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Abstract—This work proposes a new model of reconfigurable
intelligent surface (RIS) called cognizable RIS (CRIS) that is
specifically designed to meet the unique demands of users who
require extreme-ultra-reliable and low-latency Communication
(xURLLC) in the sixth generation (6G) wireless networks. The
programmable elements in the proposed CRIS unit can adapt
to different modes of operation to provide significant perfor-
mance gain. To improve reliability at the receiver, we integrate
unmanned aerial vehicles with the CRIS module, which enhances
network performance through beamforming and mobility. Our
study focuses on maximizing the sum throughput in a multiple-
input multiple-output scenario using the rate-splitting multiple
access communication system. To achieve this, we introduce a
novel hybridized multi-agent-based deep reinforcement learning
(DRL) algorithm for optimal resource allocation that maximizes
the sum throughput. We incorporate long-short-term memory
(LSTM) networks into our proposed DRL to address the tem-
poral dependencies due to stochastic channel conditions. By
utilizing the proposed LSTM-based multi-agent DRL (MA-DRL)
algorithm, we achieve notable gains of 11.7% and 26.9% in sum
throughput over widely recognized DRL benchmark algorithms,
all while adhering to xURLLC’s stringent maximum packet error
probability constraint of 10−9.

Index Terms—Rate-splitting multiple access, reconfigurable
intelligent surface, extreme ultra-reliable low-latency communi-
cation, long short-term memory, deep reinforcement learning.

I. INTRODUCTION

EXtreme ultra-reliable and low-latency communication
(xURLLC) is a service category in the sixth generation

(6G) wireless communication networks designed to meet the
stringent quality-of-service (QoS) requirements of latency-
sensitive applications, e.g., self-driving, telemedicine, indus-
trial automation, and other real-time communication services
[1]. The primary objective of xURLLC is to ensure that
the communication link should be available with very high
reliability (e.g., 99.999999%) and provide end-to-end latency
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as low as 0.1 milliseconds (ms) [2]. These challenging re-
quirements require novel communication frameworks, network
architectures, and resource allocation schemes that can adapt to
the dynamic nature of wireless channels and efficiently handle
interference [3].

Several advanced technologies such as reconfigurable in-
telligent surfaces (RISs) [4]–[6], THz communication [4],
unmanned aerial vehicle (UAV) [5], [7], massive multiple-
input multiple-output (MIMO) [8], deep reinforcement learn-
ing (DRL) [9]–[11], along with non-orthogonal multiple access
(NOMA) [12], [13], space division multiple access (SDMA),
or rate splitting multiple access (RSMA) schemes [14] are
reported for conventional ultra-reliable and low-latency com-
munication (URLLC) services. However, the existing literature
rarely contains significant substantive work exploring the
potential of the aforementioned technologies or new network
paradigms that have met the requirement for xURLLC services
up to now [1]–[3].

A. Motivations of the Present Work

RISs are recognized for their energy efficiency and envi-
ronmental adaptability [4], [5]. In contrast, UAVs are noted
for their deployment flexibility and capability to establish
direct line-of-sight (LoS) links [5], [7]. This system utilizes
the additional degrees of freedom from RISs, in conjunction
with UAVs, to optimize transmission quality among terrestrial
nodes. The integration of UAVs and RISs has the potential
to enhance data delivery in stringent wireless scenarios. The
study in [15] evaluated an integrated RIS-UAV relay system.
The approach of mounting RISs on UAVs has demonstrated
substantial performance improvements in NOMA and orthog-
onal frequency division multiple access (OFDMA) communi-
cation systems [16].

In the literature, several works studied the efficiency of the
UAV-mounted RIS systems [17]–[20]. Zhai et al. introduced an
innovative UAV-mounted RIS (U-RIS) system that combines
the benefits of UAVs and RIS for enhanced task offloading,
where user signals are efficiently reflected towards a ground
mobile edge computing server via the U-RIS [17]. The study in
[18] further employed UAV-mounted RIS technology to reduce
hardware requirements and signal processing complexities on
the UAV, thereby elevating the network’s energy efficiency
and coverage. Xiao et al. [19] investigated a solar-powered
UAV-mounted RIS system, aiming to broaden network access
by optimizing beamforming, UAV trajectory, and address-
ing system constraints. Meanwhile, the research presented in
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[20] utilized UAV-mounted RIS to maximize the data rate
across multiple users and reduce the UAV’s flight energy
consumption, employing a trained online learning strategy.
Collectively, these works highlight the adaptable utility of
UAV-mounted RIS in revolutionizing network performance,
energy efficiency, and user connectivity in modern wireless
communication systems.

