 β2 ... βj ... βn

)
i

(8)

where |ψj⟩ =
(
αj

βj

)
is the jth gene.

To initialize a quantum population, the probability amplitude of each gene
in the chromosomes must first be equalized. This can be achieved by applying
the Hadamard gate to an array of |0⟩. Each gene in the chromosomes is thus
expressed as

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
. (9)

Next, rotation is performed (see (6)) with a random angle
(
θ ∈ (0; π

2
]
)
for

each gene. Upon completion, the jth gene of the ith chromosome in the
quantum population is given by(

αji

βji

)
=

(
cos (θji) − sin (θji)
sin (θji) cos (θji)

)
1√
2

(
1
1

)
. (10)
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3.2. Measurement

The measurement in the standard basis is expressed by the collapse of
the wave function as {

xji = 0, if p(α) ≤ |αji|2 ,
xji = 1, otherwise,

(11)

where p(α) is a random number in the range [0; 1) and xji is the j
th gene of

the ith chromosome in the classical population. To maintain the probabilistic
characteristics of quantum observation, it is necessary that p(α) not be fixed
to a constant value as implemented in [11, 12].

Therefore, after performing measurements on the whole quantum pop-
ulation, the classical population is obtained with the vector representation
as

(x1i x2i ... xni), i = 1,m,

which contains m chromosome vectors, and each chromosome vector consists
of n genes.

3.3. Decoding

Each binary bit sequence
(
x1i ... xji ... xni

)
i
corresponding to a typ-

ical chromosome is obtained after performing a measurement in the standard
basis. They can then be decoded into a decimal number to represent a value
of the optimization variables.

The formula for the decoding step is given by

value = LB +
decimal

2n
× (UB− LB), (12)

where value is the real number of the optimization variable, decimal is the
unsigned decimal value of the binary sequence

(
x1i ... xji ... xni

)
i
, and

LB and UB are the lower and upper bounds of the optimization variables,
respectively.

3.4. Fitness Evaluation

The step of fitness evaluation aims to find the fitness values of all in-
dividuals in the population based on a predetermined fitness function (or
objective function). Depending on the application or the performance met-
rics to be optimized, the fitness function can be selected differently. For
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Table 1: Lookup table for the rotation angle based on the current chromosome.

currentj bestj f(currentj) ≥ f(bestj) △θj
0 0 False 0

0 0 True 0

0 1 False +△θ

0 1 True 0

1 0 False −△θ

1 0 True 0

1 1 False 0

1 1 True 0

any application, the fitness function plays a crucial role as the criterion to
evaluate the ”fitness” or quality of potential solutions, individuals or chro-
mosomes in specific, within the population. As a result, the evolutionary
process can be trained in a fitness-oriented manner. In Section 4, the choice
of objective function for the multi-objective optimization of the two-stage
Miller-compensated op-amp will be explicated.

3.5. Quantum Rotation

Quantum rotation utilizes the transformation matrices in (6) of the ro-
tation gate. The purpose of it is to approximate the state of the currently
considered chromosome ”current” to that of the currently best chromosome
over the completed iterations ”best”.

As illustrated in Figure 3, this gate either increases or decreases the prob-
ability amplitude of genes towards the chromosome with the best fitness.
Hence, the update of the jth gene of an arbitrary chromosome is written as(

αt+1
j

βt+1
j

)
=

(
cos (△θj) − sin (△θj)
sin (△θj) cos (△θj)

)(
αt
j

βt
j

)
, (13)

where

(
αt
j

βt
j

)
and

(
αt+1
j

βt+1
j

)
are the quantum states before and after updating.

Table 1 is a look-up table that shows the rotation scheme of each gene of
the current chromosome with respect to that of the best chromosome. From
the table, the △θ value directly affects the evolution rate of the population.
If △θ is too large, the algorithm may converge to a local optimal solution;
if △θ is too small, the convergence rate of the algorithm will be slow [10].
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In other words, △θ influences the convergence speed of the algorithm. If
△θ is a constant value throughout the algorithm, depending on the opti-
mization problem, a suitable value for △θ is essential, which might be a
time-consuming trial-and-error process. Therefore, instead of fixing △θ as
done previously [13, 14], an adaptive strategy for the rotation angle is applied
to prevent premature convergence and improve the convergence speed. This
adjusting mechanism of the AHQGA is given by [10], where the adaptive
rotation angle is calculated as

△θ =
[
1− f(currentj)

f(bestj)

]
△θ0 (14)

where △θ0 is the fixed coefficient of rotation angle.

