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ABSTRACT Unmanned aerial vehicles (UAVs) are envisioned to play a pivotal role in modern telecom-
munication and wireless sensor networks, offering unparalleled flexibility and mobility for communication
and data collection in diverse environments. This paper presents a comprehensive investigation into the
performance of supervised machine learning (ML) models for path loss (PL) prediction in UAV-assisted
millimeter-wave (mmWave) radio networks. Leveraging a unique set of interpretable geometrical features,
six distinct ML models—linear regression (LR), support vector regressor (SVR), K nearest neighbors
(KNN), random forest (RF), extreme gradient boosting (XGBoost), and deep neural network (DNN)—are
rigorously evaluated using a massive dataset generated from extensive ray-tracing (RT) simulations in
a typical urban environment. Our results demonstrate that the RF algorithm outperforms other models
showcasing superior predictive performance for the test dataset with a root mean square error (RMSE)
of 2.38 dB. The proposed ML models demonstrate superior accuracy compared to 3GPP and ITU-R
models for mmWave radio networks. This study thoroughly investigates the adaptability of these models
to unseen environments and examines the feasibility of training them with sparse datasets to improve
accuracy. The reduction in computation time achieved by using ML models instead of extensive RT
computations for sparse training datasets is evaluated, and an efficient algorithm for training such models
is proposed. Additionally, the sensitivity of ML models to noisy input features is analyzed. We also
assess the importance of geometrical features and the impact of sequentially increasing the number of
these features on model performance. The results emphasize the significance of the proposed geometrical
features and demonstrate the potential of ML models to provide computationally efficient and relatively
accurate PL predictions in diverse urban environments.

INDEX TERMS UAVs, millimeter-wave (mmWave), 5G, path loss (PL), ray tracing, and machine learning.

I. Introduction
Unmanned aerial vehicle (UAV) communication is becom-
ing a critical part of achieving the expected benchmark
performance of future wireless networks and to increase
the coverage [1]–[3]. UAV communications provide im-
proved coverage and quality of service due to having

a high probability of line of sight (LOS) links [4]–[7].
Due to their 3D mobility, such UAV communications can
bring a rapid transformation in a wide spectrum of use
cases in telecommunication and wireless sensor networks
in smart cities, precision agriculture, public safety, disaster
management, smart manufacturing, and health [8]–[14]. It

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1



Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

is projected that UAV-based services and applications can
attract USD 38.3 billion by 2027 [15]. Despite recent ad-
vancements, there remain significant research challenges to
maximize the potential of UAV communications, necessi-
tating further advancements in channel modeling, mobility
management, integration into terrestrial and non-terrestrial
networks, and leveraging ML to optimize these solutions.
Recently, millimeter-wave (mmWave), providing high data
rate due to availability of large bandwidth, reducing antenna
size to realize massive MIMO and minimizing interference
using concepts of beamforming, has been considered to be
integrated into UAV for performance enhancement [16].

Channel modeling plays an important role in establishing
a functional wireless network which is optimized by consid-
ering the characteristics of the environment and associated
channel parameters [17]. Traditional radio channel modeling
techniques including field measurements [18], deterministic
models [19], and stochastic models [20] suffer limitations in
accurate UAV channel prediction. The ML based models can
overcome the limitations of field measurement (site-specific),
deterministic models (high computational complexity) and
stochastic models (lower accuracy). The existing literature
presents various approaches for PL prediction and signal
strength estimation in UAV-assisted mmWave communica-
tion channels [21]–[30].

Path delay, reflection angle, and carrier frequency were
utilized as input features in [21] to train an artificial neural
network (ANN) model for accurate PL prediction in air-
to-ground (A2G) channels. Initially, a massive ray-tracing
(RT) dataset was employed, which was subsequently fine-
tuned with measured data. Similarly, PL under both line-of-
sight (LOS) and non-line-of-sight (NLOS) conditions were
predicted in [22] using a back propagation neural network
(BPNN). This was achieved using simulated RT data, with
path delay and reflection angle as the sole input features.
Geographical features, including distance, heights, terrain
types, and shadowing buildings, were leveraged in [23] using
a multi-layer perception (MLP) to forecast signal strength
coverage across various cities based on measured data. RF
and KNN was employed in [24] to predict PL and delay
spread in A2G mmWave channels. Their approach involved
utilizing the XY coordinates of UAVs, propagation distance,
shadowing buildings, and elevation angle as input features.
These features were selected through an iterative feature
selection scheme, enabling the training of models using RT
datasets. In a related work [25], an ML framework was
proposed, leveraging an extensive list of sixteen features
extracted from raw network data, including site topology and
various geographical datasets such as digital terrain, digital
height, and digital land use maps, alongside user equipment
(UE) measurement traces. A range of supervised regression
models were evaluated for predictive accuracy, generalization
performance, and computational efficiency. In a few recent
studies [26]–[29], the stacked generalization of ensemble
models is investigated, where diverse base learners were

combined to produce an optimized meta learner for enhanced
performance. In [26], the structure of base learners like
XGBoost, Light gradient boosting machine (LightGBM), and
categorical boosting (Catboost) was fine-tuned to achieve
superior predictive accuracy using the whale optimization
algorithm. In [27], building height parameters were extracted
using image processing techniques, enriching the dataset
for PL prediction against measured data using an ensemble
model comprising SVR, RF, ANN, XGBoost, LightGBM,
KNN, and adaptive boosting (AdaBoost), followed by a
meta LR model. Similarly, in [29], SVR, gaussian process
(GP), ANN, least square boosting (LSBoost), and bagging
base learners were stacked to yield a weighted average meta
model predicting received signal strength using fundamental
features such as height, distance, and XY coordinates against
measured data.

While there has been considerable research on ML-based
PL prediction models in recent years, much of the reported
work has relied either on complex features derived from
field measurements that can be challenging to obtain, or
on simpler features like distance, heights, coordinates, and
frequency that make these models similar to traditional
PL models. However, in contrast to these approaches, our
proposed model incorporates a unique set of interpretable
geometrical features, that account for site-specific details.
These features can be easily computed without the need
for computationally intensive RT algorithms, thus enhancing
the adaptability of ML models to a wider range of urban
environments.

The contributions of this research work are summarized
as follows :

• A comprehensive performance evaluation of six distinct
supervised ML models, including LR, SVR, KNN, RF,
XGBoost, and DNN is carried out. These models are
trained using a unique set of geometrical features on a
dataset generated through RT simulations in a typical
urban environment. The results show that the mean
RMSE of all the models except LR is below 3 dB using
the proposed geometrical features.The proposed models
have also shown better accuracy than 3GPP and ITU-R
models.

• The study evaluates the trained models’ generalization
capabilities in new environments and evaluates the
increase in accuracy and reduction in computation times
for training with sparse datasets.

• We assess the impact of noisy input features and the
significance of geometrical features on model perfor-
mance, including the effect of incrementally adding
these features.

The subsequent sections of this paper are outlined as
follows: Section II details the methodology for generating
a comprehensive dataset and identifying unique geometrical
features crucial for PL prediction. In Section III, we sum-
marize the models developed through an extensive hyperpa-
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rameter tuning process. Section IV provides a thorough eval-
uation of the supervised ML models’ performance on both
the test dataset and in generalizing to unseen environments.
Additionally, we introduce an efficient algorithm tailored to
enhance predictive performance using sparse training data.
An analysis of the importance of geometrical features and
their impact on model performance with varying feature sets
is also included. Finally, Section V presents the conclusion.

0 100 200 300 400 500

0

100

200

300

400

500

600

700

Transmitters

FIGURE 1: Top view of the simulated environment used for
dataset generation.

II. Dataset Generation and Feature Engineering
A. Simulation Setup and Dataset Generation
In order to train the ML models, a large dataset is required.
The dataset used in this paper is generated using an in-
house RT model that has been validated in previous works
[31]–[33]. The simulated scenario consists of 67 buildings
within a 400m x 600m area and is taken from Munich
city as shown in Fig. 1. This environment is labeled as
Munich-1 for future reference in this paper. The average
building height in the simulated environment is about 20m.
RT simulations are performed to compute the received power
through direct LOS, first-order specular wall reflection, and
ground-reflection rays between the transmitter and receiver.
A half-wave dipole transmitter antenna with 30 dBm output
power at 28 GHz carrier frequency is used. The RT model
also incorporates the diffused scattering contributions at
the receiver due to first-order wall reflections. The single
lobe directive scattering model, as proposed in [34] is used
to compute the Diffuse scattered fields. The simulations
are performed for a total of 36 different locations of the
transmitter, each at three different altitudes of 25m, 35m, and

45m. The valid rays are computed between each transmitter
to a grid of 6, 074 receiver points distributed across the
environment at a resolution of 5m x 5m. It is assumed
that the vector database of the buildings, UAV position, and
receiver grid locations are known a priori. The height of the
receiver points is 1.5m. Building walls are modeled as solid
concrete. The buildings are oriented according to their real-
world coordinates and are not intentionally rotated. Only the
receiver points within the rectangular area defined by the
perimeter of the buildings at the border of the environment
are considered, while the open areas outside this perimeter
are discarded. Table 1 summarizes the simulation parameters
used for the RT model to generate the dataset.

TABLE 1: RT model simulation parameters for dataset
generation.

Parameters Description
Environment Urban outdoor micro-

cellular
Average building
height

19.68 m

Building material Concrete
Wall permittivity (ϵr) 5.31
Simulation frequency 28 GHz
Transmitter Power 30 dBm
Antenna type Dipole Antenna
UAV height range 25, 35, and 45 meters
Receiver Grid 6, 074 receivers at 5

m x 5 m resolution
Receiver height 1.5 m
Reflection First order specular &

ground reflection
Scattering model Directive scattering

[34]

B. Geometrical Features for Models training
The RT model computes PL for 250, 514 distinct transmitter-
receiver pairs. Simultaneously, the RT model computes a
distinctive set of geometrical features for each transmitter-
receiver pair in the dataset, as shown in Fig. 2. These fea-
tures, crucial for subsequent analyses, are comprehensively
outlined in Table 2. In this study, UAV does not measure
these features as these are computed using the geometrical
data of buildings vector database, UAV position and receivers
location.

The foremost critical feature is the direct three-
dimensional (3D) distance between the transmitter and the
receiver. The remaining features can be broadly categorized
into three sub-groups. The features related to visibility
account for the reflection rays arriving at the given receiver
location. This category includes the count of visible building
walls at the given receiver location, along with metrics such
as the minimum and average distances between a receiver
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(a) (b)

FIGURE 2: Computation of geometrical features including (a) 3D distance (r), UAV height (hTX ), angles (θ, ϕ), and (b)
visibility and shadowing features.

and the visible walls. Additionally, it accounts for the trans-
mitter’s height, a critical factor influencing the number of
building walls directly visible to the transmitter. The second
category focuses on features associated with shadowing
caused by buildings obstructing the direct path between the
transmitter and receiver. These features include the count of
building walls situated in the horizontal plane between the
transmitter and receiver, the distances covered both inside
and outside the shadowed buildings along the direct line
connecting the transmitter and receiver in the horizontal
plane, and metrics related to the minimum, maximum, and
average heights of the shadowing buildings. Fig. 2(b) shows
an example of the computation of shadowing features as
there are 4 walls (n1 to n4) between the transmitter and
receiver. Likewise, the total indoor and outdoor shadowed
region is computed as din and dout respectively. The example
also shows the visibility features as there are 8 walls (N1 to
N8) visible to the receiver. The final category is related to the
angular features, capturing the angle (θ) formed by the line
connecting the receiver to the transmitter on the horizontal
plane with the positive X-axis, and the elevation angle (ϕ)
formed between the direct line connecting the transmitter
and receiver and the XY plane as shown in Fig. 2(a).

III. Supervised Machine Learning Models
In order to facilitate effective model training and evalua-
tion, the dataset is partitioned into training and test sets,
maintaining a 75:25 ratio. The training set is used to train
and optimize several supervised ML models, including LR,

SVR, KNN, RF, XGBoost, and DNN. The hyperparameters
of these models underwent rigorous tuning for the regression
problem of PL prediction. The coefficient of determination,
R2 score, which shows how well the data fits the regression
model was used to select the hyperparameter values. R2

score is calculated as follows:

R2 = 1−
∑N

j=1(yj − ŷj)
2∑N

j=1(yj − yj)
2
; yj =

1

N

N∑
j=1

yj (1)

where yj is the actual value of the target variable and ŷj
is the value predicted by the model. The value of R2 score
closer to 1 shows a better fit. We used feature scaling to
transform the input features with zero mean and unit standard
deviation for an effective training process with improved
convergence speed, stability, and fair consideration of all
features. A coarse-to-fine grid search approach was used
to find the best hyperparameters. The tuned hyperparameter
values are listed in Table 3.

IV. Performance Evaluation
A. Models performance on Test Dataset
The trained ML models with fine-tuned hyperparameters
predicted PL in the test dataset using the geometrical features
as input. The performance of the ML models is validated by
comparison of four matrices including mean absolute error
(MAE), mean absolute percentage error (MAPE), RMSE,
and coefficient of determination (R2). The coefficient of
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FIGURE 3: Path loss comparison for the test dataset: Ray-tracing versus predictions from (a) linear regression, (b) support
vector machines, (c) K nearest neighbors, (d) random forest, (e) extreme gradient boosting, and (f) deep neural network.
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TABLE 2: A detailed description of geometrical features derived from the propagation environment.