It is worth mentioning that our extensive literature study
indicates that RISs predominantly operate in a static mode,
such as passive, active, or simultaneously transmitting and
reflecting (STAR) [21]. This time-invariant mode of operation
of RISs might not be effective for supporting xURLLC ser-
vices, especially in dynamically varying channel conditions
and when the channel state information (CSI) is not fully
available. Consequently, we are motivated to re-evaluate the
operational principles of RISs, allowing each programmable
element (PE) (i.e., made by meta-materials [4]) to operate
independently in a designated mode.

The independent trajectory control of UAV-assisted RISs
and optimal resource distribution to the base station, UAVs,
and RISs become imperative in handling the dynamic nature
of xURLLC networks. Given their inherent characteristics,
DRL algorithms represent a promising solution for embedded
optimization and real-time decision-making in wireless con-
texts [22]–[24]. Utilizing multi-agent-based DRL can enhance
the service to latency-sensitive users (LSUs) amidst diverse
network constraints [7]. Within xURLLC service domains,
adopting a multi-agent DRL (MA-DRL) paradigm for oversee-
ing UAV-assisted RIS systems can substantially optimize UAV
trajectories and positioning strategies. This ensures robust
communication link establishment between the base station
and LSUs while minimizing latency and other potential bot-
tlenecks [25].

The cooperative multi-agent reinforcement learning
(MARL) problem, handled by [26] through the innovative
value-decomposition network (VDN), aimed to resolve the
“lazy agent” issue and partial observability challenges by
proposing a single joint reward signal. Advancing from VDN,
the work in [27] introduced QMIX, an MA-DRL strategy
that outperforms by allowing a richer representation of joint
action-value functions. This enhancement is primarily due
to a monotonicity constraint, enabling a more sophisticated
handling of agent interactions [27]. While both VDN and
QMIX focus on discrete action spaces and promote centralized
training with an aim on decentralized execution, the work in
[28] extended the MARL scope to continuous actions with the
multi-agent deep deterministic policy gradient (MADDPG)
algorithm. Notably, MADDPG introduced training with
policy ensembles to increase robustness and adaptability,
a feature not emphasized by VDN or QMIX. The authors
in [29] employed the MADDPG algorithm to maximize
the total data rate and simultaneously minimize the total
communication power in UAV networks. However, MADDPG
[28], being an actor-critic method that uses deterministic
policy gradient, is computationally intensive and sometimes
harder to scale to large numbers of agents. The multi-agent
proximal policy optimization (MAPPO) [30] then builds on
and refines the approaches of VDN, QMIX, and MADDPG

by utilizing proximal policy optimization to make stable
policy updates, offering an effective solution for dynamic
and unpredictable environments. The authors in [31] used
MAPPO to activate base stations in a heterogeneous network
dynamically, optimizing energy efficiency and service quality
by adapting to real-time environmental conditions.

B. Contributions of this Work

This study proposes a cognizable RIS (CRIS) model in
which individual RIS element (i.e., PE) can change their
operating modes to provide time-variant, ultra-reliable QoS
requirements to assist the xURLLC users. We assume that
each CRIS module has 𝑁 independent PEs. The wireless signal
incident on the 𝑛-th PE of a CRIS is denoted by 𝑠𝑛, where
𝑛 ∈ N ≜ {1, 2, . . . , 𝑛, . . . 𝑁}. The 𝑛-th PE transmits and
reflects the following signals:

t𝑛 = 𝜙
t
𝑛𝑠𝑛, and r𝑛 = 𝜙

r
𝑛𝑠𝑛, (1)

where, 𝜙𝑑𝑛 =

(√︁
𝜂𝑑𝑛𝑒

𝑗 𝜃𝑑𝑛

)
, ∀𝑑 ∈ D ≜ {r,t}. Here, 𝑑 = r

represents the reflection, and 𝑑 = t represents the trans-
mission regions of CRIS. 𝜂t𝑛 ∈ [0 𝜂max

