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Abstract—Semantic communication (SC) with native artificial
intelligence (AI) is a context-centric framework that intelligently
extracts task-specific semantics from source data and efficiently
regenerates the intended meaning at the destination. Hence, this
computing-intensive methodology enables goal-oriented commu-
nication by maintaining a high semantic quality of service with
a low requirement for data transfer. Recently, the emergence
of big-AI foundation models such as the generative pre-trained
transformer and diffusion models—with zero-shot task general-
ization and native cross-modal learning capabilities—has brought
a paradigm shift in designing AI-native frameworks for wire-
less networks. However, deploying big AI in wireless networks
involves inherent challenges such as large training parameters
and computing requirements. To address these challenges, we
use sustainability techniques such as pruning and fine-tuning to
create sustainable (lightweight) models from big AI, which can
reduce the resource consumption and environmental impact in
computation-heavy SC systems while preserving or enhancing the
task performance. Moreover, classical communication networks
lack quantum-safe communication security and data privacy. In
this article, we prototype a sustainable big AI-native quantum
anonymous SC system. In this framework, we leverage big-AI
models for semantic retrieval processing, i.e., semantic extraction
and recovery, and employ quantum anonymous communication
protocols to broadcast semantics. We detail the underlying
functionalities, sustainable practices, and potential challenges
of integrating big AI into a quantum anonymous semantic
broadcast system. We also formulate case studies demonstrating
the sustainability and reliability of the envisioned framework.
This work provides a sustainable and quantum-safe semantic
communication framework by integrating big AI and quantum
anonymous communication.

Index Terms—Big artificial intelligence (AI), semantic commu-
nication (SC), quantum anonymous broadcast.

I. INTRODUCTION

UPON the era of integrating sensing, computing, and com-
munication, enormous volumes of data are perpetually

generated and transmitted across a variety of cutting-edge
services such as digital twins, autonomous mobility, telehealth,
and Metaverse [1]. However, designing communication sys-
tems that cater to seamless wireless transmission of large
data volumes while maintaining a high-quality user experience
is ultimately challenging. SC is a nascent communication
paradigm that invokes interpretive abilities of AI to extract in-
tended meanings from data into compact latent representations,
enabling efficient and task-oriented information exchanges
[2]–[4].
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The use of narrow AI in the SC framework is fraught with
limitations. Primarily, these systems are unimodal, designed to
excel within a specific data modality (such as text, images, or
audio). While beneficial in certain scenarios, this narrowness
restricts their adaptability across diverse data types [5], [6].
Moreover, task-oriented designs restrict flexibility to pivot to
varied tasks without extensive retraining. This rigidity can lead
to inefficiencies, especially in dynamic environments where
communication paradigms are ever-evolving. Additionally, the
data-driven nature of narrow AI demands a vast amount of
labeled data for effective training, a requirement that becomes
resource-intensive and somewhat infeasible [1].

Contrariwise, big AI emerges as a more scalable and
sustainable solution featuring its inherent multimodal capa-
bility [7]–[12]. Big AI is adept at processing, understanding,
and generating information across a spectrum of modalities,
from texts and visuals to audio and beyond. This ability to
seamlessly integrate and interpret diverse data sources offers
a richer and more comprehensive understanding, invaluable
in multifaceted SC tasks. The big-AI potential to leverage
transfer learning further enhances its efficiency, enabling the
application of knowledge from one domain to another. In short,
narrow-AI models offer specialized solutions within confined
boundaries, while big AI promises a holistic, adaptable, and
encompassing approach to computation-heavy SC.

Wireless communication systems grapple with inherent se-
curity vulnerabilities in lieu of the susceptibility to unde-
tected eavesdropping and the incapacity of classical encryption
under quantum computing potentials. Quantum communica-
tions herald a paradigm shift, offering a secure framework
grounded in the immutable principles of quantum mechanics
[13]. A cornerstone of this quantum-safe security is the no-
cloning law, which posits the impossibility of creating an exact
replica of arbitrary unknown quantum states, thus rendering
the intrusion detectable. Furthermore, quantum anonymous
protocols ensure the communication anonymity that conceals
the identities of communicating parties, providing a quantum
layer of untraceable privacy with no classical counterpart (see
[14] and references therein). Fig. 1 illustrates the big AI
and quantum applications for wireless innovations along with
pivotal milestones in the AI evolution. This figure highlights
the transformative potentials of integrating big AI and quantum
advantages in the realms of computing, networking, sensing,
security, and privacy for wireless networks.

Owing to the potential benefits of big AI in the semantic
extraction and recovery processes and quantum anonymous
communication in ensuring security and privacy, we integrate
them to develop a hybrid quantum-classical (HQC) SC system.
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The paper is organized as follows.
• Firstly, we briefly summarize the paradigm of computing-

intensive communications driven by narrow- and big-AI
models along with their potential challenges.

• Subsequently, we delve into techniques of big-AI sustain-
ability. We use pruning techniques and apply style trans-
fers, with a focus on reducing the number of parameters,
thereby making AI models more sustainably lightweight.

• Then, we prototype a big AI-native quantum anonymous
SC framework. Herein, we detail the underlying essential
functionalities, including quantum anonymous broadcast
(QAB), and provide sustainable practices. We formulate
a case study to demonstrate the envisioned framework.

• Finally, we highlight the central challenges of integrating
big-AI models into quantum anonymous SC systems,
including future prospects.

II. COMPUTING-INTENSIVE COMMUNICATIONS

The scales of AI models are reshaping the paradigm of
computing-intensive communication.

A. Narrow-AI SC

Narrow AI-driven SC encompasses computing-empowered
communication systems that leverage both classical and noisy
intermediate-scale quantum (NISQ) machine learning (ML).

1) ML Semantic Learning: Classical ML methods em-
ployed in semantic extraction and recovery processes are
classified as follows.

• Deep Semantic Learning: Deep learning architectures
and methodologies have been developed for SC systems
by casting the communication task as an end-to-end in-
formation bottleneck problem [3]. The standard approach
utilizes autoencoders for joint source-channel coding that
intelligently maps image pixel values to channel inputs
by capturing semantic patterns from the knowledge base
(KB). These autoencoders are trained using cross-entropy
and mutual information, which ensure both accuracy and
preservation of semantic content. Notably, these architec-
tures are based on convolutional neural networks (CNNs)
and transformers. The CNN is mainly used to capture the
local context, making it adept at recognizing patterns in
short data sequences, while the transformer captures the
global context in data and maintains semantic coherence
within long data sequences.

• Reinforcement Semantic Learning: Reinforcement se-
mantic learning empowers SC systems in challenging sce-
narios such as the indiscernibility of semantic similarity
metrics and the unpredictability of noisy channels [15].
This reinforcement approach allows efficient and stable
learning based on user-defined semantic measurements.
In contrast to backpropagation, it tackles the indiscernible
semantic channel optimization problem using self-critic
stochastic iterative updating training on a decoupled se-
mantic transceiver. However, the inability of such frame-
works to generalize on diverse scenarios owes to the
sparse rewards, non-stationary environments, and sample
inefficiency.

2) NISQ Semantic Learning: Integrating quantum comput-
ing with semantics-centric communication has led to the de-
velopment of quantum SC. In the current NISQ age, semantic
extraction is performed by employing variational quantum
computing or HQC computing, detailed as follows.

• Quantum Semantic Learning: Quantum machine learn-
ing (QML or quantum ML)—which combines quantum
computing with classical ML to exhibit potential quantum
advantages—is utilized for semantics learning. The raw
data is encoded into variational quantum circuits imple-
menting quantum artificial neural networks (ANNs). The
variational circuit is trained over data to learn parameters
through classical optimization. Currently, NISQ process-
ing limitations render this method well-suited for only
classification tasks involving small amounts of data.

• HQC Semantic Learning: The semantic feature learning
is facilitated by both QML and classical ML methods.
The hybrid models employ quantum CNN layers to for-
mulate a quantum feature map from raw data. This map is
then input to classical CNN layers for further processing.
Despite NISQ limitations, this hybrid approach exhibits
practical advantage over classical counterparts in some
detection tasks while handling large amounts of data.

B. Big-AI SC

Big AI embodies a transformative leap in artificial general
intelligence, aiming to emulate human-like cognitive capabili-
ties across a vast spectrum of tasks. The evolution is catalyzed
by the emergence of foundational models such as the bidirec-
tional encoder representations from transformers (BERT) and
the generative pre-trained transformer (GPT). Such models
have pioneered the realm of self-supervised learning with
multimodal data, enabling functionalities including zero-shot
task generalization without specific training. Furthermore, the
big AI models—classified into large language models (LLMs),
vision foundation models (VFMs), and vision-language pre-
training models (VLPMs)—can significantly enhance the se-
mantic extraction and recovery processes, listed as follows.

1) Language Semantic Learning: The LLM is mainly used
for the semantic extraction and recovery of textual data. The
fine-tuned LLM enables tasks related to context understanding,
sentiment analysis, text classification, text completion, and text
summarization. The most notable semantic learning techniques
with LLMs are as follows.

• Autoregression: The autoregression process handles se-
quences token by token, making predictions for the
subsequent token by learning contextual information from
the preceding ones. In the context of semantic extraction
and recovery, autoregression is pivotal in developing a
profound understanding of language semantics. These
semantic models are trained over diverse and extensive
corpora, enabling them to infer the meaning, context, and
relationships within the input textual data. For instance,
such capabilities allow ChatGPT to extract semantic in-
formation from ambiguous and incomplete sentences and
generate coherent and contextually relevant responses.
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Fig. 1. A technology chart connecting big AI, quantum communication, and quantum computing with features, applications, use cases, and visions of wireless
networks. This map underscores the potential integration advantages of big AI and quantum innovations in computing, networking, sensing, securing, and
privacy-preserving for wireless solutions. In addition, the timeline traces key milestones in the evolution of AI, delineating the progression of symbolic AI
origins, transitioning through narrow AI, and culminating in the current era of big AI (see Table I for all abbreviations).
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TABLE I
A LIST OF ABBREVIATIONS

Abbreviation Definition

AI Artificial Intelligence
ANN Artificial Neural Network
AWGN Additive White Gaussian Noise
BART Bidirectional and Auto-Regressive Transformers
BEP Bit Error Probability
BERT Bidirectional Encoder Representations from Transformers
BigGAN Big Generative Adversarial Network
BLIP Bootstrapping Language-Image Pre-Training
BLOOM BigScience Large Open-science Open-access Multilingual Language Model
CLIP Contrastive Language-Image Pre-Training
CNN Convolutional Neural Network
DENDRAL Dendritic Algorithm
DETR Detection Transformer
DIV2K Diverse 2K Resolution
DNN Deep Neural Network
ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements Accurately
FID Fréchet Inception Distance
GAN Generative Adversarial Network
GHZ Greenberger–Horne–Zeilinger
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
HQC Hybrid Quantum-Classical
KB Knowledge Base
KPI Key Performance Indicator
LaMDA Language Model for Dialogue Applications
LLM Large Language Model
LoRA Low-Rank Adaptation
LPIPS Learned Perceptual Image Patch Similarity
LRTD Low-Rank Tensor Decomposition
LSTM Long Short-Term Memory
METEOR Metric for Evaluation of Translation with Explicit Ordering
ML Machine Learning
MOS Model Output Statistics
NAS Neural Architecture Search
NISQ Noisy Intermediate-Scale Quantum
PISQ Perfect Intermediate-Scale Quantum
PaLM Pathways Language Model
QAB Quantum Anonymous Broadcast
QML Quantum Machine Learning
QPU Quantum Processing Unit
SAM Segment Anything Model
SC Semantic Communication
SNR Signal-to-Noise Ratio
SPADE Spatially-Adaptive Denormalization
SVM Support Vector Machine
T5 Text-to-Text Transfer Transformer
TransformerXL Extra Long Transformer
TuringNLG Turing Natural Language Generation
U-Net U-Shaped Network
VFM Vision Foundation Model
VLPM Vision-Language Pre-training Model
XLNet Extra Long Network
YOLO You Only Look Once

This makes it a powerful tool for various natural language
understanding and applications.

• Masked Autoencoding: The masked autoencoding pro-
cess operates by masking specific segments of the input
textual data. It then predicts these masked words by learn-
ing the surrounding bidirectional context to enhance its
understanding of their semantics. This parallel processing
approach enables the model to develop a rich and nuanced
understanding of word relationships and contextual mean-
ings. The semantic learning with masked autoencoding
employs big-AI models (e.g., BERT) to discern implicit

meanings and relationships in given texts, making it adept
at tasks such as entity recognition, relation extraction, and
semantic role labeling.

2) Vision Semantic Learning: The VFM is mainly used for
extracting semantics from visual (e.g., image and video) data,
enabling it to perform tasks such as image recognition, object
detection, image segmentation, visual understanding, and even
generating images. The key vision semantic learning tasks are
as follows [10], [11].

• Localization and Recognition: Localization focuses on
spatially identifying specific regions or entities within
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visual data using their distinctive attributes, such as
color, intensity, shape, or texture. Recognition aims to
understand, interpret, and categorize visual data. Their
primary objective is determining the boundary of promi-
nent object features and classifying objects within im-
ages. For instance, the segment anything model (SAM)—
a promptable image segmentation model for zero-shot
segmentation tasks—is utilized in semantic extraction to
partition an image into coherent segments, each represent-
ing a distinct region of interest (RoI). This model allows
for the segmentation of image data with just a simple
prompt, thereby eliminating the need for labor-intensive
image labeling and domain expertise.

• Synthesis: Image synthesis refers to generating new and
unseen images, typically by leveraging the VFM to create
visually coherent and contextually relevant images [12].
In the VFM, a user provides a prompt, such as a textual
description or a set of attributes, and the model translates
this prompt into a coherent visual representation. This
model involves generative adversarial networks (GANs)
in semantic recovery to interpret the semantic content
of the prompt and synthesizes an image that visually
represents the described scene, ensuring that the gener-
ated image aligns with the contextual and visual elements
detailed in the prompt.

3) Vision-Language Semantic Learning: The VLPM is a
fusion of learning with both the LLM and VFM. The process
can be designed to understand and generate semantics for
both textual and visual data. The VLPM is trained on large
datasets containing paired images and text information and
deals with semantic labeling, image captioning, visual question
answering, and output textual semantics for images.

• Contrastive Learning: It involves comparing a positive
pair (similar or related items) against a negative pair
(dissimilar or unrelated items) and optimizing the model
to bring similar items closer in the embedding space while
pushing dissimilar items apart. By learning to associate
visual features with linguistic features effectively, the
contrastive learning model gains a deeper understanding
of the semantic content of visual data. This can be
particularly useful in tasks such as image captioning,
visual question answering, and multimodal translation,
where understanding the semantics is a primary concern.

• Multimodal Learning: It improves the semantic learning
process by fusing semantic features extracted from dif-
ferent input data types to create a unified representation
that captures the shared and complementary information
across different modalities. This learning enables models
to leverage the rich, high-level semantic information from
text and the detailed, perceptual information from images
to understand the intricate interplay between vision and
language. The most notable models capable of under-
standing both images and text in the context include
the bootstrapping language-image pre-training (BLIP),
making it suitable for tasks such as image-text retrievals
and textual descriptions for images.

C. Potential Challenges
The potential challenges in computing-intensive communi-

cation systems are summarized as follows.
1) Security and Privacy: Classical SC systems face chal-

lenges in ensuring the security and privacy of semantic data.
These systems are vulnerable to privacy leakages and so-
phisticated threats, from man-in-the-middle to replay attacks.
Moreover, classical encryption methods are increasingly vul-
nerable due to the lack of adequate defense mechanisms to
counter the potential of emerging quantum computing. In con-
trast, quantum protocols yield quantum leaps in security and
privacy. For example, counterfactual quantum communication
facilitates information transfer without transmitting physical
particles, ensuring semantic data remains safeguarded from
potential semantic attacks. In addition to the confidentiality
of semantic data, quantum anonymous protocols introduce a
quantum layer of privacy, enabling the communicating parties
to remain anonymous and untraceable [14].

2) Zero-Shot KBs: A KB is a repository shared by the SC
transceiver that contains essential information and rules, offer-
ing context for semantic interpretation and efficient processing.
Most notably, KBs exist as knowledge graphs, databases, and
trained parametric or non-parametric models. The formation
of the KB is a resource-intensive process that requires domain
expertise for semantic extraction and hardcoded labeling from
the underlying source data. In a dynamic environment where
AI models perform various semantic tasks simultaneously, em-
ploying narrow AI becomes challenging, as it requires frequent
knowledge updates and has limited knowledge representation
due to parameter restriction. Contrarily, big-AI models—with
billions of parameters—are trained on a large amount of
multimodal data from diverse knowledge domains, forming a
universal KB. Hence, the big-AI models natively possess zero-
shot learning that enables them to perform various tasks and
extract semantics without a predefined KB. This ability makes
it suitable for embedding in resource-constrained edge devices.
Moreover, data sources in distributed systems with diverse
devices and sensors are heterogeneous, noisy, and complex.
A multimodal zero-shot KB thus offers a sustainable and
efficient solution to streamline semantic tasks in these systems
by exploiting correlated representations and data isomerism
among different modalities.