Feature Notation Description
3d distance r 3D distance between the UAV and receiver (RX).
no visible walls Nwall Number of walls that are partially or completely visible to the

receiver, meaning there are no obstructions between the receiver and
any part of these walls.

min distance to walls Dmin Distance to the nearest visible wall from the receiver.
avg distance to walls Davg The average distance to all visible walls from the receiver and is

given by the sum of distances to all the visible walls divided by the
number of visible walls.

Transmitter ZZ hTX Height of UAV
walls pen n The number of building walls intersected by the direct line connect-

ing UAV and RX in the XY plane.
indoor distance din Distance traveled inside the buildings by the direct line joining UAV

and RX in the XY plane.
outdoor distance dout The length of the direct line joining UAV and RX in the XY plane

that does not go through the buildings and is outside.
min wall height Hmin The minimum height of all the building walls intersected by the

direct line joining UAV and RX in the XY plane.
max wall height Hmax The maximum height of all the building walls intersected by the

direct line joining UAV and RX in the XY plane.
avg wall height Havg The average height of all the building walls intersected by the direct

line joining UAV and RX in the XY plane.
Theta θ The angle between the line connecting UAV and RX in the XY plane

with the positive X-axis.
Phi ϕ The elevation angle between RX and UAV with respect to the XY-

plane.

TABLE 3: Summary of hyperparameters for different ML models.

Model Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

LR - - - - -

KNN n neighbors = 4 - - - -

RF n estimators = 1000 max depth = 50 min samples leaf = 2 - -

XGBoost n estimators = 300 max depth = 10 learning rate = 0.5 subsample = 1 colsample bytree = 1

SVR Kernel = RBF C = 30 Gamma (γ) = 1.2 Epsilon(ϵ) = 2 -

DNN Layers = 3 Nodes = 250 Activation = tanh Optimizer = Adam Learning rate = 0.001

determination R2 has already been defined in (1). The rest
of the metrics are defined as follows:

MAE (dB) =
1

N

N∑
j=1

|yj − ŷj |, (2)

MAPE =
1

N

N∑
j=1

∣∣∣∣yj − ŷj
yj

∣∣∣∣× 100, (3)

RMSE (dB) =

√√√√ 1

N

N∑
j=1

|yj − ŷj |2, (4)

where yj is the actual PL (dB) in the test data set, ŷj
is the predicted PL (dB) using one of the ML models,

and N is the total number of samples in the test dataset.
Table 4 shows the performance comparison of ML models
in PL prediction on the test dataset. Apart from the LR,
all the models have almost similar performance. Notably,
the RF emerges as the top-performing model across various
evaluation metrics. With the lowest RMSE of 2.38 dB, the
smallest MAE at 1.44 dB, a minimal MAPE of 1.36%,
and R2 of 0.88, RF consistently surpasses its counterparts.
Random Forest achieves superior results due to its ensemble
learning approach, which combines multiple decision trees
to improve accuracy and reduce overfitting, and its effective-
ness in handling high-dimensional data by selecting random
subsets of features for each split [35]. It is noteworthy that
all other models, excluding LR, have demonstrated com-
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TABLE 4: Comparisons of ML model performance on the test data using various evaluation metrics.

Models RMSE (dB) MAE (dB) MAPE (%) R2

LR 5.17 3.72 3.48 0.45

SVR 2.53 1.68 1.59 0.87

KNN 2.47 1.48 1.39 0.87

RF 2.38 1.44 1.36 0.88
XGBoost 2.62 1.65 1.56 0.86

DNN 2.91 1.85 1.75 0.83

mendable performance, with an average RMSE of 2.63 dB.
This advocates for the adoption of these ML models in the
design of UAV-based mmWave radio networks, presenting
a computationally efficient and accurate approach with an
average RMSE below 3 dB.

To provide a visual representation of the performance
comparison, scatter plots depicting predicted PL values
against the actual PL values for all the models are presented
in Fig. 3. The scatter plots offer insightful observations on
the accuracy and consistency of predictions. The LR model
exhibits substantial deviations between predicted and actual
values, exposing its limitations in effectively capturing the
complex dependencies of PL on geometric features. In con-
trast, the remaining models demonstrate a more uniform and
accurate alignment between predicted and actual values. The
evenly distributed variations across these models signify their
robust performance in capturing the non-linear relationships
within the dataset.

B. Accuracy comparison with Empirical Models
In order to evaluate the prediction accuracy of ML models
against a benchmark, we evaluated the prediction error
between PL computed using RT (ground truth) for Munich-1
environment against PL computed using 3GPP and ITU-R
empirical models [36], [37].

PL for LOS and NLOS receivers is calculated in the 3GPP
model as follows:

PLLOS =

{
PL1 10m ≤ d2D ≤ d′BP

PL2 d′BP ≤ d2D ≤ 5 km,
(5)

PL1 = 32.4 + 21 log(d3D) + 20 log(fc),

PL2 = 32.4 + 40 log(d3D) + 20 log(fc)

− 9.5 log((d′BP)
2 + (hUAV − hRX)

2),

PLNLOS = max (PLLOS, PL′
NLOS) , (6)

PL′
NLOS = 13.54 + 39.08 log(d3D) + 20 log(fc)

− 0.6(hRX − 1.5),

where d2D, d3D, fc, hUAV, and hRX represent the direct
2D horizontal distance, 3D distance, carrier frequency in
GHz, UAV height, and receiver height, respectively, with all
distances and heights in meters. The break point distance
is d′BP = 4h′

UAVh
′
RXfc/c, where c is the speed of light.

Here, h′
UAV and h′

RX are the effective heights of the base
station and receiver, calculated by subtracting hE = 1m
from hUAV and hRX, respectively, for urban micro-cellular
environments. PL using the ITU-R model is given as follows:

PL(d, f) = 10α log(d) + β + 10γ log(fc), (dB) (7)

where, α = 2.29, β = 28.6, and γ = 1.96 are the coefficients
of the PL model. The RMSE, MAE and MAPE between
PL computed using RT as ground truth and computed
using 3GPP and ITU-R models are listed in Table 5. The
metrics for best performing RF model are also included for
comparison.

The comparison between PL prediction accuracy using
empirical models and ML models reveals significant dif-
ferences. 3GPP and ITU-R models show relatively higher
errors with RMSE values around 7.49 dB and 7.54 dB
respectively, along with MAE values of approximately 6.45
dB and 6.40 dB, and MAPE values of about 6.12% and
6.06% respectively. In contrast, ML models demonstrate
superior performance, with the best performing RF model
achieving an RMSE of 2.38 dB, MAE of 1.44 dB, and
MAPE of 1.36%. Other ML models also exhibit competitive
performance with RMSE values consistently below 3 dB,
indicating better fit to the data. These results highlight the
effectiveness of ML techniques in accurately predicting path
loss, surpassing empirical models in accuracy and reliability.

C. Models performance on Unseen Urban Environments
To evaluate the generalization capability of the proposed ML
models for PL prediction in environments different from
Munich-1 (Fig. 1), their performance was tested against
RT simulations in five distinct urban environments. One
environment is taken from Munich, and the other four are
from London. These environments are labeled as Munich-
2, London-1, London-2, London-3, and London-4 for future
reference in this paper and are shown in Fig. 4. RT simu-
lations were conducted for five distinct transmitter locations
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FIGURE 4: Building database in different locations used for validation of pre-trained models and development of models
using sparse train dataset.

in each environment, each at three different altitudes: 25m,
35m, and 45m. The RT computations were performed be-
tween each transmitter location and a grid of receiver points
distributed across the environments at a resolution of 5m
x 5m. The number of receivers in Munich-2, London-1,
London-2, London-3 and London-4 are 4735, 2895, 1771,
2445, and 1908 respectively. In this study, the receiver
points within the rectangular area formed by the perimeter
of buildings at the border of the environment were consid-
ered; the open area outside this perimeter was discarded.
The same simulation parameters used for dataset generation
in Section A were applied here. Geometrical features, as
discussed in Section B, were computed for all transmitter-

receiver pairs. The pre-trained ML models, trained using the
dataset from Munich-1, are directly used to predict PL values
for all transmitter locations in the new environments. The
RMSE statistics including minimum value, maximum value,
inter-quartile range (IQR), and median value across all the
five environments for all the models are shown in the box
plot in Fig. 5. The mean RMSE score is also shown in the
plot.

The performance of the pre-trained ML models across
five different environments shows notable variation in RMSE
scores. Overall, the DNN model performs best on average.
The mean RMSE ranges from 7.93 dB for DNN to 9.67
dB for XGBoost. The remaining models including LR, RF,

8 VOLUME ,



TABLE 5: Comparison of PL computed using RT against empirical models.

Models RMSE (dB) MAE (dB) MAPE (%)

3GPP 7.49 6.45 6.12

ITU-R 7.54 6.40 6.06

RF 2.38 1.44 1.36
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FIGURE 5: RMSE performance of supervised ML models
on unseen urban environment.

KNN and SVR have the mean RMSE values of 8.09 dB,
8.41 dB, 8.61 dB, and 9.18 dB respectively. SVR demon-
strated the narrowest IQR of 0.67 dB, indicating a consistent
performance across different environments. Conversely, the
KNN model exhibited the widest IQR of 3.38 dB, suggesting
greater variability in its performance across the environments
with RMSE values varying between a minimum of 5.39 dB
to a maximum of 11.55 dB. LR and DNN models showed
smaller variations in RMSE scores with IQR values 1.88
dB and 1.94 dB respectively. Whereas the XGBoost and
RF models showed moderate variations in RMSE scores
across environments with IQR scores 2.48 dB and 2.63 dB
respectively.

D. Performance Evaluation using Sparse Train Data
In the preceding section, it was clear that models trained on
data from one environment struggled to generalize effectively
to new environments, as indicated by significantly higher
mean RMSE values compared to the best achievable values
shown in the RMSE column of Table 4. This suggests
that ML models must be re-trained with data specific to
the new environment for optimal performance. However,
the substantial data requirements for model training pose a
challenge as it requires extensive RT simulations to generate

Algorithm 1 Path loss prediction using sparse train data

Require: Buildings vector data, transmitter locations, re-
ceiver grid, carrier frequency, and sampling rate (5% to
15%) for train data.

Ensure: Radio coverage map for all transmitter locations
1: Initialize empty matrix P
2: for each transmitter location t do
3: for each receiver location r do
4: Add (t, r) to P
5: end for
6: end for
7: Initialize empty features matrix G
8: for each (t, r) pair in P do
9: Compute features F for transmitter t and receiver r

10: Add F to G
11: end for
12: Randomly sample a fraction of transmitter-receiver pairs

at the specified sampling rate from P
13: Extract corresponding feature subsets from G for sample

points
14: Compute PL using RT simulations for sample points
15: Train a Random Forest model M using the sampled data:
16: Input: Sampled transmitter-receiver pairs and corre-

sponding features and path loss
17: Output: Trained Random Forest model M
18: Use M to compute path loss estimates for the remaining

transmitter-receiver pairs
19: return Estimated radio coverage map for all transmitter

locations

large datasets. Paradoxically, this contradicts the primary aim
of ML models, i.e. to provide a faster, yet accurate alternative
to computationally intensive RT simulations. To address
this, we explore the feasibility of training ML models with
smaller, sparsely sampled datasets derived from initial RT
simulations encompassing all potential transmitter locations
and heights. Utilizing the previously generated datasets in
five distinct urban environments (Munich-2, London-1 to
London-4) above, we evaluate how all models perform when
trained on sparse data from the same urban environments.
Consolidating data from all five transmitter locations in each
urban environment, we trained models with varying sample
sizes (5%, 10%, and 15% of the total dataset available
for each environment), examining how their performance
evolves. The resulting RMSE scores of supervised ML
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models, trained on datasets ranging from 5% to 15% sample
size, are depicted in Fig. 6, alongside baseline evaluations
using the conventional 75:25 train-test split ratio, providing
a comprehensive comparison benchmark. It is important to
note that we did not conduct extensive hyperparameter tuning
during the model training phase, as was done for Munich-1.
Instead, we employed a randomized search cross-validation
technique to efficiently determine the optimal hyperparam-
eters, leveraging insights gained from the previous model
development cycle for Munich-1 environment (refer to Table
3).

These results highlight several key observations. When
comparing these results with the generalization performance
of the ML models in the previous section, it is clear that
models trained on even smaller datasets (e.g., 5% sampling)
from the same environment perform better than models pre-
trained on larger datasets from different environment. For
example, the mean RMSE for the LR model pre-trained
on Munich-1 is 8.09 dB when averaged across the five
environments as seen in the previous section. This value
decreases to a mean RMSE of 4.26 dB (5.69 dB in Munich-
2, 3.01 dB in London-1, 5.45 dB in London-2, 4.07 dB in
London-3, and 3.08 dB in London-4) when the model is
trained with only 5% of the dataset from the same environ-
ments. This improvement is encouraging as it indicates that
prediction accuracy can be significantly enhanced by running
RT computations for a small sample of receiver points across
the environments and using this sparse data to train the ML
models. The mean RMSE of all the models, averaged over
the five environments, for each sampling is computed and
shown in Fig. 6 (f).