𝑛 ], 𝜃t𝑛 ∈ [0 2𝜋] and
𝜂r𝑛 ∈ [0 𝜂max

𝑛 ], 𝜃r𝑛 ∈ [0 2𝜋] denote the amplitude and phase
shift response of the 𝑛-th PE’s transmission and reflection
coefficients, respectively. From Fig. 1, the types of operating
modes of each PE in a CRIS include a) passively transmitting
(PT), b) actively transmitting (AT), c) passively reflecting
(PR), d) passively simultaneously transmitting and reflecting
(PSTAR), e) passive reflecting actively transmitting (PRAT),
f) actively reflecting (AR), g) actively reflecting passively
transmitting (ARPT), and h) active STAR (ASTAR). At a
specific time instant (𝑡), the individual PE in CRIS can operate
in any one mode by controlling 𝜂t𝑛

max and 𝜂r𝑛
max as shown in

Table I. We deploy these CRIS units using independent UAVs
in a cell area to serve xURLLC users.

TABLE I: CRIS’s element parameters in different operating modes

Mode 𝜂r
max

𝑛 𝜂t
max

𝑛 Mode 𝜂r
max

𝑛 𝜂t
max

𝑛

a) PT 0 1 e) PRAT 1 > 1
b) AT 0 > 1 f) AR > 1 0
c) PR 1 0 g) ARPT > 1 1
d) PSTAR 1 1 h) ASTAR > 1 > 1

With each PE of the RIS having multiple modes of op-
eration, the configuration space is vast. Finding the optimal
configuration becomes imperative to harness the full potential
of RIS and ensure seamless communication. The problem of
determining the best configuration for a given RIS scenario
can be viewed as a combinatorial optimization problem. Given
𝑛 programmable elements and each element with 8 possible
modes, the total number of combinations is 8𝑛. The problem
of finding the best configuration for a CRIS with a vast
configuration space is likely NP-hard. As 𝑛 grows, even a
modest increase in the number of elements can result in expo-
nential growth in potential configurations, making traditional
optimization techniques computationally intensive or even
infeasible. Using traditional methods such as an exhaustive
search like Brute-force, heuristic search techniques like parti-
cle swarm optimization (PSO) and genetic algorithms (GA),
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Fig. 1: Each PE of the CRIS module can function independently in any one mode at time instant 𝑡.

or gradient-based optimization are not entirely convincing to
address the present RIS configuration problem [32], [33].
PSOs and GAs, or gradient-based optimizations, are faster
than Brute-force policy; however, they cannot make adaptive
decisions in a time-variant environment, which is crucial given
the dynamic nature of wireless communication scenarios. [32],
[33]. The promising DRL emerges as a compelling alternative
as DRL can handle large state and action spaces and continu-
ously learns and adapts its strategies based on interactions with
the environment [22], [23], [34], [35]. DRL strikes an effective
balance between exploration and exploitation, ensuring that
the CRIS configuration does not stagnate at local optima but
consistently seeks improved solutions. With its compatibility
with modern computational hardware, DRL further strengthens
its position as a robust and scalable solution for the complex
challenge of RIS optimization [11].

In a time-variant wireless channel, we propose an MA-
DRL algorithm scheme to adapt the dynamic operating mode,
UAVs’ position, and optimal resource allocation to maximize
the sum throughput of all xURLLC users. Each UAV-mounted
CRIS module employs a dedicated agent for determining all
the PEs’ operating configurations, optimizing the decision
parameters and its UAV’s positions. Using common control
channels, all spatially distributed agents keep updating the BS
with various information, such as current position, moving
direction, and channel state estimation.

Our proposed MA-DRL framework significantly advances
the MARL by incorporating a sophisticated multi-dimensional
action and state space, explicitly capturing both spatial de-
cisions and temporal dynamics to adjust UAV and CRIS
parameters precisely. It includes a carefully designed reward
function that balances throughput maximization, latency mini-
mization, and power efficiency, facilitating sophisticated policy
learning appropriate to the complexities of UAV-mounted
CRIS communications. Unlike existing models like VDN [26],
QMIX [27], MADDPG [28], [29], and MAPPO [30], [31],
our framework emphasizes adaptive and dynamic interaction
with the environment and integrates an advanced coordinated
multi-agent strategy. Whereas in VDN and QMIX, the focus is
predominantly on joint action-value functions without detail-
ing the operational collaboration between different types of
agents. Our architecture employs a multi-agent coordination
mechanism that enables cooperative interactions among UAV-
CRIS units and the base station, enhancing overall system per-
formance through cooperative decision-making. This approach
enables effective collaboration among agents while optimizing
system-wide objectives, significantly improving over previ-
ous methods. Our proposed MA-DRL framework enhances