3.6. Selection

The selection step plays an essential role in our AHQGA’s implementation
by determining the composition of the next generation based on the fitness
of individuals in the current population. Based on the concept of natural
selection, this process ensures the preferential reproduction of individuals
with higher fitness, with a view to reproducing promising solutions as well
as improvements over generations. Our research employs the tournament
selection mechanism to take full advantage of the above-mentioned merits,
which improves the algorithm in comparison to previous works where the
selection process was not used [12, 14, 13]. This implementation is expected
to contribute to the efficiency of AHQGA in terms of finding optimal or
near-optimal solutions.

3.7. Quantum Crossover

The quantum crossover operator involves the permutation between two
randomly chosen qubits, with a specific crossover rate. Two random quantum
chromosomes are considered before measurement, which can be expressed as(

α1k ... αjk ... αnk

β1k ... βjk ... βnk

)
k

,

(
α1t ... αjt ... αnt

β1t ... βjt ... βnt

)
t

.

If the crossover probability is satisfied, two new quantum individuals can
be obtained as(

α1k ... αjt ... αnt

β1k ... βjt ... βnt

)
k

,

(
α1t ... αjk ... αnk

β1t ... βjk ... βnk

)
t

,
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where quantum crossover was performed at the jth gene.

3.8. Quantum Mutation

Quantum mutation is performed using the the Pauli X gate (see (7))
with a certain mutation rate, which is a setup parameter representing the
likelihood that a chromosome would undergo mutation process (usually in
the range of [0.001;0.01]). If the mutation probability falls in the criteria
range, the result of mutating the jth gene of the ith chromosome produces
the quantum state of the gene after mutation which is written as(

α∗
ji

β∗
ji

)
=

(
0 1
1 0

)(
αji

βji

)
=

(
βji
αji

)
. (15)

From (15), it is clear that quantum mutation step swaps the probability
amplitudes of the mutated qubits.

4. Optimization Problem Formulation

This section demonstrates the essential components to formulate the ana-
log sizing optimization problem, including its procedure, optimization frame-
work, and mathematical generalization.

4.1. Procedure for Analog Circuit Sizing Optimization

The optimization process of analog circuit sizing in general is described
in the following paragraphs. Although these steps can be implemented in-
terchangeably, the presented order is recommended for the purpose of con-
venience and clear orientation.

4.1.1. Topology Selection

Each analog circuit block has various options for its circuit topology.
Depending on the specific technical requirements to optimize one or more
design parameters and the constraints of the parameters, appropriate cir-
cuit configuration should be considered thoroughly. This helps leverage the
strength and mitigate the limitations of the chosen circuit topology to meet
the predetermined technical requirements.

In short, although the initial stage of determining the optimal circuit
topology may require a significant amount of time, it helps circuit designers
obtain a clear direction to make the most suitable decisions.
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4.1.2. Parameter Selection for Optimization

Depending on the given specific technical requirements, analog circuit
parameters for optimization are then determined. Along with that, it also
requires identifying the design constraints of each parameter to ensure that
the analog circuit optimization process does not prioritize the optimized pa-
rameters at the expense of others. Therefore, we aim for the maximum
balance between all parameters in the circuit.

In other words, the optimized parameters would be enhanced to the fullest
possible extent while the remaining parameters are simultaneously ensured
to satisfy the design constraints.

4.1.3. Optimization Design Variables

To formulate an optimization problem for analog circuit sizing, the for-
mulas based on these parameters, such as the dimensions of the MOSFET
channel

(
i.e., length (L) and width (W )

)
, resistance, and capacitance, need

to be established. Next, besides the parameters that need to be held con-
stant, it is required to determine the variables that directly affect the design
parameters to select appropriate optimization variables.

Since each technology node and corresponding device has different ranges
of values for the parameters mentioned above, their limits must be set. Fur-
thermore, to possibly approach global optimum values with fewer iterations,
it is crucial to limit the range of values of the optimization variables to narrow
the search space, which increases the probability of improving the efficiency
of the optimization process.

4.1.4. Objective Function and Design Constraints

Determining the objective function for the optimization problem of a sim-
ilar circuit not only clarifies the purpose of the optimization problem but also
serves as a crucial condition for implementing the AHQGA. The reason is
that we need a specific value from the objective function to quantitatively
evaluate a particular set of parameters for a similar circuit, thereby identify-
ing the better set of parameters for the circuit. Furthermore, as mentioned
above, to avoid imbalance among the parameters in the circuit, additional
constraints on the parameters exclusive from the group of optimized param-
eters need to be imposed to achieve the maximum balance between those
parameters.
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4.2. AHQGA-Spectre Framework

For the multi-objective optimization of the two-stage Miller-compensated
op-amp, it is necessary that the structure of the AHQGA described in Fig-
ure 2 be modified at the ”Fitness Evaluation” step. For the aforementioned
analog sizing optimization problem, the ”Fitness Evaluation” block should
include two substeps, namely ”Circuit Simulation” and ”Fitness Calcula-
tion”. The first substep is the simulation of the required design parameters,
implemented by simulation software such as the Spectre simulator of Cadence
Virtuoso tool. The other substep is the calculation of fitness values based on
simulation data of the previous step, which is performed by a Python-based
script.

Furthermore, the choice of platform for both the optimization core and
circuit simulation must be clarified. In this research, the AHQGA is im-
plemented using Python programming language since Python incorporates a
variety of built-in libraries for quantum and optimization algorithms. Fur-
thermore, Spectre is chosen as the circuit simulator in our platform instead
of HSPICE ([6], [15]), since simulation output data from HSPICE are mostly
presented in a predetermined format, requiring an additional step of us-
ing scripting languages to acquire compatible output format for AHQGA’s
processing. Meanwhile, Ocean-based scripts of the Spectre simulator can in-
tegrate SKILL’s programming syntax to directly arrange simulation results
according to users’ preference [2]. By virtue of the circuit simulator’s role in
the entire optimization system and the convenience of output data format,
Spectre is the preferred practical choice.

The connection between Spectre and Python is demonstrated as follows.
Initially, Python generates values for the design variables’ population, which
are then transmitted to Spectre through an Ocean-based script. This Ocean
script handles automated circuit simulations using the provided values, and
the results are returned to Python for the fitness evaluation step of the chro-
mosomes. This iterative process continues until the stop condition of the
algorithm. The Python-Spectre interaction is illustrated in greater detail by
the block diagram presented in Figure 4.

4.3. Generalization of the Analog Circuit Sizing Optimization Problem

In general, an optimization problem of analog circuit sizing can be for-
mulated as

Optimize F(x⃗)

s.t. Ω = {x⃗ ∈ ℜn | G(x⃗) ≤ 0}
(16)
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where x⃗ is a multi-dimensional vector of n optimization variables in ℜn,
delimited by the lower bound ximin and upper bound ximax, which are given
by ximin ≤ xi ≤ ximax (i ∈ {1, 2, ..., n}). F (x⃗) represents the vector of m
objectives f1(x⃗), f2(x⃗), ..., fm(x⃗) to be minimized or maximized, where m = 1
and m > 1 corresponds to single-objective and multi-objective optimization
problem, respectively [18]. G(x⃗) describes the vector of constraints that must
be satisfied to guarantee the feasibility of the solution, which might include
circuit setup conditions, saturation conditions, and constraints for design
parameters.

5. Case study: The two-stage Miller-compensated operational am-
plifier

Operational amplifiers (op-amps), with the primary aim of amplifying
voltage signals and providing a stable output, are considered one of the fun-
damental blocks in analog circuit design. They are integrated as sub-blocks
in several different larger blocks with higher levels of complexity such as
bandgap references, low-dropout regulators, and analog-to-digital convert-
ers. Depending on the applications and design specifications, the role of the
op-amp differentiates; therefore, some performance metrics are prioritized at
the dispense of others [15]. With a view to designing an op-amp that can
be virtually applied to different purposes, a balance among its universal de-
sign parameters is necessary while simultaneously keeping other parameters
at acceptable levels. This corresponds to the purpose of the multi-objective
optimization, which should be the primary motivation to select the op-amp
as a case study for the multi-objective optimization of analog circuit sizing.

As shown in Figure 5, the two-stage Miller-compensated op-amp consists
of two stages, namely an operational transconductance amplifier (OTA) stage
cascading with a common source (CS) stage.

In this work, we focus on the 65 nm technology node, with the supply
voltage VDD ranging from 1 V to 1.2 V. The maximum achievable voltage gain
for a single-stage amplifier is approximately 28 dB, which is much less than
the required gain for any application [19]. Therefore, techniques to increase
gain are necessary. Conventional cascode op-amps can exhibit a much higher
gain at around 80 dB; however, due to stacked transistors between the power
supply VDD and ground, MOSFET’s saturation condition with acceptable
margin might not be ensured. Hence, they should be considered unsuitable
for low voltage applications [20].
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The aforementioned issue can be facilitated by cascading several amplifier
stages to form a multi-stage amplifier [20]. Regarding the first stage, since
the OTA produces a single-ended output from differentially paired inputs
and exhibits a high voltage gain, it is chosen for the convenience of cascading
the following stages. However, cascading introduces high-impedance nodes
and hence leads to close placement of several poles, affecting the op-amp’s
stability. Although a large capacitor can be used to move the dominant
pole frequency to a lower frequency and a high bias current can also be
used to push the non-dominant pole to a higher value, these solutions are
not practical. As a result, there arises the need for frequency compensation
techniques, in which Miller compensation is presented in detail below.

It is also worth noticing some key points when designing the two-stage
Miller-compensated op-amp. According to Figure 5, assume that the current
flowing through the OTA stage is IREF and the current flowing through the
CS stage is kIREF . This results in

W5

L5

= k
W4

L4

= k
W7

L7

(17)

where Wi, Li are the channel width and length of MOSFETMi, respectively,
L5 = L4 = L7, and k is a constant.

Also, the condition to ensure the symmetry of the OTA stage is expressed
as

W0

L0

=
W1

L1

,
W2

L2

=
W3

L3

. (18)

Furthermore, for the op-amp to work properly, all MOSFETs need to be
biased to saturate. Moreover, margins of 30 mV for the gate-source voltage
(VGS) as well as overdrive voltage (VOV ) should also be ensured in this work,
for possible applications later on.

5.1. The Need for Miller Compensation

Figure 6 demonstrates a two-stage op-amp with only two poles at nodes
VoutOTA

and Vout (other poles are negligible). From the circuit, it can be
inferred that ROTA ≈ ro1 ∥ ro2 and COTA = CDB1 + CDB2 + CGB6 are the
respective output resistance and capacitance of the first stage, while RCS =
ro5 ∥ ro6 and CCS = CDB5 + CDB6 are the respective output resistance and
capacitance of the second stage (CS). By approximating poles with nodes as
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in [4], two poles are obtained as

p1 =
1

ROTACOTA

, p2 =
1

RCSCCS

. (19)

With this two-pole system, it cannot be completely certain that the phase
margin of the op-amp is greater than 60°, which directly affects its stabil-
ity [4]. Transforming it into a single-pole system (one pole dominates the
other) can be achieved by increasing the output resistance or capacitance of
either stage. Nevertheless, this increase affects the DC gain and bandwidth
of the op-amp. Therefore, adding a Miller compensation capacitor CC to
connect the two nodes VoutOTA

and Vout can carry out the transformation
more efficiently (Figure 7).

This compensation capacitor can be further separated by applying the
Miller theorem (as shown in Figure 8). The two poles can then be expressed
as

p1 =
1

ROTA[COTA + CC(1 + gm6RCS)]
, (20)

p2 =
1

RCS[CCS + CC(1 +
1

gm6RCS
)]
. (21)

From (20) and (21), p1 can be the dominant pole if p1 ≪ p2 with proper
AVCS

. The op-amp can then be considered a one-pole system with better
stability.

5.2. Design Parameters

Before analyzing the design parameters of the two-stage Miller-compensated
op-amp, its transfer function needs to be determined using exact analysis
from the small signal model (as shown in Figure 9).

From the circuit in Figure 9, applying Kirchhoff’s Current Law (KCL) at
node VoutOTA

in the frequency domain results in

VoutOTA

ROTA

+
VoutOTA

(sCOTA)−1
+ gm1Vin +

VoutOTA
− Vout

(sCC)−1
= 0. (22)

Based on (22), VoutOTA
can be expressed as

VoutOTA
=
VoutsCCROTA − gm1ROTAVin
1 + sROTA(COTA + CC)

. (23)
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Moreover, applying KCL again, but at node VOUT results in

Vout
RCS

+
Vout

(sCCS)−1
+ gm6VoutOTA

+
Vout − VoutOTA

(sCC)−1
= 0. (24)

Hence, it can be inferred that

sVoutOTA
(CC − gm6) = Vout ×

(
s
(
CC + CCS

)
+
(
RCS

)−1
)
. (25)

From (23) and (25), the transfer function is obtained as

H(s) =
Vout
Vin

=
gm1ROTAgm6RCS(1− sCC

gm6
)

H1s2 +H2s+ 1
, (26)

where

H1 = ROTARCS

(
COTACCS + COTA × CC + CCSCC

)
,

H2 = RCS

(
CC + CCS

)
+ROTA

(
CC + COTA

)
+ CCgm6ROTARCS.

(27)

Considering the op-amp as a two-pole system, its standard transfer func-
tion is given by

H(s) =
AV (1−

s

z
)

(1 +
s

p1
)(1 +

s

p2
)
=

AV (1−
s

z
)

1

p1p2
s2 + (

1

p1
+

1

p2
)s+ 1

, (28)

where AV is the voltage gain of the op-amp, p1, p2 are the two pole frequencies
and z is the zero frequency of the op-amp.

When p1 is the dominant pole (p1 ≪ p2), it results in

1

p1
+

1

p2
≈ 1

p1
, (29)

Using this approximation of (29), (28) can be simplified as

H(s) =
AV (1−

s

z
)

1

p1p2
s2 +

1

p1
s+ 1

. (30)
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From (26) and (30), p1 is defined as

p1 =

(
RCS

(
CC + CCS

)
+ROTA

(
CC + COTA

)
+ gm6ROTARCSCC

)−1

, (31)

which is approximated as

p1 ≈
1

gm6ROTARCSCC

, (32)

while p1p2 and z take the form

p1p2 =

(
ROTARCS

(
COTACCS + COTA × CC + CCSCC

))
, (33)

and

z =
gm6

CC

. (34)

From (31)-(33), p2 can then be defined as

p2 =
gm6CC

CCSCOTA + CCCOTA + CCCCS

≈ gm6

CCS

≈ gm6

CL

. (35)

Having derived all the necessary expressions for the poles p1, p2 and z
from the op-amp transfer function H(s), the main design parameters of the
op-amp for optimization is summarized in the following subsections.

5.2.1. Small-signal Voltage Gain

From (26) and (30), the small-signal voltage gain, which is the product
of the voltage gain of the two stages (CS stage and OTA stage), is expressed
as

AV = AVOTA
AVCS

= gm1(ro1 ∥ ro2)gm6(ro5 ∥ ro6). (36)

where AVOTA
and AVCS

are small-signal voltage gains of the OTA and CS
stages, respectively.

5.2.2. Common Mode Rejection Ratio (CMRR)

As the second CS stage deals with single-ended signals, the common mode
rejection ratio (CMRR) of the two-stage Miller-compensated op-amp can be
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equivalent to the CMRR of the first OTA stage with differential signals.
Referring to [4], CMRR can be calculated as

CMRR =
AVOTA

AVOTA−CM

= gm2(1 + 2gm1ro4)(ro1 ∥ ro2) (37)

where AVOTA−CM
is the common-mode voltage gain of the op-amp.

5.2.3. Unity Gain Bandwidth

The unity gain bandwidth is obtained as

UGB = AV × BW ≈ AV × p1 =
gm1

CC
(38)

where UGB and BW are the unity gain bandwidth and bandwidth of the
op-amp, respectively.

5.2.4. Phase Margin

The phase margin can be expressed as

PM = ±180− tan−1

(
UGB

p1

)
− tan−1

(
UGB

p2

)
− tan−1

(
UGB

z

)
. (39)

For a stable op-amp, a PM greater than 60◦ is preferable [4].

5.2.5. Power Dissipation

The power dissipation of the op-amp equals the sum of power consump-
tion of the OTA and CS stage, which is given by

Power = VDDItotal = VDD(I4 + I5), (40)

where Itotal = I4 + I5 is the total current of the op-amp, and I4 and I5 are
the currents flowing through MOSFETs M4 and M5, respectively.

5.2.6. Slew Rate

The slew rate of the op-amp, which is the rate of change of the output
voltage with respect to time, can be expressed as

SR =
I4
CC

. (41)
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5.3. Choice of the Objective Function

As presented in Section 3, an objective function (fitness function) is con-
sidered a standard to assess the individuals of the population and thereby
exerts a direct influence on the evolutionary process. Therefore, the choice
of a suitable objective function is crucial.

In the context of analog sizing optimization, the Figure of Merit (FoM),
which typically refers to a quantitative measure to evaluate the performance
of a system, can play the same role as the objective function. The FoM to
compare the performance of the op-amp is given in [21] as

FoM =
UGB× CL

Itotal
, (42)

where UGB is the unity gain-bandwidth product, CL is the load capacitance
at the output node, and Itotal is the total current of the op-amp.

Although (42) evaluates the efficiency of the op-amp based on its unity
gain-bandwidth product as well as the drivability of the load capacitance per
unit current, the phase margin of the op-amp is overlooked. An op-amp with
a larger value for the FoM of (42) is considered with better quality; however,
an increase in CL leads to a decrease in p2 as in (35), at the expense of the
op-amp’s phase margin and hence stability. In other words, considering (42),
a large FoM value is no longer meaningful if the phase margin is too small
[16], indicating the unsuitability of the above-mentioned objective function.

Taking into account the role of the op-amp’s phase margin, the enhanced
version of the FoM, which is applied in this research based on [16], is expressed
as

FoM =
UGB× CL

Itotal
× tan(PM)

tan(PMREF )
, (43)

where PMREF is the reference phase margin of the op-amp and chosen with
the standard value of 60◦ [4].

5.4. Initialization Steps for Optimization

Regarding the two-stage Miller-compensated op-amp, its design is ex-
ecuted in the TSMCN65 process. The op-amp’s setup condition includes
VDD = 1.2 V, IREF = 20 µA, and CL = 1 pF. The input common-mode
voltage for both Vinn, Vinp is VinCM

= 650 mV.
According to (17), we declare three optimization variables asW5,W47, and

L457. Moreover, (18) indicates four additional variables: W01, L01,W23, L23.
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Similarly,W6, L6, and CC are also selected as optimization variables. In total,
there are ten variables for our optimization process, namely W01, L01, W23,
L23, W5, W47, L457, W6, L6, CC .

The specifications for the op-amp are as follows. First of all, every MOS-
FETs should operate in the saturation region with their margins of 30 mV
ensured for both the gate-source voltage VGS and the overdrive voltage. For
the sake of convenience, the mentioned condition is labeled cond1. When
cond1 is satisfied, the standard for the op-amp’s performance metrics (cond2)
is expressed as

AV > 50 dB,

UGB > 50 MHz,

PM > 60◦,

CMRR > 50 dB,

Power < 250 µW,

SR > 50 V/µs.

(44a)

(44b)

(44c)

(44d)

(44e)

(44f)

It should be noticed that cond2 is satisfied only when all design specifications
of the op-amp above are met.

As a higher value of the FoM is preferable and cond1 is prioritized over
cond2, the FoM formula can be rewritten with the addition of cond1 and
cond2 as

FoM =


−1 if cond1 = 0,

0 if cond1 = 1, cond2 = 0,
UGB×CL

Itotal
× tan(PM)

tan(60◦)
otherwise.

(45)

where the value of 0 and 1 is equivalent to whether each condition passes or
not.

For the cases when both cond1 and cond2 are not satisfied, the values of
-1 and 0 are chosen for the FoM with the purpose of excluding the equiva-
lent potential solutions. Moreover, the order of -1 and 0 corresponds to the
priority of cond1 and cond2.

So as to ensure the saturation condition to the greatest possible extent,
the bounds for optimization variables are determined as follows. Firstly, all
MOSFETs’ widths and lengths are initialized with the minimum values of
the process node. Then, the widths and lengths of one MOSFET or one pair
of symmetric MOSFETs are adjusted while others might be kept constant or
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vary based on the basic knowledge of MOSFET’s operation. This step is to
find the temporary bounds for the optimization variables. Subsequently, this
iterative process continues for the remaining MOSFET or pair of symmetric
MOSFETs, in which the temporary bounds might be changed accordingly for
better suitability. Finally, the bounds for optimization variables are obtained.
Notice that the aforementioned procedure’s purpose is to possibly ensure the
saturation condition to limit the search space for better efficiency in finding
the optimal FoM value.

As a result, the bounds for the declared optimization variables are ob-
tained as

W01 ∈ [0.85µm, 4µm], L01 ∈ [0.23µm, 0.4µm],

W23 ∈ [0.7µm, 1µm], L23 ∈ [0.06µm, 0.4µm],

W47 ∈ [2µm, 2.8µm],W5 ∈ [18µm, 23µm],

L457 ∈ [0.1µm, 1µm],W6 ∈ [16µm, 22µm],

L6 ∈ [0.25µm, 0.5µm], CC ∈ [0.3pF, 1pF ].

(46)

These bounds are obtained from designer’s experience and behave like rules
of thumb to ensure control on the optimization process.

In essence, our optimization problem can be summarized as

maximize FoM(W01, L01,W23, L23,W5,W47,

L457,W6, L6, CC)

s.t. VDD = 1.2V,

VinCM
= 650mV,

IREF = 20µA,

CL = 1pF,

(44), (46).

(47a)

(47b)

(47c)

(47d)

(47e)

(47f)

6. Numerical Results and Discussion

In terms of AHQGA, the quantum chromosome representation specifies
16 qubits, and the population size is set to 16 individuals. While crossover
has a high probability, the mutation probability is typically low. As shown
by [22], the rates for crossover (rcross) and mutation (rmut) fall within the
ranges [0.8, 0.95] and [0.001, 0.05], respectively.

In our study, simulation results showed that the highest value for the fit-
ness function in (45) was 0.5654 which was achieved with rcross = 0.8, rmut =
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0.05 and △θ0 = 0.005π. With all specifications satisfied, the fitness value of
0.5654 includes the optimum design parameters, as presented in Table 2.

Table 2: Optimum design parameters achieved for the two-stage Miller-
compensated op-amp with their corresponding specifications.

Design parameters Specification Optimum value
AV > 50 dB 50.58 dB
UGB > 50 MHz 61.51 MHz
PM > 60◦ 68.75◦

CMRR > 50 dB 51.73 dB
Power < 250 µW 193.78 µW
SR > 50 V/µs 61.20 V/µs

Moreover, fitness values over 100 iterations of the AHQGA are illustrated
in Figure 10. Although the values for various op-amp design parameters
may vary unpredictably throughout the iterations, their corresponding fitness
values followed a monotonous upward trend as in Figure 10. This conforms
to the algorithm’s principle of survival to the fittest which produces better
individuals for each generation.

Regarding the optimization variables of AHQGA, it is worth taking into
account the process grid of 5 nm of the TSMCN65 process. Therefore, the
widths and lengths of MOSFETs after the optimization process needed to be
rounded to reasonable values. The post-optimization sizes of all MOSFETs
in the circuit are presented in Table 3, while Table 4 outlines the performance
comparison between the two-stage Miller-compensated op-amp presented in
this study and other research.

From Table 4, in comparison to [3], it is evident that our work exhibits
surpassing values for FoM as well as AV , PM , and CMRR. Since our AV

is more than twice that of [3] (50.58 dB compared to 21.6 dB), the amount
of current in the circuit should be greater, primarily resulting in our higher
value of power consumption. Moreover, since our work’s CC , CL are larger
(0.28 pF, 1 pF versus 0.06 pF, 0.2 pF, respectively), better UGB and SR
from [3] are reasonable since they are inversely proportional to the mentioned
capacitances. Regarding [23], the op-amp of our work achieves far better AV ,
UGB, and PM . However, the FoM value is not as that good mainly due
to the use of a ten-fold output capacitor CL of [23]. This requires a larger
current through the op-amp to drive the load CL though, leading to a power
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Table 3: Post-optimization sizing results of optimized two-stage Miller-
compensated op-amps.

Device Size (W/L)
M0,M1 1.47µm/0.32µm
M2,M3 0.85µm/0.15µm
M4 2.45µm/0.55µm
M5 18.02µm/0.55µm
M6 16.38µm/0.25µm
M7 2.45µm/0.55µm
CC 0.28pF

Table 4: Performance summary of the proposed two-stage op-amp versus those
of other different research works

Performance metrics [3] [23] [24] [5] This work
CMOS process (nm) 65 65 180 180 65
Supply voltage (V) 1.1 1.1 1.8 1.8 1.2

CL (pF) 0.2 10 10 1 1
AV (dB) 21.6 43 75.62 75.35 50.58

UGB (MHz) 169.7 28 16.78 45.11 61.51
PM (◦) 62.4 60 62.48 61.24 68.75

CMRR (dB) 35.5 N.A N.A N.A 51.73
Power (µW) 89 321 220 123.156 193.78
SR (V/µs) 288 N.A 15.88 N.A 61.20

FoM (HzF/A) 0.1432 0.9595 1.5214 0.6936 0.5654
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Table 5: Optimal solutions from from proposed AHQGA, HQGA with fixed
△θ, and traditional GA

Criterion AHQGA HQGA GA
Optimal FoM value 0.5654 0.5581 0.5916
Iterations to reach optimal FoM value 49 44 94

consumption virtually twice as much as that of our work, which is not covered
in the FoM formula.

In addition, our UGB as well as PM results dominate those of [24] and
[5]; our value for UGB is approximately 4 and 1.5 times better, respectively.
Meanwhile, the voltage gain AV in our work is around 25 dB lower, most
likely because of the higher range for the transistors’ lengths as well as the
higher supply voltage for the 180 nm process compared to the 65 nm process.
Furthermore, the comparison of [24] with our work regarding the metrics of
power consumption bears a strong resemblance to [23], with a larger CL and
corresponding higher power. Additionally, the lower power dissipation value
of [5] versus that of our work might be attributed to the abundant room for
the 1.8 V supply voltage that does not demand much current through the
circuit. In general, although our work surpasses [24] and [5] in the UGB
and PM aspects, lower FoM was observed. This results from the difference
in technology node (180nm and 65nm), and lower supply voltage (1.2V to
1.8V), which made it harder to design the circuit. Nevertheless, our work
still proves its efficiency and feasibility based on other performance metrics.

With the purpose of further assessment of the AHQGA, Figure 11 il-
lustrates comparisons of the proposed FoM , accompanied by that of both
HQGA with fixed △θ = 0.025π and GA. In order for the analysis to be
judicious, all optimization algorithms were set up with the same initial con-
ditions, including a similar initial population, crossover and mutation rate
(rcross = 0.8 and rmut = 0.05) as well as the number of iterations (100 total).
Table 5 provides further deliberations on the optimization results of the three
mentioned algorithms.

According to Table 5 and Figure 11, AHQGA dominates its HQGA coun-
terpart for the optimal value of FoM, where AHQGA achieves the 0.5654
value compared to 0.5518 of HQGA. Moreover, escaping from the so-called
”FoM - zero” search space, which occurs in solutions that meet saturation
conditions but do not satisfy specifications as in (44), should be considered
essential as this will prevent the optimization algorithm from being trapped
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in this undesirable search space. AHQGA was successful in this respect at
the 15th iteration, which was two times faster than HQGA at around the
30th iteration. In other words, AHQGA completely prevails over HQGA,
corresponding to the purpose of the auto-adjusting scheme as an upgrade for
HQGA.

Lastly, it is undeniable that AHQGA is inferior to GA with respect to
the optimal FoM value (0.5654 versus 0.5916). However, two key points
must be considered in this comparison. First, similar to HQGA, AHQGA
exceeded GA concerning the required iterations to get rid of the ”FoM - zero”
search space by the same two-fold ratio. Second, the number of iterations to
reach the optimal solution of AHQGA far outnumbered that of GA, namely
49 versus 94 iterations. In summary, the two above-mentioned benefits of
AHQGA over GA might compensate for the slightly lower optimal FoM value.

7. Conclusion

In conclusion, AHQGA, thanks to its best-individual-based rotation mech-
anism, can be considered as a novel approach to employing quantum-assisted
optimization algorithms for analog circuits. With a view to facilitating de-
signers’ effort and experience, the AHQGA-Spectre simulation-based plat-
form to optimize the two-stage Miller-compensated op-amp is proposed in
this paper. Compared to other published work, results are promising with
an optimal FoM value of 0.5654, consisting of AV = 50.58 dB, UGB = 61.51
MHz, PM = 68.75◦, CMRR = 51.73 dB, Power = 193.78 µW and SR =
61.20 V/µs. Moreover, for an objective evaluation considering the same setup
and initial condition, optimization results implemented by AHQGA were
far superior to those obtained by HQGA, while the results from AHQGA
can be comparable to that of GA in terms of the trade-off between optimal
FoM value and convergence speed. Most significantly, due to the mentioned
outcomes and the adaptability of the optimization framework, our research
might underscore the potential applications of quantum algorithms in future
analog circuit designs, possibly transforming the work approach of analog
circuit engineers.
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Figure 2: Flowchart of AHQGA.
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Figure 3: Quantum rotation scheme to achieve the best individual.

Figure 4: AHQGA-Spectre framework[2] with mutual interaction between
Python and Spectre platforms.
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Figure 5: Circuit schematic of the two-stage Miller-compensated op-amp.

Figure 6: Block diagram presentation for obtaining the two poles of the two-
stage op-amp by inspection.

Figure 7: Block diagram presentation for obtaining the two poles of the two-
stage op-amp by inspection, with the additional compensation capacitor CC .
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Figure 8: Block diagram presentation for obtaining the two poles of the two-
stage op-amp by inspection, with the Miller theorem applied for the compen-
sation capacitor CC .

Figure 9: Small-signal model of the two-stage Miller-compensated op-amp.
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Figure 10: FoM values by AHQGA versus 100 iterations.
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Figure 11: FoM comparison between AHQGA, HQGA with fixed △θ, and GA
over 100 iterations.
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