3) Adaptability: Adaptability refers to the capability of AI
models for task specialization and domain adaptation. Task
specialization deals with foundation models that perform some
tasks within specific modalities, whereas domain adaptation
involves the model’s ability to apply knowledge learned from
a specific data distribution to another distribution (style or
dataset). This capability is particularly crucial for big-AI
models in broadening their versatility far beyond the original
training scope. Herein, a domain-shift process (such as multi-
task and transfer learning) is employed by leveraging a KB
gained from a source domain to improve the model perfor-
mance in a target domain with different data distributions. On
the other hand, narrow-AI models are pre-destined to learn
from the data by optimizing the underlying parameters based
on the learning pattern. Therefore, the narrow-AI models are
inherently trained to handle singular and limited distributions.
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(a) Military camouflage detection (Case A) and military-civilian vehicle classification (Case B)

Fig. 3. Case Study I: Semantic extraction and recovery using big-AI models. All simulations are performed with NVIDIA GeForce RTX 3090 Ti GPU with
24 gigabytes (GB) memory. (a) For two exemplary tasks (military camouflage detection and military-civilian vehicle classification), we test the robustness of
our envisioned framework for extracting semantics from corrupted images subjected to various types of occlusions—e.g., AWGN, motion blur, dark brightness,
synthesized fog, and adversarial patch. Textual semantics are obtained by BLIP 2, while we employ SAM (ViT-h) and YOLO v8 concurrently for the automated
RoI (segmentation) and detection. YOLO detects RoIs in source images, which are given as a prompt to SAM for segmentation. Moreover, the image depth
is extracted by a dense prediction transformer. These semantics are then processed by semantic recovery models (TinySD, BaseSD, and OpenJourney) for
comparative analysis. TinySD is proposed for a sustainable model by incorporating the LoRA and pruning in the standard stable diffusion model (BaseSD)
for semantic recovery. The background is created using text-only input, while the foreground is reconstructed by recovery models conditioned on the extracted
segments. This approach uses text for background generation to minimize communication overhead and leverages the generative capabilities of large-scale
AI at the receiver’s end for semantically accurate information recovery. We use the Aiming soldiers image dataset and the Military and Civilian Vehicles
classification dataset for Cases A and B, respectively.

These models encounter limitations, e.g., the lack of universal-
ity in the KB and the risk of overfitting to the specific training

data. Moreover, the domain shifting in narrow AI requires a
large amount of labeled data from both the source and target
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domains, which may not be readily available. This ultimately
leads to poor generalization and adaptation for the narrow-AI
models. With regards to semantic learning, the big-AI models
offer a broader understanding of semantic tasks and can easily
adapt to crossmodalities. In addition, the domain shifting on
big AI requires less data and computational resources since
the underlying models feature a universal KB. For example, a
big-AI model trained on a large neural network of multimodal
data can be fine-tuned on a smaller corpus of medical texts to
perform medical diagnosis. The efficient adaptability of big-
AI models renders them versatile and robust semantic learners
for a wide range of applications.

4) Sustainability: Training big-AI models for semantic
learning is resource-intensive and costly. With their vast
number of parameters, these models can be slow, inefficient,
and environmentally taxing, especially when online semantic
learning is required. In this case, pruning offers a solution to
this challenge. By eliminating the less important weights or
neurons from a neural network, the pruning can substantially
reduce the model’s size without compromising its performance
significantly. The pruned models, having fewer parameters,
demand decreased computational resources, resulting in faster
inference times and reduced energy consumption. On the other
hand, fine-tuning offers a sustainable practice by adjusting pre-
trained models to ensure that the pruned model remains effec-
tive, addressing specific semantic challenges with precision.
The prune-fine-tuned models—tailored for specific semantic
challenges—can process information faster, more accurately,
and with reduced environmental impacts. Hence, these models
not only optimize computation but also serve sustainability,
making big AI increasingly important for semantic learning.

III. BIG AI-NATIVE QUANTUM SC

In this section, we prototype a big AI-empowered quantum
anonymous SC system (see Fig. 2), where the semantics of
multimodal data are retrieved by big-AI models and broadcast
by the QAB protocol.

A. Anonymous SC

Now, we detail the key functional elements of an anonymous
SC transceiver.

1) Semantic Extraction: The semantics of multimodal data
are embedded, queried, and decoded using big-AI models as
follows.

• Semantic Representation Embedding: Raw multimodal
input data is first embedded into a sequence of vectors
in a suitable format for subsequent processing. This rep-
resentation embedding is primarily classified into patch
and prompt embedding. In the patch embedding, raw data
is divided into fixed-size patches. These patches are then
linearly embedded into vectors, which serve as the initial
input tokens for subsequent layers. It enables the model to
handle data in manageable chunks, allowing for efficient
parallel processing. On the other hand, the prompt embed-
ding additionally utilizes predefined vectors to assist the
model with semantic context and ensure that subsequent

Model KPI TinySD BaseSD OpenJourney

Sustainability

Parameters [106] 906 1,920 1,060
Memory [GB] 0.337 1.791 1.784
Time [s] 1.627 1.644 1.660
Power [J] 0.588 0.999 1.034
Storage [GB] 3.972 7.174 6.021

Case A:
Military
Camouflage
Detection

LPIPS 0.299 0.300 0.305
FID 21.301 22.369 24.519
METEOR 0.533 0.537 0.545
BERT-S 0.958 0.957 0.959

Case B:
Military and
Civilian Vehicle
Classification

LPIPS 0.261 0.257 0.264
FID 11.264 10.874 9.847
METEOR 0.600 0.596 0.580
BERT-S 0.966 0.965 0.963

(b) Sustainability and similarity KPIs of semantic recovery
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(c) Zero-shot semantic recovery for TinySD

Fig. 3. (Continued.) Case Study I: Semantic extraction and recovery using
big-AI models. All simulations are performed with NVIDIA GeForce RTX
3090 Ti GPU with 24 GB memory. (b) Sustainability and similarity KPIs
of semantic recovery are tabulated for TinySD, BaseSD, and OpenJourney
models on the datasets for Cases A and B under AWGN occlusions at the SNR
of 10 dB. To benchmark the precision metrics, such as LPIPS, FID, METEOR,
and BERT similarity (BERT-S), we test the models on both image-image
and text-image semantic recovery tasks. (c) Zero-shot semantic recovery is
depicted for TinySD on the unseen DIV2K dataset under AWGN at the SNR
of 10 dB. DIV2K dataset contains 1000 high-resolution images with multiple
categories. The images in the dataset are initially captioned and categorized
by BLIP 2, and then the recovery similarity is tested in terms of LPIPS.
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(a) Broadcast modulation
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(b) Broadcast BEP under depolarizing quantum noise N

Fig. 4. Case Study II: Semantic anonymous broadcast using a preshared N -qubit GHZ state |ghz⟩. (a) The broadcast modulation for semantic information ζ
in a classical bit is illustratively implemented using linear optical elements. For N = 10, we plot the Wigner and Husimi Q-functions for the 1024× 1024
dimensional density operator ρ = |ghz⟩⟨ghz| of the GHZ state as a function of the phase-space parameters using the QuTiP (quantum toolbox in Python)
package (left). The tomography of the corresponding modulated state is also depicted for both ζ = 0 and 1 (right). (b) The broadcast BEP Pb (N ) for the
QAB protocol is evaluated under the isotropic depolarizing noise N (ρ) = qρ + Ip/2 with the noise parameter p where q = 1 − p. Since the quantum
state ρ is depolarized with probability p, we have 2Pb (N ) = 1 − qN and its asymptote 2Pb (N ) = pN + o (p) as p → 0. The broadcast BEP Pb (N )
is plotted as a function of the number N of network parties when p = 10−4 (left) and the depolarizing parameter p when N = 10 (right). For simulations,
we use the NetSquid (a discrete-event simulator designed for quantum networks).

layers process data in a manner aligned with the desired
outcome.

• Semantic Querying Transformer: Semantic transform-
ers utilize multi-head attention, sequencing, and feed-
forward fully-connected neural network layers to further
process the tokenized embedded vectors. The multi-head
attention mechanism evaluates the intricate correlations

among the embedded patches. The sequencing preserves
the spatial context of the embedded data by introducing a
special token at the start of a sequence, thereby including
positional embedding in addition to patch embedding.
Finally, the fully-connected layers further refine the se-
mantic features by applying nonlinear transformations
such that the features tend to be more representative of
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the distinctive patterns. These transformations are carried
out under the pretext of pre-defined tasks. Such tasks
are monitored by the pre-trained querying vectors cor-
responding to image captioning, semantic segmentation,
depth estimation, and object detection.

• Semantic Attribute Decoding: Semantic attribute decod-
ing is task-specific. Herein, embeddings are transformed
into the desired semantic attributes. For example, in
the context of images, the decoder extracts masks and
depth information; marks the RoI; and generates a con-
textually relevant descriptive text. The decoding process
leverages rich semantic information encapsulated in the
embeddings to produce vectors representing text tokens
for language-based decoders and pixel values for vision-
based decoders. The choice of the decoder architecture
depends on the extraction model employed at the source.
For example, in the case of BLIP, which is a language-
based extraction model that uses an LLM to generate
embeddings from natural language, the semantic decoder
is also an LLM that can generate natural language from
embeddings. In contrast, in the SAM case, a vision-based
extraction model that uses a VFM to generate embeddings
from images, the semantic decoder is a mask decoder that
can generate masks from image embeddings. Therefore,
the semantic decoder should match the modality and
format of the source and destination data.

2) Semantic Recovery: The extracted semantics are sub-
jected to extensive regenerative processes to refine semantic
fidelity. Notable semantic recovery modules rely mainly on
diffusion models, variational autoencoders, and GANs. Diffu-
sion models are a class of latent variable models that learn
to generate data by reversing a Markov chain that gradually
adds noise to the data. The Markov chain is defined by a
score function that measures the likelihood of the data given
the noise level. The diffusion models are trained beforehand to
learn the reverse process and thus produce high-fidelity image
data from semantic text descriptions by iterating backward
over this chain. Variational autoencoders are ANNs that com-
bine elements of both autoencoders and variational inference
to recover the desired content. Herein, the received semantics
are mapped to a probabilistic distribution in the latent space,
enabling the generation of new data samples while allowing
for smooth interpolation between different data points. These
data samples are mapped back to pixel values in regenerating
diverse images and variationally minimizing the reconstruction
loss in terms of pixel-wise mean squared errors to restore high-
fidelity images. Meanwhile, GANs consist of two ANNs, e.g.,
the generator and discriminator, which are trained together
through a competitive process. During training, the generator
improves its ability to generate realistic data by trying to
deceive the discriminator, creating high-fidelity semantic data.
The semantic recovery process with these modules is classified
as follows.

• Language Semantics to Image Recovery: In diffusion
models, the recovery process starts with a noisy image
and iteratively refines it through the reverse Markov chain
process guided by the textual semantics-conditioned score

function. This processing outputs an image that not only
appears closely related to training data but also aligns
closely with the textual semantics, thereby restoring and
synthesizing images from textual descriptions through
forward inference. In the case of variational autoencoders,
the encoder probabilistically maps the textual semantic
data to the latent space by employing textual embeddings
such as BERT. The decoder is trained to reconstruct
the output images from a sample drawn from the latent
distribution. Therefore, by conditioning the decoder on
the textual input, the variational autoencoders learn to
produce images that are highly consistent with the textual
semantic description. In GANs, the generator network is
conditioned on textual semantic features embedded by
a character-level CNN. The CNN transforms the textual
descriptions into rich high-level encoding, which guides
the image generation process. The discriminator evaluates
the authenticity of generated images in relation to both
their appearance and semantic relevance to the textual
descriptions.

• Vision Semantics to Image Recovery: In utilizing diffu-
sion models to restore images from vision semantics, the
score function employs these semantics as conditioning
information and guides the reverse Markov chain. This
processing restores high-fidelity images that align closely
with visual semantics. In the variational autoencoders, the
encoder maps the vision semantics to a probabilistic dis-
tribution in the latent space while the decoder reconstructs
the output image from a sample drawn from this latent
distribution. Herein, the loss function comprises two
terms, i.e., a reconstruction loss that measures the pixel-
wise difference between the input and output images
and a Kullback-Leibler divergence loss that measures the
difference between the latent distribution and the a priori
standard distribution. In GANs, visual semantics are input
into the generator that transforms them into the target
image style. The discriminator attempts to distinguish
between real and fake images from the target domain and
the generator, respectively. This adversarial setup drives
the GAN model towards generating increasingly realistic
and high-quality images that closely resemble the input.

3) Quantum Anonymous Broadcast: We consider that the
network consists of N parties, including Alice (see Fig. 2). The
QAB protocol allows Alice (or any network party) to anony-
mously broadcast her recovered semantics in a classical bit to
all other parties in the network without revealing her identity.
This anonymous and untraceable broadcast is also crucial for
anonymous teleportation. Specifically, using a preshared N -
partite maximally entangled state, the QAB protocol takes
the Hadamard-basis measurement, bit-flip operation, classical
announcement, and modulo 2 sum calculation for anonymous
broadcast of semantic information.

• Preparation: All the N parties in the network, including
Alice, initially share an N -partite entangled GHZ state.
By applying the Hadamard gate H to the first qubit
and then sequentially performing controlled-NOT, e.g.,
controlled Pauli X (bit-flip) gates between the first qubit
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(control) and all successive qubits (target), the N -qubit
system is prepared in this N -partite maximally entangled
state. These entangled qubits can be distributed across the
network parties using quantum teleportation and quantum
repeaters.

• Broadcast Modulation: All the network parties (includ-
ing Alice) start the protocol by performing the Hadamard
operation H on their respective qubits. Alice (broad-
caster) performs Xζ on her qubit to modulate the broad-
cast semantics ζ in a classical bit, i.e., the broadcaster
applies the bit-flip Pauli operator X if ζ = 1 and leaves
the state as it is, otherwise. The other network parties
apply the identity operator I on their qubits, i.e., leave the
qubit states as they are. Due to the Hadamard and bit-flip
operations, this modulated state is in even superposition
of all 2N−1 N -qubit states whose exclusive OR (XOR)
or modulo 2 sum is equal to the broadcast semantics ζ.

• Broadcast Detection: All the N network parties measure
their qubits in the computational basis and get their binary
outcomes µ1, µ2, . . . , µN . The XOR (modulo 2 sum) of
all these measurement outcomes is equal to the broadcast
information ζ—due to the symmetry of the modulated
state from Alice’s bit-flip operation. These N -tuple binary
outcomes appear randomly with an equal probability of
1/2N−1 due to the basis change from the Hadamard
operations, even for the entangled state between the N
network parties. This randomness completely conceals
the fact that Alice has broadcast the semantics bit ζ by
bit-flipping her qubit state. Now, all the parties utilize
classical communication to announce their measurement
outcomes. Finally, any recipient party calculates the mod-
ulo 2 sum of all announced measurement outcomes to
recover the broadcast bit (semantics) without revealing
the broadcaster’s identity, i.e., Alice—thus preserving
anonymity and untraceability in the broadcast process.

B. Sustainable Practices

Various sustainable practices can be incorporated into our
proposed big AI-native quantum anonymous SC system.

1) Low-Rank Adaptation: The low-rank adaptation (LoRA)
is a sustainable practice to reduce memory consumption by
fine-tuning big-AI models for semantic retrievals. Fine-tuning
refers to adjusting the parameters of a pre-trained model
using domain-specific raw data. This tuning enables the model
to adapt to domain-specific tasks while retaining general
knowledge from initial training. The LoRA utilizes a low-
rank approximation technique to reduce matrix complexity
and dimensionality. In practice, the LoRA freezes original
weights during fine-tuning and trains only a much smaller
number of adaptable parameters obtained by the low-rank
approximation, thereby improving training efficiency without
increasing inference latency.

2) Pruning: Pruning is a sustainable practice that reduces
the computational complexity of big-AI models by limiting
over-parameterization in model training without affecting its
semantic retrieval performance. It is categorized into structured
and unstructured pruning. The structured pruning removes

entire channels, filters, and neurons, while the unstructured
pruning eliminates individual weights. However, aggressive
pruning can degrade the model performance, which can be
counterbalanced by strategic fine-tuning.

3) Knowledge Distillation: By incorporating the knowledge
distillation in the big-AI framework, a larger pre-trained model
(teacher module) is utilized to train a smaller model (student
module) for semantic extraction. Herein, the student module
learns by minimizing the loss function in terms of both the
ground truths and predictions made by the teacher module.
This process leverages the class probability distribution and
the softmax function from the teacher module.

4) Low-Rank Tensor Decomposition: The low-rank tensor
decomposition (LRTD) assists in reducing memory usage
in textual semantics to image restoration without compro-
mising the semantic recovery performance. It approximates
multiple CNN layers with fewer components by finding an
approximation of original high-dimensional tensors with fewer
components, thus decreasing the memory requirement while
maintaining system efficiency.

5) Quantization: The quantization is utilized in reducing
the computational and memory requirements while extracting
vision semantics from image data without impacting the
semantic extraction performance. Herein, by decreasing the
bit-width representation of the numbers for weights and biases
in the network, the number of distinct pixel intensity levels is
reduced. This results in lower precision calculations, which
are computationally inexpensive and require less memory for
storage. However, an excessive reduction in precision can
degrade the semantic extraction performance significantly.

C. Case Study

We present a case study demonstrating the sustainable big
AI-driven quantum anonymous SC framework.

1) Semantic Extraction and Recovery: We show an illustra-
tive example of semantic extraction and recovery using big-AI
models on the Aiming soldiers image dataset (Case A), the
Military and Civilian Vehicles classification dataset (Case B),
and the diverse 2K resolution (DIV2K) dataset in Fig. 3. To
extract semantics from image data, we employ a combination
of robust big-AI models, e.g., BLIP, SAM, and you only look
once (YOLO), as shown in Fig. 3(a). We propose TinySD by
incorporating sustainable practices, e.g., LoRA and pruning, in
the standard stable diffusion model (BaseSD) to recover the
image from the extracted semantics. As the big-AI models are
computing-intensive, it is imperative to make them lightweight
for sustainable deployment in wireless networks. Herein, we
use the TinySD model (a lightweight variant of StableDiffu-
sion) obtained through fine-tuning followed by structural prun-
ing. In the fine-tuning step, we apply the LoRA that unfolds
in three distinct phases. In the first phase, it employs the prior
preservation of class images and sparse tokens to regularize
the training process, thus preserving the model generalization
capability while achieving high semantic fidelity. Then, it uses
the inversion technique to instantiate new tokens, which learns
the token embedding with the gradient descent. Lastly, the
token embeddings are coupled with the prior preservation to
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fine-tune the model. In the pruning step, we compress the
U-shaped network (U-Net)—which is the most computation-
heavy component in the architecture—of the StableDiffusion
model to reduce the parameters. The U-Net performs multiple
denoising steps on the latent representations conditioned by se-
mantics and time-step embeddings. At each stage, it produces
the noise residual to compute the next latent representation. We
reduce this computation by using block-level elimination and
feature pruning. Although the pruning degrades the recovery
similarity, the LoRA applies style transfer and maintains high
semantic fidelity at the output.

Fig. 3(a) shows the semantic recovery tests for the TinySD,
BaseSD, and OpenJourney models with corrupted images in
the two exemplary military-related tasks (detection and clas-
sification). The key performance indicators (KPIs) of sustain-
ability and similarity are also tabulated in Fig. 3(b) for these
semantic recovery models on the datasets for Cases A and B
under additive white Gaussian noise (AWGN) occlusions. The
learned perceptual image patch similarity (LPIPS) calculates
the perceptual similarity between two images while the Fréchet
inception distance (FID) compares the distribution between
two data sets. For textual semantics, the metric for evaluation
of translation with explicit ordering (METEOR) represents the
alignment between the generated and referenced text, while
the BERT similarity shows the cosine similarity of embedding
vectors. Fig. 3(c) depicts the LPIPS for the zero-shot semantic
recovery of the TinySD model on the unseen DIV2K dataset
under AWGN occlusions.

2) Semantic QAB: Fig. 4 demonstrates the broadcast mod-
ulation and bit error probability (BEP) for the semantic QAB
using a preshared GHZ state involving N entangled qubits.
The semantic information retrieved by big-AI models is modu-
lated using the Hadamard and bit-flip operations and broadcast
anonymously in the QAB protocol. For example, the semantic
recovery of soldier intrusion or a military vehicle for Case A
or B is alerted by the broadcast bit ζ = 1 to all network parties
without revealing the identity of a broadcasting party.

Fig. 4(a) depicts an illustrative implementation of the broad-
cast modulation for the semantic information ζ using linear
optical elements (mirrors and beamsplitters). To modulate the
semantics ζ in the preshared GHZ state, the Hadamard optical
gate H and the conditioned bit-flip Pauli Xζ operation are im-
plemented using a combination of the Pauli-y rotation mirror
Ry (π/2) and the symmetric beamsplitter BS (π/2), and the
symmetric beamsplitter BS (ζπ/2), respectively. Specifically,
we have BS (π/2) (bit-flip Pauli X optical gate) for ζ = 1,
whereas BS (0) (identity I optical gate) for ζ = 0. In optical
quantum setups, the density matrix of a quantum state can be
represented in the phase-space formalism using the Wigner
and Husimi Q-functions (quasi-probability distributions). For
N = 10, we plot the Wigner and Husimi Q-functions for the
N -qubit GHZ state and the tomography of the corresponding
modulated state for the semantic information ζ = 0 and 1.
Fig. 4(b) shows the broadcast BEP for the QAB protocol under
isotropic depolarizing noise in the multipartite entanglement
distribution across the network. The depolarizing noise is
a completely positive trace-preserving map that transforms
a quantum state into a linear combination of itself and a

completely mixed state. The depolarizing noise parameter p
denotes a probability that a quantum state is depolarized, i.e.,
completely lost and evolves into the completely mixed state—
while left untouched (noiseless) with probability 1−p. We plot
the broadcast BEP as a function of the number N of network
parties when p = 10−4 and the depolarizing parameter p
when N = 10. The broadcast error performance degrades with
increasing both the quantum noise degree and the broadcast
network scale.

IV. CHALLENGES AND OPPORTUNITIES

In this section, we outline some key challenges in integrat-
ing big AI into a quantum anonymous communication system.
We also highlight the prospects of employing such a HQC SC
framework.

A. NISQ Limitations

In the NISQ era, quantum computing and communications
systems face the following challenges.

1) Computation: NISQ computing systems still lack in
exhibiting practical advantage in the semantic learning process
due to reasons, for example.

• Quantum Fidelity: The fidelity is an essential measure of
quantum computing accuracy. NISQ computers generally
exhibit the quantum gate fidelity around 99.9 %, while
perfect intermediate-scale quantum (PISQ) computers are
expected to surpass 99.999 %. The lower gate fidelity in
NISQ devices can cause errors in quantum computations,
making it challenging to achieve reliable computations for
intricate problems. The higher gate fidelity is crucial to
expand the practicality of quantum computing across var-
ious domains, as quantum errors accumulate in complex
quantum algorithms, limiting their utility.

• Quantum Volume: A quantum volume is another crucial
metric for assessing the computational power of quantum
computing machines. The NISQ computers typically have
a quantum volume in the range from 103 to 104, whereas
the PISQ computers are projected to achieve a quantum
volume of more than 105. The relatively low quantum
volume of NISQ devices limits their ability to perform so-
phisticated computations efficiently. This limitation signi-
fies that many practical applications requiring substantial
quantum computational power remain inaccessible until
PISQ devices are deployed.

2) Communication: NISQ communication is relatively de-
veloped and practically useful as compared to NISQ comput-
ing. However, some essential limitations are listed as follows.

• Coherence Time: The coherence time is the duration a
qubit maintains its coherent superposition state before
the information is lost to the environment, causing de-
coherence. The coherence time of NISQ communication
bits is limited due to its sensitivity to quantum noise.
This limitation ultimately reduces the efficiency, security,
and privacy of NISQ communication protocols. Perpetual
developments in quantum modalities exhibiting longer
qubit coherence times suggest the prospects of secure and
privacy-protecting PISQ networks.
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• Entanglement Range: The reliability of NISQ commu-
nication is limited by distance. This distance limitation is
caused by quantum channel noise, resulting in entangle-
ment degradation during its distribution in an entangled
quantum network. This degradation limits the entangle-
ment range of NISQ networks. However, the ongoing
significant improvements in quantum memory, quantum
repeaters, and quantum error correction would noticeably
advance the entanglement range of PISQ networks.

B. Big-AI Limitations

Despite being more practical than NISQ computing for
semantic retrievals, big-AI models face some challenges that
cause sustainability issues.

1) Computation: Big AI-native systems are computation-
ally constrained due to reasons, for instance.

• Processing Requirement: Big AI often relies on graphics
processing units (GPUs) to perform complex and inten-
sive computations, such as matrix manipulations, convo-
lution, and gradient descent. The GPUs are operationally
expensive, requiring extensive energy and cooling mech-
anisms. However, future big-AI models are expected to
be deployed on lightweight devices, such as smartphones,
tablets, or wearables, with limited computational power.
This integration can potentially benefit from knowledge
distillation and fine-tuning, which aim at reducing the
number of parameters.

• Training Inefficiency: Big-AI systems encounter burden
training, which implies that they require a vast amount of
data, longer training times, and computational resources
to learn and enhance their performance. For example, the
big-AI GPT model has been trained over a million float-
ing point operations per second. Hence, the scalability of
big AI raises serious sustainability concerns. However,
using pre-trained models and fine-tuning under specific
domains can reduce training inefficiency.

2) Privacy: Utilizing big AI in the semantic extraction and
recovery stages can induce some privacy concerns.

• Generative Risk: The privacy risks associated with the
diffusion models in the semantic recovery process are
that such generative tools can create realistic images,
memorize specific images from their training data, and
reproduce them during generation. This capability poses
a significant privacy threat, particularly in the context of
privacy-sensitive data.

• Ethical Risk: Big-AI systems often use private and con-
fidential data to infer and predict attributes and behaviors.
These predictions can influence individual opportunities
or outcomes in privacy-sensitive domains, such as educa-
tion, employment, health, justice, etc. This risk leads to
ethical issues such as discrimination, bias, and unfairness.

C. Big-AI Semantic QAB Limitations

The integration between big AI and quantum anonymous
SC demands additional steps to leverage the potential of both
domains as follows.

1) Communication: he effective and privacy-preserving
transmissions in big-AI semantic QAB systems face chal-
lenges due to the following concerns.

• Privacy: The use of GHZ states preserves anonymity in
semantic information encoding and broadcasting. How-
ever, these states are intrinsically vulnerable to environ-
mental decoherence, presenting substantial hurdles in pre-
serving high fidelity in big AI-native quantum SC setups.
As depicted in Fig. 4, GHZ states under quantum noise
lose their entanglement properties, thus compromising
anonymity and broadcast error performance. Therefore,
ensuring privacy in big AI-native quantum environments
becomes more challenging amidst quantum noise and
semantic attacks.

• Scalability: As the quantum network scales, the perfor-
mance of anonymous SC across network parties dete-
riorates. These scalability issues are inherent in quan-
tum networks that employ GHZ states for anonymous
communication. In big-AI semantic QAB systems, the
broadcast error increases with the number of network
parties involved in GHZ states, as evident from Fig. 4.
Herein, the semantic QAB becomes more complicated
and resource-intensive as the network grows to include
more parties. Such scaling issues severely impact the
privacy, reliability, and efficiency of large-scale quantum
anonymous semantic networking, urging innovative solu-
tions in quantum information engineering.

2) Computation: Critical tasks of encoding classical se-
mantic data into quantum communication setups (qubit modal-
ities) and integrating GPUs with quantum processing units
(QPUs) present several issues.

• Quantum Embedding: The integration of big AI with
quantum systems requires transforming classical semantic
data into a quantum-compatible format through quantum
kernel methods. The classical data is mapped into quan-
tum embeddings using parameterized quantum circuits.
The transformation is computationally demanding, as it
requires mapping high-dimensional data into a quantum
state, which is currently underdeveloped in the NISQ era.
This is countered by enabling big AI for downsampling
tasks regarding semantic learning to minimize complexity
and computational overheads.

• Sustainability: To harness the combined power of classi-
cal and quantum processing units (GPU-QPU), an effec-
tive and parallel integrating strategy is required. Achiev-
ing seamless coordination between GPU-QPU poses chal-
lenges in terms of data synchronization, load balancing,
and minimizing latency. Efficiently distributing computa-
tional tasks between classical and quantum units is es-
sential in sustainability issues for maximizing the overall
processing speed and optimizing resource utilization in
big-AI semantic QAB systems.

V. CONCLUSION

Integrating computing-intensive communication and quan-
tum information technologies is crucial for developing a secure
and effective communication framework as we advance into
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next-generation networks. The application of big AI is essen-
tial for semantic retrieval processing (extraction and recovery),
and quantum communication is preeminent for establishing a
secure and privacy-protecting SC system that enables untrace-
able and anonymous communication of semantic information.
However, it is imperative to delve deep into essential aspects
for sustainable deployment. For instance, integrating quantum
mechanics and advanced AI models entails a prudent approach
to ensure enhanced security, privacy, and effective SC. Hence,
we must design efficient quantum protocols and refine learning
models to seamlessly consolidate these innovative solutions
within evolving networks. Furthermore, developing effective
sustainability strategies, e.g., model pruning and fine-tuning,
is also crucial to address the challenges of extensive training
parameters and high computational demands inherent in imple-
menting big AI for communication networks. These strategies
help evolve sustainable and adaptable models that align with
the needs of next-generation networks. The envisioned hybrid
SC framework serves as a stepping stone in introducing a HQC
computing-intensive communication paradigm—by integrating
big AI and anonymous quantum networking.
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