the capabilities of MAPPO [30], [31] by incorporating both
Kullback-Leibler (KL) divergence [36] and generalized advan-
tage estimation (GAE). Using KL divergence in our framework
ensures a more controlled and stable policy update mechanism,
effectively managing the exploration-exploitation trade-off and
preventing drastic policy deviations. The integration of GAE
further refines this approach by providing a more accurate
advantage estimation, which optimizes the policy gradient
updates for a balanced and effective learning progression.

Although our proposed DRL technique offers an efficient
and stable policy optimization algorithm, after going through
extensive analysis, we find that it struggles to capture long-
term temporal dependencies. To avoid such cases, the agent
must rely on past observations/historical patterns or actions
to make optimal decisions, which is challenging for stan-
dard feed-forward on-policy-based neural networks used in
our DRL algorithm. Therefore, our proposed DRL algorithm
integrates the long-short-term memory technique (LSTM) [37]
as a key component. The research reported in [4], [38], [39],
and [40] mainly explores the use of LSTM networks in DRL
for tasks like making predictions [4], [38] or to help manage
network resources within certain frameworks [39]. These
studies showed how LSTMs can understand patterns over time,
but they often focus on improving one part of a system or
making better forecasts. Unlike these approaches, our work
takes a significant step forward by applying LSTMs to make
decisions in complex and dynamic environments, particularly
for networks using UAV-mounted CRIS units and aiming for
extremely reliable and fast communications, as might be seen
in upcoming 6G technologies. In the proposed MA-DRL, the
agent learns to take actions in the time-variant environment
to maximize a reward signal. LSTM networks are used to
model sequential state representations, which help capture
long-term dependencies in the environment. This modification
enhances the agent’s ability to handle problems with complex
time dependencies and partial observability. The simulation
results find the efficacy of the proposed distributed multi-agent
LSTM-DRL-based UAV-mounted CRIS over the conventional
DRL approaches regarding convergence speed and data rate
to the xURLLC users.
In brief, the main contributions of this study are:

1) For the very first time in the literature, we present a
novel RIS model, CRIS, in which individual RIS elements
(i.e., PE) can dynamically adjust their operating modes
to ensure ultra-reliable QoS for xURLLC users. This
flexibility offers a richer configuration space, allowing
fine-tuned optimization to meet specific communication
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requirements. Moreover, we propose to deploy CRIS units
using UAVs to serve xURLLC users. A combination of
UAV mobility and CRIS adaptability can greatly enhance
wireless network performance, particularly in challenging
contexts.

2) Recognizing the complexity and dynamic nature of the
problem, we propose an MA-DRL algorithm. Each UAV-
mounted CRIS has a dedicated agent responsible for
determining the configuration of its PEs, optimizing
decision parameters, and adjusting UAV positions. This
decentralized approach allows for more scalable and
efficient network optimization. We incorporate LSTMs
into our DRL framework to better capture long-term
dependencies in the environment with complex temporal
dynamics.

3) Our comprehensive simulations confirm that our multi-
agent LSTM-based DRL outperforms traditional DRL
techniques in rapid convergence, spectrum efficiency, and
higher data rate in stringent reliability constraints for
xURLLC users. Additionally, the UAV-mounted CRIS
design demonstrates a notable advantage of exploring the
scope of RSMA over SDMA and NOMA transmission
schemes for xURLLC users.

The rest of the paper is organized as follows: Section II
provides a detailed system model description. Section III dis-
cusses the problem formulation, while Section IV introduces
a multi-agent LSTM-based DRL algorithm that addresses
the present problem. Section V presents extensive numerical
results and analysis demonstrating our proposed model’s effi-
cacy. Finally, we conclude our work in Section VI.

Notational conventions: In this work, vectors are denoted by
bold lowercase letters, e.g., a, while matrices are represented
by bold uppercase letters, e.g., A. