
1

A Survey on Smart Optimisation Techniques

for 6G-oriented Integrated Circuits Design

Thang Quoc Nguyen, Trang Hoang, Lihong Zhang, Senior, IEEE, Octavia A.

Dobre, Fellow, IEEE, and Trung Q. Duong, Fellow, IEEE

Abstract

With the rapid development of next-generation wireless communications, there is a growing demand

for high-quality integrated circuits (ICs), particularly analog ICs, which play a pivotal role for the full

roll-out sixth-generation (6G) technology. So far, the IC design has been performed through manual

approaches which sometimes results in time-consuming turnaround, especially the sizing phase of

analog IC design. In order to make the IC design process much faster, recently automated methods

for optimizing IC design has gained a lot of attention. From this perspective, this paper aims at

providing a survey of the most recent works on optimization strategies for analog IC sizing, as well as

a related categorization into two main categories: analytical methods and simulation-based methods. A

further sub-classification within the realm of simulation-based methods is also provided by dividing the

core mathematical principles into three major sub-methods: Bayesian-based, metaheuristic-based, and

reinforcement-learning-based techniques. In addition, with the main aim of providing insights on the

utilization of optimization algorithms for the IC sizing process, we present a case study involving the

utilization of various metaheuristic algorithms in the design of a bandgap reference circuit - an essential

analog IC component. The paper is concluded by highlighting potential future research directions

in the field of analog IC design optimization and automation, which include exploration of multi-
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agent reinforcement learning, integration of quantum computing, and further development of full-flow

automated tools for analog IC design.

Index Terms

Analog IC optimization, Simulation-based analog IC optimization, Bayesian optimization, Meta-

heuristic optimization, Reinforcement learning, Quantum computing.

I. INTRODUCTION

Nowadays, we are witnessing how wireless communication, thanks to the development of high-

speed wireless links, such as Bluetooth low energy (BLE), Wi-Fi, ZigBee, and LoRa, has reached

a level of ubiquity. This is comparable to the state of electric power distribution, which facilitates

seamless connections among various electronics devices, including laptops, cameras, phones, and

any type of domestic appliances [1]. This surge in wireless communication can be attributed to

several converging factors. Primarily, the continuous advancement in the quantity and quality

of electronic circuits and components has played a pivotal role in this development process.

In fact, recent advances in Complementary Metal-Oxide-Semiconductor (CMOS) technology

have significantly enhanced the integrity of CMOS integrated circuits (ICs), particularly analog

ICs, which are responsible for processing and transmitting analog signals, especially those in

the radio frequency (RF) spectrum. However, maintaining such integrity enhancement along

with the growing demand for high-quality integrated circuits to meet modern communication

requirements, such as ultra-high accuracy, ultra-low latency, and ultra-high speed requirements

in sixth-generation (6G) network communication [2], is making the design of analog circuits

increasingly intricate and complex.

In general, the process of designing analog ICs follows a structured sequence comprising three

main phases: topology design, transistor sizing, and physical design. The first phase involves

converting the specified design requirements into a circuit structure. This strongly depends on the

designer expertise in choosing and connecting suitable components such as MOSFETs, resistors,

and capacitors, in order to establish the basic framework of the circuit. Subsequent to the topology

design there is the crucial phase of transistor sizing, where the designer meticulously adjusts

the dimensions (width and length) of each transistor in the selected architecture. It is worth

mentioning that although initial estimates involve mathematical analysis, complex and non-linear
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relationships among component parameters and performance metrics often require an iterative

method. This is due to the limitations of existing mathematical models in fully capturing the

intricate interactions between these elements. Therefore, designers rely on a trial-and-error ap-

proach, beginning with calculated size approximations and then refining them through extensive

simulations. This iterative procedure includes the modification of transistor sizes on the basis of

the designer’s experience and expertise to ensure that the overall circuit satisfies the specified

performance requirement. Finally the physical design phase involves the transformation of the

optimized circuit diagram into a physical layout suitable for silicon chip fabrication. This layout

complies with predefined design regulations and guarantees manufacturability.

Between the three aforementioned phases in the analog IC design process, the transistor

sizing phase presents a significant bottleneck in the analog IC design flow. Indeed, due to the

complex interplay between component characteristics and circuit performance, coupled with the

limitations of purely mathematical modeling, this phase can result to be time-consuming and

require significant expertise. This extended design cycle would potentially negatively impact on

the IC production businesses since it can cause potential market share losses due to delayed

product launches. Indeed, as highlighted in [3], IC design businesses can lose up to 14% of

market share if products are introduced four weeks late. In order to accelerate the analog

IC design process and increase human effort in the sizing phase, numerous academic and

commercial entities are actively researching alternative and faster methods to automate circuit

design, which are mainly based on the usage of optimization algorithms. These algorithms offer

substantial improvement over traditional methods by both reducing the time and effort required

by designers and enhancing the overall quality of the final product. In fact, in contrast to digital

circuit design that can be automated using Electronics Automation Design (EDA) tools, analog

circuit design heavily depends on the designer expertise and experience, which makes it a time-

consuming and labor-intensive process. This disparity between analog and digital design can

be attributed to various factors. Firstly, analog circuits encompass a broader design space in

terms of device size and topology compared to digital circuits, which predominantly rely on

standard cell construction. Consequently, achieving desirable outcomes in analog design neces-

sitates intricate and nuanced approaches. Secondly, the specifications governing analog design

vary across different applications, posing challenges in devising a standardized framework for

assessing and enhancing various analog designs. Last but not least, analog signals are inherently
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more vulnerable to noise and variations stemming from process, voltage, and temperature (PVT)

fluctuations. Consequently, validating and verifying analog designs entail additional efforts to

mitigate the impact of these factors [4].

Based on the discussion above, this paper aims at providing a survey about the recent research

contributions on the topic of analog IC design optimization with a related categorization as sum-

marized in Figure 1. More specifically, the main contributions of this article can be summarized

as follows:

• Introduction of 6G performance requirements and how these requirements will imply the

development of analog IC.

• Explanation of the problem formation process, in which the analog IC design specifications

is translated into the language of an optimization problem.

• Classification of methods utilized to address analog IC optimization problems into two

categories: analytical-based and simulation-based. Further sub-categorization of simulation-

based methods into Bayesian-based, metaheuristic-based, and reinforcement-learning-based

approaches.

• Illustration of a case study demonstrating the application of optimization algorithms in

addressing an analog IC design challenge.

• Proposing potential research directions to address remaining challenges in the field of analog

IC design optimization.

The rest of the paper is organized as follows. Section II provides a brief overview about 6G

performance requirements and how these will impact on IC design and fabbrication. An overview

of the optimization problem in IC design, detailing the formulation of an optimization problem in

canonical form from IC design specifications is provided in Section III. In Section IV, we present

a comprehensive summary of recent methodologies employed to address analog IC optimization

problems, encompassing three leading approaches: Bayesian-based methods, metaheuristic-based

methods, and reinforcement-learning-based methods. Section V presents a case study illustrating

the application of five metaheuristic optimization algorithms as a demonstrative example of

employing optimization algorithms in analog IC design. Potential research directions within the

realm of analog IC design optimization, including the exploration of multi-agent reinforcement

learning, quantum computing applications, and the prospective advancement of full-flow analog
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Fig. 1. Categorization of analog IC optimization techniques

IC design automation tools, are deliniated in Section VI. Finally, Section VII offers concluding

remarks for the paper.

II. 6G REQUIREMENTS IMPACT ON IC DESIGN

This section provides a brief overview about the main key performance indicators (KPI)

expected to be delivered with the deployment of the 6G wireless networks. Subsequently, it

highlights which are are the main challenges in the context of IC design that might hamper the

full roll-out of 6G related technologies.

A. 6G wireless technology: Aims and requirements

Unprecedented development in wireless technologies has been observed over the last two

decades. This has led to the constant deployment and diffusion of innovative services based on
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the concept of Internet-of-Things (IoT) communications. The IoT communication paradigm is

mainly based on the interconnection of multiple wireless devices, such as smartphones, wearable

electronic devices, autonomous vehicles, drones, and robots. These devices can communicate

either in a peer-to-peer basis or with an edge/cloud service to provide a plethora of new use

cases and services, including extended reality (ER), smart healthcare, intelligent transportation

systems, smart industries, and global ubiquitous connectivity [5]. However, this widespread

proliferation of wireless communication devices poses pressing challenges for mobile network

operators. According to the International Telecommunication Union Radiocommunication Sector

(ITU-R), it is expected that mobile data traffic will reach 5 zettabytes per month by 2030, a

volume that cannot be accommodated by current 5G architectures [6]. Furthermore, in order to

foster the deployment of IoT-oriented services, it will also be necessary to prioritize real-time

communication with near-zero latency, where communication delays are less than 1 ms, and

ultra-reliable transmission, i.e., ensure a communication error probability of less than 10−5. This

inevitably calls for the development of a wireless communication technology referred to as sixth-

generation (6G) wireless networks. Indeed, compared to 5G architectures, 6G-based networks

are expected to provide [7], [8]:

• 1 GHz operational bandwidth for operation in higher frequency bands like THz communi-

cations or optical wireless communications with a corresponding data rates up to 1 Gbps

in downlink;

• Connection density up to 107 users per km2;

• 10 µs of communication latency;

• Spectral efficiency up to 90 bps/Hz in downlink and 45 bps/Hz in uplink;

• Up to 1 Gbps/m2 in some deployment scenarios such as indoor hot spots;

• A communication reliability in the order of 99.99999 %;

Then, one can easily notice how the achievement of these 6G-related KPI will ultimately

address the upcoming issues in terms of increased networks capacity, improved reliability and

reduced latency, which in turn will foster the deployment of new service aimed at facilitating

our daily lives.
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B. IC for 6G technology: Main challenges

As outlined in the discussion above, 6G technology is expected to bring about several im-

provements. However, achieving these improvements is dependent on the ICs necessary to build

6G-compliant devices. Indeed, compared to current devices oriented toward 4G/5G, it will be

necessary to design new devices capable of operating at higher frequencies and possessing

both higher computational capacity and energy efficiency [9]. This leads to a set of important

challenges that need to be addressed to ensure the full deployment of 6G-oriented services and

architectures. The most relevant and pressing challenges for the design of 6G-oriented devices

are mainly related to the need for using communication frequencies in the THz bandwidth,

extending up to visible light. These can be classified as outlined below

1) Operation High-Frequency: In order to meet 6G data rate requirements, it is expected

that more frequency resources will be utilized. Consequently, due to spectrum scarcity, 6G

communication devices are envisioned to operate at much higher frequencies than previous

generations, potentially reaching into the terahertz (THz) range. However, this poses challenges

such as high transmission loss, poor penetration, and limited non-line-of-sight (NLOS) coverage,

which can significantly impact the quality of wireless signals. While beamforming and antenna

steering techniques hold promise for improving signal quality in specific directions, designing

highly efficient ICs for multi-antenna transceivers in the THz bandwidth is not straightforward.

Precise dimensions, geometries, and special fabrication materials are necessary to realize antennas

with efficient radiation and reception properties [10].

2) Signal Integrity and Interference Mitigation: In addition to utilizing higher frequencies,

in order to increase the spectral efficiency 6G technologies require the adoption of modulation

schemes such as Filter-Bank Multi-Carrier (FBMC), Universal-Filtered Multi-Carrier (UFMC),

and Generalized Frequency Division Multiplexing (GFDM). These modulation schemes are more

complex compared to those currently used in 4G/5G systems, such as Code Division Multiple Ac-

cess (CDMA), Orthogonal Frequency Division Multiple Access (OFDMA), and Spatial Division

Multiple Access (SDMA). As a result, maintaining signal integrity while mitigating interference

becomes increasingly challenging. IC design must incorporate techniques to minimize signal

distortion, noise, and interference to ensure reliable communication.

3) Integration of Multiple Technologies: 6G networks are expected to integrate various tech-

nologies, including massive MIMO, millimeter-wave communication, terahertz communication,
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and AI-based signal processing. Designing ICs that can seamlessly integrate these technologies

while meeting size, power, and performance constraints is a complex challenge.

4) Energy Efficiency: Given the expectation of up to 1 Tbps of peak data rate in 6G networks,

the necessity for faster signal processing becomes evident. Consequently, there is a need to

further reduce clock cycles for signal processing. However, this poses a challenge as it requires

more energy for computation, particularly in portable devices that are often energy-constrained.

Therefore, the implementation of high-speed and low-power ICs for bit and packet processing

becomes crucial.

5) Cost and Manufacturing Complexity: Developing ICs for 6G networks involves advanced

manufacturing processes and materials, increasing manufacturing complexity and cost. Indeed

6G ICs often necessitate the use of advanced semiconductor process nodes, typically consisting

in using smaller transistor sizes able to provide higher performance. However, these cause an in-

crease of manufacturing complexity and cost due to the intricacies of fabrication at smaller scales.

Furthermore, the choice of materials for 6G ICs is critical for achieving desired performance

characteristics such as high-speed operation, low power consumption, and reliability. This involve

the usage of novel material combinations that can quickly escalate manufacturing costs and

complexity due to the need for specialized equipment and processes. This means that designing

cost-effective ICs that can be manufactured at scale while meeting stringent performance and

reliability requirements is a significant challenge.

In summary, the deployment of 6G technology brings forth numerous improvements, con-

tingent upon the development ICs that adhere to 6G standards. Transitioning from 4G/5G to

6G devices necessitates designing new hardware capable of operating at higher frequencies

while enhancing computational capacity and energy efficiency. This transition poses several

key challenges that must be addressed to ensure the successful deployment of 6G-oriented

services and architectures. Addressing these challenges requires collaborative efforts among

semiconductor manufacturers, research institutions, and regulatory bodies to drive innovation and

advancements in IC design and manufacturing for the successful realization of 6G technology.

III. PROBLEM MODELING

In analog IC design tasks, the main goal is to determine the dimensions (width and length) of

each transistor within the circuit to meet the predefined specifications. These specifications may
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involve optimizing or minimizing specific performance metrics while ensuring that others exceed

or remain below certain thresholds. For instance, consider the design of a bandgap reference

(BGR) circuit, which is employed to provide an accurate reference voltage for an entire chip.

In this context, various metrics are used to assess the performance of a BGR circuit, such as

power dissipation, temperature coefficient, power supply rejection ratio, and how the BGR output

voltage changes in response to variations in the power supply voltage, i.e., line sensitivity. In

the context of sensor ICs, the primary concerns are low power consumption and minimal supply

line sensitivity [11]. In contrast, for BGRs intended for quantum computing circuits, stability in

a broad temperature range, particularly at cryogenic temperatures, takes precedence, making the

temperature coefficient the most critical factor [12].

In most cases, the task of analog IC design can be formulated as an optimization problem as

illustrated in (1):

argmin
x

[F1(x), F2(x), ..., Fm(x)] (1a)

s.t. fi(x) ≤ 0, i = 1, 2, .., n (1b)

gj(x) = 0, j = 1, 2, .., k (1c)

x ∈ S (1d)

where:

• x ∈ R represents the design variables, which can include the width and length of transistors

in the circuit, as well as resistance and capacitance values.

• F1(x), F2(x), ..., Fm(x) are the m functions that need to be optimized

• fi(x) and gj(x) are unequal and equal constraints, representing the circuit specifications.

• S ⊂ R+ is the design space, limited by the upper bound and the lower bound of each

design variable.

When m = 1, the optimization problem is single-objective, while if m > 1, the problem is

called a multi-objective optimization problem. In contrast to single-objective optimization, multi-

objective optimization problems present a more nuanced challenge. Indeed, obtaining a solution

able to optimize all competing objective functions simultaneously is not always possible nor

straightforward. This is mainly caused by the fact that these objectives are often in conflict. Then
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Fig. 2. Analog design octagon, reproduced from [14].

enhancing one may negatively affect the performance of others [13]. For instance, the design of

a single-stage amplifier needs to take into account the interplay between different performance

metrics of the single-stage amplifier as depicted in the ”analog design octagon” shown in Figure

2. In this illustration, the bold two-way arrows represent a conflict relationship, while the dashed

lines represent a support relationship. For such a straightforward circuit, one can easily notice how

the conflict and support dynamics among its eight performance metrics are intricate. This means

that attempting to optimize more than one parameter, such as maximizing voltage swings and

transition speed simultaneously, poses significant challenges. Indeed, in many cases, achieving

the maximum value for both parameters concurrently is very difficult, if not impossible, to

achieve. To reach a satisfactory solution for both objective functions, various techniques can be

employed. Among these, the more common techniques include i) the weighted-sum technique

which generates a new objective function by summing the original objective functions with

weights, assigning a larger weighting coefficient to the more crucial objective function, ii) the

usage of a utility function that generates a new objective function by multiplying or dividing the

original objective functions, and iii) the ϵ-constrained technique which retains only one objective

function and transforms the other objective functions into constraints.

IV. METHODOLOGY

In this section, we categorize the techniques suggested in prior works concerning the optimiza-

tion of analog IC design into two primary groups: analytical-based methods and simulation-based
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methods. Additionally, within the simulation-based method category, we further classify into three

main subgroups based on their mathematical principles: Bayesian-based methods, metaheuristic-

based methods, and reinforcement-learning-based methods. Each of these methods is introduced

along with key mathematical concepts and notable publications.

A. Analytical-based methods

In addressing the time-consuming and intricate process of analog IC sizing, a growing trend

involves the utilization of optimization algorithms for automating circuit sizing. A particular

type of approach is termed analytical-based method. This method utilizes a polynomial function

to illustrate the connection between the geometrical size of the components and the circuit

performance parameter. Subsequently, convex optimization techniques, such as Newton-based

programming, linear and non-linear programming [15], [16], convex piecewise-linear fitting [17],

linear matrix inequality relaxation [18], and semi-definite programming [19], are employed to

solve the optimization problem. The essential advantage of the analytical-based method lies in its

rapid execution. However, the effectiveness of this approach depends on the convex nature of the

problem, requiring both the objective and constraint functions to exhibit convexity characteristics.

Therefore, when formulating equations that link the physical size of components with the circuit

performance parameters, a considerable amount of approximation might be required to transform

the optimization problem into a convex form. This because as the size of each component starts

to shrinks, the influence of secondary effects on the performance of the component itself, as

well as on the overall circuit becomes more pronounced. As result, the approximate calculations

start to become less reliable and unable to capture all the intricate details of high-order analog

circuits [20], [21]. Therefore, the analytical-based method exhibits reduced effectiveness in the

domain of analog circuit design [22].

B. Simulation-based methods

In order to address the limitations of analytical algorithms, several simulation-based methods

have been investigated in recent decades. In general, the simulation-based method treats the

circuit as a black box where having equations that directly describe the relationship between

circuit performance metrics and components dimensions is not strictly necessary. In simulation-

based method, the most essential body is the ”optimization core” - the machine learning algorithm
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- which requires executing various SPICE [23] simulations to understand the relationship between

geometrical sizes of components and circuit performance metrics, and discovers over the design

space based on specific strategies (varying between algorithms) and simulation data. In this

tutorial, we propose categorizing the previous work on the simulation-based method into 1)

Bayesian-based method, 2) Metaheuristic-based method, and 3) Reinforcement-learning-based

method. These methods are described below with some of the most relevant works presented in

literature.

1) Bayesian-based methods: To enhance the effectiveness of optimization, the use of Bayesian

optimization (BO) has been investigated. The BO algorithm, whose pseudo-code is shown in

Algorithm 1, treats the circuit as a black box. Instead of using a detailed mathematical description,

using sampled data the BO algorithm constructs a surrogate model which mimics the objective

function and then provides predictions of its behavior at untried points. Based on the features

provided by the surrogate model, the acquisition function decides the next sampling point by

maximizing (or minimizing) itself.

Algorithm 1: Pseudo-code for BO algorithm

1 Initial Sampling

2 while not stopping do

3 Find the position x at which the acquisition function is maximized

4 Calculate y = f(x)

5 Update the surrogate model

6 end

7 return best recorded f(x)

The most commonly utilized surrogate model is Gaussian process regression (GPR) [24]–

[26]. Assuming a d−dimensional input design variable x, we consider the unknown objective

function as y = f(x) + ϵ, where ϵ = N(0, σ2
n) represents the observation noise. We denote

the sample dataset as D = {X,y}, where X = {x1,x2, ...,xN} represents the set of design

variables, and y = {y1,y2, ...,yN}. By incorporating our prior beliefs regarding the performance

of the unknown objective function using a predefined mean function m(x) and kernel function

k(xi,xj), the GPR model can offer a posterior distribution for any given location x∗ as illustrated
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in Equation (2):µ(x∗) = m(x∗) + k(x∗, X)× (KN + σ2
N × I)−1 × (y −m),

σ2(x∗) = k(x∗,x∗)− k(x∗, X)× (KN + σ2
N × I)−1 × k(X,x∗).

(2)

where µ(x∗) is the predictive mean, σ2(x∗) is the uncertainty estimation, σ2
N denotes the variance

of the Gaussian noise, m = (m(x1),m(x2), ...,m(xN))
T is the mean vector, k(x∗, X) =

(k(x∗,x1), k(x
∗,x2), ..., k(x

∗,xN)), and KN is the covariance matrix.

KN =


k(x1,x1) . . . k(x1,xN)

k(x2,x1) . . . k(x2,xN)
... . . . ...

k(xN ,x1) . . . k(xN ,xN)


Within BO algorithms, the acquisition function plays a critical role in guiding the search

process. This function essentially acts as a decision-maker, determining the most promising

point for the next evaluation of the objective function f(x). The acquisition function leverages

the information provided by a surrogate model, which approximates the behavior of f(x). Based

on this surrogate model, the acquisition function identifies regions in the input space that warrant

further exploration or exploitation. Areas where f(x) has exhibited its best values or remain

unexplored will receive high acquisition function values. On the contrary, regions where f(x)

has produced sub-optimal results or have already been sampled will receive low values from

the acquisition function. By maximizing the acquisition function, the BO algorithm strategically

selects the next sampling point with the highest potential to improve the objective function itself.

This iterative process of sampling, updating the surrogate model, and maximizing the acquisition

function allows BO to efficiently navigate the search space and converge towards the optimal

solution for f(x). Two of the most widely employed acquisition functions in BO are Probability

of Improvement (PI) and Expected Improvement (EI):

• Probability of Improvement (PI): Calculated as PI(x) = Φ(λ), where Φ(λ) represents

the cumulative distribution function of the standard normal distribution. PI focuses on the

likelihood of an arbitrary point x exceeding the current best objective function value based

on the minimum observed value in the dataset.

• Expected Improvement (EI): Defined as EI(x) = σ(x)(λΦ(λ)+Ψ(λ)), where Ψ(λ) denotes

the probability density function of the standard normal distribution. EI not only considers
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the probability of improvement over the current best value but also factors in the magnitude

of potential improvement.

Due to its reliance on the current best data point, the PI acquisition function tends to be

conservative and biased toward exploitation, limiting its ability to identify the global optimum

solution in scenarios with multiple local optima. Conversely, because the EI function incorporates

the improvement magnitude into itself, EI search strategy is greedy, therefore it has slow

convergence rate. To overcome this no-free-lunch characteristic of acquisition function, authors

in [27] proposed a method called multi-objective acquisition function ensemble (MACE). This

approach leverages the strengths of both PI and EI by sampling query points from the Pareto front

formed by these acquisition functions, along with the lower confidence bound (LCB) function.

The Pareto front represents a set of solutions where no objective can be improved without

sacrificing another. By incorporating information from all three functions, MACE achieves a

more balanced exploration-exploitation trade-off, leading to superior performance in analog IC

optimization problems.

A notable limitation of the BO algorithm is that the existing acquisition functions like PI or

EI are designed for unconstrained optimization problems, which are uncommon in the practical

domain of analog IC design. In response to this challenge, a weighted-EI acquisition function,

which integrates considerations of both the probability measure related to the objective function

and the constraint functions has been proposed in [28], [29]. Moreover, authors in [27] introduced

a two-stage algorithm to tackle constrained optimization problems. The first stage involves

sampling data points from the Pareto front of the optimization problem described by Equation

(3).

argmin
x

−PF(x),
N∑
i=1

max (0, µi(x)),
N∑
i=1

max

(
0,

µi(x)

σi(x)

)
(3)

where PF(x) =
N∏
i=1

Φ

(
−µi(x)

σi(x)

)
is the probability of feasibility. This step prioritizes points

that satisfy the constraints, effectively reducing sampling within invalid regions and increasing

the likelihood of finding feasible solutions.

Subsequently, from these feasible points, the MACE algorithm is applied in conjunction with
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the objective function shown in Equation (3), as depicted in Equation (4).

argmin
x

LCB(x),−PI(x),EI(x),−PF(x),
N∑
i=1

max (0, µi(x)),
N∑
i=1

max

(
0,

µi(x)

σi(x)

)
(4)

To mitigate the likelihood of exploiting regions that do not meet constraints, only points

that satisfy
N∑
i=1

max

(
0,

µi(x)

σi(x)

)
≤ 0.05 are selected from the Pareto front of the optimization

problem described in Equation (4).

Compared to analytical-based optimization methods, the Bayesian-based method offers several

advantages in circuit optimization. It is more accurate than traditional analytical approaches.

However, they also have limitations. As the design space grows, the computational cost of the

algorithm becomes very high due to several factors such as the cubic training complexity and

the square complexity of the GP model [30], as well as its inability to handle high-dimensional

problems, known as the curse of dimensionality. To address the high-dimensional optimization

challenges of the BO algorithm, a technique called circuit-BO (cBO) has been introduced in

[26]. This cBO approach employs mutual analysis to identify the design variables that have the

most impact on the target specifications, reducing the design space from D to d < D. The

selected d variables are used to build the surrogate model, while the values of the remaining

D − d variables are determined using the gm/ID method. Another approach to reduce the

dimensionality of the design space, proposed in [31], involves selecting the best candidate design

region from multiple explored candidates. This method utilizes an enhanced GP to approximate

the gradient and establish a 2-D subspace from the high-dimensional design space, followed by

trust region-based derivative-free optimization (TR-DFO) for effective exploitation within the

created subspace. Typically, addressing the curse of dimensionality in BO algorithms involves

incorporating additional supplementary algorithms, which in turn increases the computational

resources required.

2) Metaheuristic-based optimization methods: To address the limitations of analytical and

Bayesian methods in the field of analog IC design, a contemporary optimization strategy, called

the metaheuristic method, has been developed. This method combines SPICE simulation with

metaheuristic algorithms, which are known as the most widely used optimization technique [32].

Several studies in this field have been published, most of them focused on combining SPICE

with simulated annealing (SA) [33], genetic algorithm (GA) [20], [34]–[38], particle swarm

optimization (PSO) [39]–[44], Cuckoo search (CS) [22], [45], and their hybrids [46]–[48].
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In broad terms, the fundamental idea behind a metaheuristic algorithm involves employing

a stochastic search across the design space in order to locate the best possible solution. The

approach to performing this random search varies among different algorithms. The random search

behavior of each metaheuristic algorithm, which is mimicked by the metaphor of group behavior

of an animal in nature, or by the evolution process, generally consists of 3 steps:

Step 1: Generate multiple candidate coordinates for design variable vector. In the context of

metaheuristic algorithm, each candidate coordinate of design variable vector is considered as a

position of an individual, or a particle.

Step 2: Conduct an iterative procedure in which every particle is guided to explore the design

space in order to find the global optimum solution. In this step, the algorithm consists of two

main phases named simulation and evaluation. During the simulation phase, the coordinates of

each particle, which represent the candidate values of design variables, are provided as input into

the SPICE simulator to generate the necessary values for the objective and constraint functions.

Following this, in the evaluation phase, the computed values of the objective and constraint

functions are gathered by the algorithm to compute the fitness value for each particle. The

algorithm then arranges the particles based on their fitness values, or stores the position where

the best fitness value has been achieved thus far. Subsequently, the particles are relocated to

new positions. The movement rules differ among specific algorithms, but generally, it can be

characterized as a nonlinear mapping, as illustrated in Equation (5):

xt+1
i = A

(
xt
i, p(t), ϵ(t), xj

)
. (5)

where xt
i is the position of the ith individual at the tth iteration, A is the nonlinear mapping

from xt
i to xt+1

i , p(t) is the vector of control parameters, ϵ(t) is the vector of random numbers,

and xj is the position of other factors that affect the movement of the particle, such as the

current position of other particles, or the position at which the best fitness value has been found

so far. Depending on specific algorithm, these terms are different, as illustrated in Table I. After

moving particles to new position, the algorithm evaluates if the stopping criteria is met or not.

Step 3: The algorithm stops running and returns the global optimum solution has been found

when the stopping criteria is met.

The process of using meta-heuristic algorithm to solve the optimization problem in analog IC
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Algorithm Control parameter Random factor Affected factors Ref.

GA
Crossover probability pc

Mutation probability pm

Random crossover position

Random mutation position
Two randoly chosen individuals [13], [20]

PSO
Inertia weight ω

Acceleration coefficients c1, c2
Random numbers r1, r2

Current global best fitness position

Best position found by each particle.
[13], [43], [44]

FA
Attractiveness β

Light absorption γ
Gaussian distribution Particles have higher fitness value [13]

CS
Discovery probability pa

Step size α

Local walk: Random number ϵ

Global walk: Lévy flight

Local walk: two randomly chosen particles

Global walk: Current global best fitness position
[13]

TABLE I

COMPARISON OF METAHERISTIC ALGORITHMS

sizing is summarized in Algorithm 2.

Algorithm 2: Metaheuristic-based optimization method for analog IC sizing
Input : Circuit netlist, variables boundaries, circuit specifications

Output: Global optimum solution

1 Initialize position for N individuals /* Random or given */

2 while not stopping do

/* Simulation phase */

3 Call SPICE simulator to calculate the performance metrics values.

/* Evaluation phase */

4 Calculate fitness value for each individual based on performance metrics values.

5 Ranking the individual based on their fitness value.

6 Update positions based on Equation 5.

7 end

8 return individual has best fitness value.

A notable advantage of the this metaheuristic-based approach, compared to the analytical-

based one, is its independence from a precise mathematical description [49]. Compared to the

Bayesian-based method, the metaheuristic-based methods can be better in terms of dealing with

high dimensional optimization problem, with lower computational cost compared to Bayesian-

based method. However, as a result of the need to conduct multiple SPICE simulations, this
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metaheuristic-based approach requires more time and computational resources compared to the

analytical-based method [20]. To address the time and computational demands of numerous

SPICE simulations, some studies have proposed utilizing neural network models. By utilizing a

dataset comprising pairs (ϵ,Γ), where ϵ represents the values of design variables and Γ denotes

the values of circuit performance metrics, neural network algorithms are employed to construct a

model that links device dimensions as inputs to performance metrics as outputs. Nevertheless, due

to the nonlinear nature of the relationship between device dimensions and circuit performance

metrics, the accuracy of the neural network model across the entire design space may be limited.

Consequently, some studies suggested the use of the neural network model in specific regions

of the design space. In this approach, an initial global search algorithm is utilized to identify

regions that potentially contain optimal solutions, such as regions that satisfy all constraints

[43]. During this stage, the SPICE simulator is employed to correlate the values of interest

of design variables with corresponding performance metrics. Subsequently, the neural network

algorithm gathers data around the local regions of interest and conducts training to construct a

model for each region. Once the neural network models are established, a local search algorithm

is employed to exploit these specific regions. During this phase, instead of utilizing the SPICE

simulator, the trained neural network models are used to compute the performance metrics based

on the design variables. Finally, the identified local optimal solutions are compared to determine

the global optimum value. One key advantage of this approach is its efficiency in time. While

it may take several hours to prepare adequate training data, once the model is trained, it only

requires a few seconds to estimate the performance metrics from the design variables, making

it significantly more time-efficient than conducting numerous independent SPICE simulations.

Table II provides a summary of two papers that utilize the hybrid metaheuristic - neural network

model approach.

Basically, metaheuristic algorithms are susceptible to becoming trapped in local optima. In-

creasing the number of individuals in a swarm, thus increasing swarm diversity, is a common

strategy employed to enhance the likelihood of discovering a global optimum solution. However,

in the domain of analog integrated circuit IC design, a larger population translates to a greater

number of SPICE simulations, resulting in a rapid increase in execution time. To efficiently

guide the algorithm towards the global optimum without compromising execution time, several

research efforts have explored incorporating domain knowledge. This involves leveraging existing
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[37]

TCAD’20

[43]

TCAS-I’23

Circuit employed
Rail-to-rail op-amp

Chebyshev band-pass filter
Op-amp

Algorithm for global search GA Grid search

Regions for local search
Around the best individual

of each generation

In which all

constraints are satisfied

Algorithm for local estimation ANN ANN

Algorithm for local search Gradient-based PSO

Speed enhancement compared

to calling independent SPICE simulations
×4 ×2.9 to ×75

TABLE II

SUMMARIZE TWO PAPERS ABOUT METAHEURISTIC - NEURAL NETWORK MODEL COMBINATION METHOD

knowledge about electronic circuits or the metaheuristic algorithm itself to steer individuals in

the swarm towards the region containing the global optimum solution. Authors in [20] leveraged

knowledge about the relationships between circuit components and performance metrics to

identify elements (e.g. transistors) that impact a specific performance metric. This knowledge

was then integrated into the GA mutation process. Specifically, if the unity gain bandwidth of

a two-stage rail-to-rail operational amplifier falls below the desired value during an iteration,

the value of the Miller capacitor decreases during mutation. In a similar way, an understanding

about how reducing the inertia weight parameter in PSO can enhance the swarm’s exploration

ability, proposed a method called PSO - global exploration orienter (PSO-GEO), which involves

exponentially decreasing this parameter across iterations has been presented in [44]. This adjust-

ment aims to enhance the algorithm’s ability to explore design spaces in the initial iterations to

identify regions that may contain the global optimum, while subsequently exploiting the design

space in later iterations to pinpoint precise solutions.

3) Reinforcement-learning-based methods: In order to address the limitations of conventional

machine learning algorithms, reinforcement learning (RL) has showed great potential in the

context of component sizing. Generally, a reinforcement learning algorithm consists of two
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Fig. 3. Framework for utilizing reinforcement learning in optimization of analog IC sizing

elements: the agent and the environment. The agent, which is a machine learning algorithm,

serves as a decision maker. Environment represents the problem or task that needs to be solved.

The agent takes action on the environment, and the environment provides feedback to the agent in

the form of reward. Based on its own policy and the reward received, the agent makes decisions

about future interactions to maximize the cumulative reward.

The main framework of using RL in the analog IC design field is illustrated in Figure 3.

In the realm of analog IC sizing, the circuit simulator serves as an environment. Based on

the internal characteristics of the machine learning algorithm, agents generate the value of the

design variables and then import these values into the netlist file. The circuit simulator runs

simulation, resulting in performance metrics. Based on these performance metrics, the value of

reward function is calculated.

RL algorithms can be categorized into two main approaches: model-based and model-free. The

model-based method relies on an explicit environmental model that predicts action outcomes.

This model is used to complement or replace direct interaction with the environment for policy

learning. However, their reliance on the model limits their flexibility. On the contrary, algorithms

that are model-free operate without any prior knowledge of the environment. This adaptability

has resulted in its prevalence in recent applications of reinforcement learning. These techniques

acquire knowledge through trial-and-error experiences, determining the best policy based on
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observed rewards. There are two primary categories of model-free algorithms: value-based and

policy-based. Value-based algorithms establish the optimal policy by precisely calculating the

value function for each state. Through interactions with the environment and sampling state-

reward paths, the agent estimates the value function, which signifies the long-term anticipated

reward for a specific state. Conversely, policy-based algorithms avoid modeling the value function

and instead direct estimate the best policy. By parameterizing the policy with adjustable weights,

these algorithms convert the learning process into a clear optimization challenge. Despite both

methods sampling state-reward paths, policy-based algorithms explicitly enhance the policy

by maximizing the average value function across all states. The primary limitation of policy-

based RL algorithms is their elevated variance, which can result in training instabilities. On the

other hand, value-based methods, although more consistent, encounter challenges in effectively

representing continuous action spaces. By merging these divergent strategies, the actor-critic

algorithm emerges as a potent solution. This technique needs the parameterization of both the

policy (actor) and the value function (critic), allowing for optimal utilization of training data and

ensuring stable convergence, surpassing policy-based approaches in efficiency and outperforming

value-based methods in continuous and high-dimensional environments [50].

Multiple research studies have investigated the utilization of reinforcement learning in circuit

sizing. One particular study, known as AutoCkt [51], [52], utilized a Proximal Policy Optimiza-

tion (PPO) agent. The proposed method was implemented to assess a simple transimpedance

amplifier and a two-stage operational amplifier in CMOS technology at a 45 nm node, and later on

a different operational amplifier with a negative-gm load in FinFET technology at 16 nm node.

PPO is regarded for its stability and effectiveness, achieved by maintaining consistent policy

updates throughout the training phase. Furthermore, its framework, which is illustrated in Figure

4, is suitable for situations with continuous or high-dimensional action spaces. Another significant

study suggested a multi-step reinforcement learning method employing a deep deterministic

policy gradient (DDPG) agent for designing two- and three-stage transimpedance amplifiers

(TIA) [53]. This research captures both global (DC operating points, frequency response) and

local (transistor characteristics) details at each step. With an actor-critic architecture, DDPG

utilizes two networks. The actor network, which takes a state vector as input, produces an action

vector. Meanwhile, the critic network, supplied with both state and action vectors, anticipates

the reward value an agent can anticipate from its present and future actions. Unlike PPO, which



22

Fig. 4. Framework of DDPG agent employed in [53]–[55].

relies on parallel agent data collection during episodes to construct minibatch training sets,

DDPG employs a single agent but utilizes a replay memory to recycle samples, resulting in a

slower convergence rate but more efficiency in data sampling.

Following their aforementioned work, Wang et al. [54] continued to proposed a method using

the graph convolutional neural network (GCN) as a function approximator in the DDPG agent,

based on the nature that the circuit is also graph. In the proposed GCN, circuit components serve

as nodes, and wires serve as edges. The lth hidden layer of GCN is formulated as Equation 6:

H l = σ(D̃−1/2ÃD̃−1/2)H l−1W l−1 (6)

where Ã = A+ IN is summary of the adjacency matrix of the topology graph and the identity

matrix, D̃ij =
∑

j Ãij is the diagonal degree matrix of Ã, W̃ l−1 is a layer-specific trainable

weight matrix updated by DDPG agent.

Because the GCN agent described the knowledge related to the connection in the topology,

it improves the learning ability of the RL model. The method also shows its ability to transfer

the learned knowledge from the trained circuit to the circuit having the same topology but in

different nodes. This method also shows the ability to transfer the trained knowledge from two-



23

stage TIA to three-stage TIA and vice versa, resulting in reducing the number of training steps

from 10000 to 300.

Some research articles based on the concept of DDPG-GCN have also been presented in

literature. Authors in [55] applied the DDPG algorithm in conjunction with a relational graph

convolutional neural network (RGCN) agent to address a multi-objective optimization challenge

in the design of a low-dropout voltage regulator (LDO) circuit. A key advantage of RGCN over

GCN is that each edge type in RGCN has its own independent weight matrix, allowing for a

more precise representation of the circuit topology. This is particularly beneficial in capturing the

distinct roles of different wires in an analog circuit, where some serve as DC biasing connections

(akin to virtual ground) while others facilitate AC connections crucial for small-signal analysis.

The optimization process using this approach requires 12 hours for the two-stage-op-amp LDO

and 24 hours for the folded-cascode-op-amp LDO to obtain the optimal solution.

Another significant article suggesting to employ distributed distributional deep deterministic

policy gradient (D4PG) as an agent has been presented in [56]. D4PG, a multi-agent variant of

DDPG, enables parallel search capabilities. An advancement in D4PG, as opposed to DDPG, is

its representation of the reward function in probability distribution form. This enhancement better

models the uncertainty stemming from function approximation in a continuous environment. This,

in turn, leads to improved training performance. Moreover, a novel aspect of this study, in contrast

to the traditional D4PG method presented in [57], is the generation of multiple minibatches

and the iterative updating of both the critic and actor networks. This strategy expedites the

optimization process without adding extra time, as several updates can be performed concurrently

with SPICE simulations. These enhancements have led to a decrease in the number of SPICE

simulations necessary for D4PG to converge to the optimal solution, from 30,000 in the case of

DDPG to 5,000.

In general, in the context of analog IC optimization, RL algorithms offer a compelling

alternative to traditional metaheuristic approaches. Both explore the vast design space to identify

optimal configurations. However, RL excels through its inherent memory capabilities. Unlike

metaheuristic algorithms, RL agents possess a form of episodic memory, allowing them to retain

information about past circuit states. This memory informs subsequent decisions, guiding the

search process towards more promising regions of the design space. Furthermore, RL agents can

leverage state-of-the-art neural networks as decision-making support tools. These neural networks
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Fig. 5. Schematic of BGR circuit proposed by T. Hoang et al. [44]

can extract complex relationships from past circuit evaluations, enabling them to surpass the

limitations of simpler metaheuristic approaches. This synergy between memory and advanced

decision-making assistance positions RL as a powerful tool for optimizing analog IC design. Last

but not least, the involvement of neural network in RL’s agent also makes RL algorithm have

the ability of transfer its learning to similar design problem, which saves time and computation

cost.

V. CASE STUDY: BANDGAP REFERENCE CIRCUIT DESIGN

In order to demonstrate the optimization process using a metaheuristic algorithm, we apply

the metaheuristic optimization algorithm to enhance the power supply rejection ratio (PSRR)

of the bandgap reference (BGR) circuit. The circuit topology for the BGR circuit, as proposed

in [44], is depicted in Figure 5. The optimization framework utilized is depicted in Figure 6.
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Fig. 6. Framework for implementing the metaheuristic algorithms in designing BGR circuit

This framework comprises two main components: the circuit block and the algorithm block.

The circuit block includes the schematic representation of the BGR circuit, from which the

netlist file is generated and subsequently imported into the Spectre simulator. In the algorithm

block, the metaheuristic algorithms are implemented using the Python programming language.

In this case study, five metaheuristic algorithms are utilized, which encompass the traditional

PSO, the PSO-GEO introduced in [44], the gravitational particle swarm optimization algorithm

(GPSOA) proposed in [58], the Cuckoo search (CS), and the firefly algorithm (FA). Facilitating

the interaction between the circuit block and the algorithm block is a script written in the Ocean

language. This script is employed to automate the execution of the Spectre simulator, facilitating

the extraction of PSRR and constraint function values. To ensure a fair comparison among the

five algorithms, identical initial positions and control parameters are established. For statistical

robustness, each method undergoes 10 independent runs, each comprising 100 iterations.

The detailed optimization objective is shown in Table III. In this case study, we aim to

maximize the value of PSRR, while keeping other metrics satisfied with their own constraints.



26

Metrics Specification

PSRR Maximize

VREF 798 V ≤ VREF ≤ 802 V

TC ≤ 8 ppm/◦C

Loop gain @ DC ≥ 40 dB

Phase margin ≥ 60◦

Gain margin ≥ 20 dB

Power consumption ≤ 400 µW

TABLE III

SPECIFICATIONS FOR BGR CIRCUIT

To use the metaheuristic algorithm to solve this optimization problem, we formulate the fitness

function depicted in Equation (7). This fitness function comprises two components: the negative

value of the desired outcome (PSRR) and a penalty term. By minimizing the fitness function,

the optimization algorithm effectively maximizes PSRR. The penalty term acts as a guardian,

ensuring the compliance with predefined constraints throughout the search process. It starts at

zero for each potential solution (particle) and is recalculated during evaluation. Each constraint is

checked and, if violated, the penalty value increases by one. This progressive penalty discourages

solutions that break the rules, guiding the search towards options that satisfy all constraints.

Fitness = −PSRR + 1000× penalty. (7)

Table IV summarizes the result collected from three algorithms after running 10 executions.

Table IV displays various optimization outcomes achieved by the five metaheuristic algorithms

mentioned above. It is evident that, owing to the heuristic nature of these algorithms, the

results vary not only between runs of the same algorithm but also across different algorithms.

Each algorithm possesses its own strengths and weaknesses due to its unique mathematical

characteristics. The three PSO-based algorithms exhibit lower success rates compared to the

others, likely because the PSO algorithm tends to focus on exploiting the vicinity of the best

fitness value (G∗) within the swarm. Conversely, the Cuckoo search algorithm and the firefly

algorithm, influenced by Lévy flight and Gaussian distribution, respectively, tend to explore the
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Execution Traditional PSO GPSOA PSO-GEO CS FA

1 -97.592 901.214 -99.064 -86.582 -98.726

2 905.991 -97.595 -99.725 -97.762 -98.620

3 904.555 901.800 903.633 -97.565 -99.081

4 904.600 907.617 -100.234 -97.551 -98.528

5 898.464 903.237 899.591 -97.965 -98.612

6 -99.382 902.246 -99.794 -98.436 -97.865

7 899.296 900.008 -99.670 -98.523 -99.047

8 -100.299 905.598 -97.592 -93.487 -96.372

9 -97.700 -98.772 904.454 -98.752 -98.517

10 -98.000 -99.042 -99.941 -97.882 -98.372

Success rate 5/10 3/10 7/10 10/10 10/10

Minimum

fitness

value

-100.299 -99.042 -100.234 -98.752 -99.081

Mean value

(success

cases only)

-98.595 -98.470 -99.431 -96.451 -98.374

Std.dev

(success

cases only)

1.066 0.628 0.819 3.581 0.742

TABLE IV

OPTIMIZATION RESULT FOR 10 EXECUTIONS



28

design space rather than exploit it. This balance between exploration and exploitation is why the

success rate of Cuckoo search surpasses that of PSO, and why traditional PSO and PSO-GEO

can achieve solutions with superior fitness values and lower standard deviations compared to

Cuckoo search, as shown in Table IV.Table IV displays various optimization outcomes achieved

by the five metaheuristic algorithms mentioned above. It is evident that, owing to the heuristic

nature of these algorithms, the results vary not only between runs of the same algorithm but also

across different algorithms. Each algorithm possesses its own strengths and weaknesses due to its

unique mathematical characteristics. The three PSO-based algorithms exhibit lower success rates

compared to the others, likely because the PSO algorithm tends to focus on exploiting the vicinity

of the best fitness value (G∗) within the swarm. Conversely, the Cuckoo search algorithm and the

firefly algorithm, influenced by Lévy flight and Gaussian distribution, respectively, tend to explore

the design space rather than exploit it. This balance between exploration and exploitation is why

the success rate of Cuckoo search surpasses that of PSO, and why traditional PSO and PSO-GEO

can achieve solutions with superior fitness values and lower standard deviations compared to

Cuckoo search, as shown in Table IV.

VI. POTENTIAL FOR FURTHER RESEARCH

It is promising to apply the aforementioned optimization techniques to assist the sizing problem

when designing the analog IC. By applying these techniques, we can easily time- and labour-

saving size all the components inside the circuit to satisfy predefined specifications without

needing any expertise (the work of sizing which requires weeks to manually done now only need

to wait about hours for executing the algorithm) and with high accuracy. Although remarkable

progress has been made in this field, there are still some challenges to be overcome. The most

notable challenge is the curse of dimensionality, which becomes more and more serious when

applied to the radio frequency (RF) IC design. In the field of RF, we need to ensure that our circuit

still works well over a wide frequency band and under multi-PVT corners. The specifications

are made for not only in low frequency, but also in high frequency. In high frequency, the

parasitic effect occurs, which encounters the effect of resistance, capacitance, and also inductance

parasiting inside the body of CMOS components, as well as resistance, capacitance, and also

inductance parasiting in the wires connecting the components. Furthermore, prior research has

primarily addressed the design challenge of sizing intermediate-level circuits like multi-stage
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op-amps, BGR circuits, LDO circuits, or VCO circuits. Limited research has been conducted on

sizing entire systems such as ADCs or phase-locked loops (PLLs) due to the challenge posed

by the curse of dimensionality.

A. Multi-agent reinforcement learning

To address the curse of dimensionality challenge, various approaches can be explored as po-

tential remedies. One such approach is multi-agent reinforcement learning, where multiple agents

collaborate to maximize rewards. Multi-agent RL can be broadly categorized into centralized

and decentralized types. Centralized RL involves all agents learning from a single policy and

working together to optimize the total reward, while decentralized RL allows each agent to

learn and act independently. An amalgamation of these two approaches is known as Centralized

Training and Decentralized Execution (CTDE), which employs an actor-critic framework with a

shared centralized critic among agents. Value-decomposition (VD) methods, a subset of CTDE

algorithms, represent the collective Q function as a blend of individual agents’ local Q functions,

demonstrating remarkable performance in various multi-agent RL scenarios [59]. Despite the

advancements in multi-agent RL research, the application of these techniques in analog IC design

remains largely unexplored. There is a notable scarcity of studies investigating the utilization of

RL in analog IC design and exploring the efficacy of different multi-agent strategies.

B. Quantum computing

Another potential solution to address the curse of dimensionality problem in analog IC sizing

optimization is the application of an advanced computing technique - quantum computing. Quan-

tum computing is well-known for its ability to solve complex high-computational optimization

problems such as large numbers factorization and extensive searches [60] . Due to the inherent

entanglement in quantum mechanics, a quantum circuit has the ability to operate on all n bits

simultaneously: Uf

∑
|x⟩ |0⟩ →

∑
|x⟩ |f(x)⟩, which is called quantum parallelism [61], and

also thanks to the superposition property, a quantum register can store 2n states concurrently

[62]. One of the well-known quantum search algorithm is Grover’s search, which can effectively

find the solution after O
(√

N
)

operations compared to O(N) operations of classical algorithms

in average, has been used as a search engine in RL’s agent to solve the optimization problem

in wireless communication [63]–[65]. Grover’s search RL can effectively deal with exploration
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and exploitation trade-off in high-dimensional problems. Another potential quantum technique

for optimization is quantum annealing (QA), which offers a heuristic quantum optimization

algorithm to find the ground state of Ising models. Compared to classical optimization algorithms

such as genetic algorithms, particle swarm optimization, and differential evolution, the QA

algorithm, which has been recently tested in solving the optimization problem in semiconductor

manufacturing, can avoid being trapped in local minima and have the potential to find better

global solutions due to the tunneling and superposition nature of qubits. Moreover, the QA

algorithm is more robust to noise and other sources of errors than gate-based quantum algorithms

[66].

C. Full-flow analog IC design optimization

Another potential direction for further research related to analog IC optimization is full-

flow analog IC design automation, which may automate all three phases of analog IC design

namely topology synthesis, sizing optimization and also layout optimization. Topology synthesis

involves creating and enhancing the structure of an analog circuit according to specific design

criteria. Transistor sizing phase is responsible for adjusting the dimensions of individual analog

components to satisfy design specifications. Finally, the layout optimization aims to produce

the layout of the analog circuit automatically. There are published articles that demonstrate the

capacity of reinforcement learning in generating circuit topologies. Zhao and Zhang [67], [68]

proposed using the Policy Gradient Neural Network (PGNN) for topology synthesis, and then

use the NSGA-II algorithm for draft sizing. The method employed in these works required

to prepare a building block library consisting 32 fundamental blocks such as common source,

source follower, current mirror, and base on these fundamental block, more complicated blocks

are built. In these works, the library construction requires time and costs, and in these works,

the designed is such satisfied the predefined constraints, not optimization. Besides the building-

block-based method, the graph-based method is introduced, such as Hong et el. [56] proposed

using GA in synthesizing topology for level shifter circuit, and Lu et al. [29] proposed a method

called bi-level BO, in which the BO algorithm is employed in both topology synthesis phase and

sizing optimization phase. In these works, the circuit structure is described in graph structure, in

which circuit components are represented by nodes and wires connecting them are represented

by edge, and the optimization algorithm is employed to construct an optimum structure. Overall,
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these topology synthesis works, which, at the moment, are still in their development stages with

simple circuits like the op-amp and level shifter.

VII. CONCLUSION

This survey has explored the fundamental concepts of formulating optimization problems from

analog IC requirements and provided a comprehensive overview of state-of-the-art methods for

solving analog IC sizing optimization problem. A comparison between analytical-based and

simulation-based methods reveals that while analytical-based methods offer faster execution

speeds, they struggle with complex optimization problems in modern IC design due to their

dependence on problem convexity and the limited ability of small-signal-based mathemati-

cal equations to capture circuit behavior adequately. Consequently, simulation-based methods,

including Bayesian-based, metaheuristic-based, and reinforcement-learning-based approaches,

have become prevalent alternatives to traditional analytical methods. Despite Bayesian-based

methods offering more accurate solutions and the capability to tackle non-convex optimization

problems, they face limitations in handling high-dimensional optimization tasks and suffer from

the computational overhead of Bayesian optimization algorithms and associated supplementary

algorithms. On the contrary, metaheuristic-based algorithms exhibit lower computational costs

and demonstrate superior performance in addressing complex problems. However, due to their

heuristic nature, metaheuristic algorithms may encounter the challenge of getting stuck in local

optima, especially in situations with numerous local optima. Furthermore, the heuristic nature

of metaheuristic algorithms makes them less adaptable to changes in technology nodes. As a

remedy, RL-based methods have been developed, taking advantage of neural networks within

their agent architecture to improve strategy formulation and enable transfer learning. However,

existing single-agent RL struggles as design space dimensions increase, necessitating further

exploration of advanced optimization techniques such as multi-agent RL or quantum computing

applications to address the curse of dimensionality problem effectively.
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