A general trend of decreasing RMSE with increasing
training dataset size is observed for all models, except
for the LR model, which maintains an almost constant
mean RMSE of 4.2 dB across all samplings. The ensemble
learning models, RF and XGBoost, consistently perform best
across the environments for all samplings, achieving a mean
RMSE as low as 3.5 dB with a 15% training dataset size.
Interestingly, the DNN struggles with lower sample sizes
and performs poorly, with mean RMSEs of 5.34 dB, 4.55
dB, and 4 dB for 5%, 10%, 15% sampling, respectively.
This aligns with the fact that DNN models require large
amounts of data for better accuracy. SVR and KNN models
perform slightly better than LR and DNN, with mean RMSE
values below 4 dB for SVR and around 4 dB for KNN for
small sampling sizes between 5% and 15%. The variability in
models performances in different urban environments is also
observed. Models achieved lowest RMSE values in London-
4, whereas Munich-2 proved to be the most challenging,
with highest RMSE values observed for all models across all
samplings. It is noteworthy that the baseline models utilizing
a 75:25 train-test split do not achieve the same level of
performance as observed in Section A for Munich-1, where
a very large training dataset was utilized and an extensive
hyperparameters tuning was performed.

To evaluate the computational performance gains from
using sparsely sampled training datasets, let tF denote the
time required for computing geometrical features, and t∆
denote the time for RT computations for a given sampling
rate (5% to 15%). The total time required for PL estimation
using the ML model, tML, is

tML = tF + t∆. (8)

Note that the ML model training and inference times are
excluded from these calculations as they are negligible
compared to tF and t∆. This holds true for all models
except SVR, which requires significant training time for
larger datasets. Considering tRT represents the total time
required for PL computation using RT for the complete
environment, the percentage reduction (R) in computation
time using the ML model compared to RT can be calculated
as follows:

R% =

(
tRT − tML

tRT

)
× 100. (9)

Table 6 illustrates the computational performance compar-
ison across different sampling rates (5%, 10%, and 15%)
for the five urban environments. The time required for
computing geometrical features (tF ) and ray tracing (tRT )
are presented for each environment. All the times are in
seconds. An Intel Core i7 computer with 16 GB RAM is
used in simulations. The results show a significant reduction
in computation time using the ML model compared to RT.
For instance, at a 5% sampling rate, the time reduction R
in London-3 is the highest at 20.22%, while Munich-2 also
shows a notable reduction of 11.73%. However, the gains
decrease with increased sampling rates. This indicates that
the time gains will decrease as more data is used to train the
ML models for better accuracy. A negative time reduction
of -2.84% is recorded at 15% sampling for London-1 which
indicates that it takes more time for ML model than simply
running complete RT for London-1. These results highlights
the efficiency of using ML models with lower sampling rates
to achieve substantial time savings in PL estimation with
moderate accuracy.

The above analysis implies that the RF model can be
trained on a sparse dataset to achieve computationally ef-
ficient and reasonably accurate PL prediction in any given
urban environment. Algorithm 1 outlines the necessary steps
for predicting PL in an urban environment.

E. Models performance with Noisy Input Features
To assess the impact of estimation error in input geometrical
features on ML model performance, the models were trained
on the same training dataset generated for Munich-1. Prior
to evaluation on the test dataset, uniform random noise was
introduced to the input features of the test dataset, with noise
levels ranging from 5% to 15% of the feature values. The
models’ performance was then evaluated. Fig. 7 illustrates
the RMSE of the ML models at various noise thresholds,
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TABLE 6: Computational performance comparison for different sampling rates.

Sampling Rate Munich-2 London-1 London-2 London-3 London-4
tF tRT tF tRT tF tRT tF tRT tF tRT

18706 22424 13408 15290 6127 7352 6197 8271 9877 11690

t∆ R t∆ R t∆ R t∆ R t∆ R
5% sampling 1087 11.73 742 7.46 357 11.87 401 20.22 567 10.66
10% sampling 2287 6.38 1560 2.11 750 6.46 843 14.87 1192 5.31
15% sampling 3498 0.98 2316 -2.84 1114 1.51 1290 9.47 1771 0.36
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FIGURE 6: Machine learning models performance on sparse train data in different urban environments.

with the RMSE of all models on the noise-free data (Table
4) also plotted as a baseline.

The analysis of RMSE performance for ML models with
noisy input features shows that Linear Regression (LR) is
highly sensitive to noise, with RMSE increasing significantly
from 11.37 dB to 20.7 dB to 30.65 dB as noise levels rise
from 5% to 10% to 15%. In contrast, the other models
demonstrate robustness, with relatively smaller increases in
RMSE under noise conditions. Interestingly, KNN performs
better than RF with noisy input features, as evidenced by its
lower RMSE values under all noise conditions.

F. Feature Importance and Sequential Feature Inclusion
The above results highlight the RF model’s remarkable
ability to predict PL with a minimal RMSE. To gain insights
into the model’s decision-making process, a feature impor-
tance analysis is conducted using the Scikit Learn API. The
results, depicted in Fig. 8, present the relative importance of
geometrical features in descending order for the RF model
that gives the best RMSE score of 2.38 dB on the test
dataset (see Table 4). Notably, the feature corresponding
to the maximum height of the buildings obstructing the
receiver holds the highest relative importance of 0.3. This
is followed by the 3D distance between the transmitter and
receiver, with a relative importance of 0.15. Subsequently,
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FIGURE 7: Performance comparison with noisy input fea-
tures.

the angular parameters (ϕ and θ), transmitter height, and
the average distance between the receiver and visible walls
exhibit relative importance ranging from 0.07 to 0.066. The
remaining input features demonstrate progressively lower
relative importance, as illustrated in the figure.

m
ax
_w
al
l_h
ei
gh
t

3d
_d
ist
an
ce Ph
i

Tr
an
sm
itt
er
_Z
Z

av
g_
di
st
an
ce
_t
o_
wa
lls

Th
et
a

ou
td
oo
r_
di
st
an
ce

wa
lls
_p
en

m
in
_d
ist
ac
e_
to
_w
al
ls

no
_v
isi
bl
e_
wa
lls

in
do
or
_d
ist
an
ce

av
g_
wa
ll_
he
ig
ht

m
in
_w
al
l_h
ei
gh
t

Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la
tiv
e 
Im

po
rta

nc
e

FIGURE 8: Relative importance of features in Random
Forest model.

To further investigate the model’s performance with vary-
ing sets of input features, a sequential feature inclusion
approach is used. Initially, the RF model is trained using
only the single feature with the highest feature importance
value, and its RMSE is assessed on the test dataset. We used
the larger dataset for train and test as discussed in Section
II. Subsequently, the model undergoes additional training
phases, each time incorporating the feature with the next
highest importance value. This sequential process is iterated
until all feature combinations are exhaustively tested. Fig.
9 illustrates the RMSE values evaluated on the test dataset
as the number of features is sequentially increased during
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FIGURE 9: Comparison of Model’s performance with in-
creasing number of features.

model training. The RMSE on the test dataset varies from
5.85 dB to 4.07 dB for combinations involving the top 4
features, with the highest RMSE of 6.2 dB observed for top
2 features. A notable decrease in RMSE is then observed,
sharply declining to 2.65 dB for the combination of 6
features. Following this, the RMSE demonstrated a minor
and consistent decrease, reaching 2.38 dB for the remaining
7 features used in the training. This also implies that the
RF model can be trained using only the six features without
significantly affecting the RMSE score.

V. Conclusion
This paper investigated the performance of classical super-
vised ML models in predicting PL in urban UAV-assisted
mmWave radio networks, leveraging a unique set of thirteen
geometrical features. The findings showed the superior per-
formance of the RF model, surpassing all counterparts across
multiple evaluation metrics, with an RMSE of 2.38 dB, MAE
of 1.44 dB, MAPE of 1.36%, and an impressive R2 score of
0.88. The proposed ML models demonstrate better accuracy
than 3GPP and ITU models. The models, however, exhibited
limited generalization capability to unseen environments, and
require re-training with data specific to the new environment.
To address this limitation, we extensively evaluated the
accuracy improvements and reductions in run times when the
models were trained using sparse data across five different
urban environments. An analysis of the sensitivity of ML
models to noisy input geometrical features revealed that the
LR model exhibited the largest variations in accuracy with
noisy inputs. Additionally, an analysis of the importance of
geometrical features showed that the RF model could still
achieve a commendable RMSE of 2.65 dB with only six
features, emphasizing its robustness.
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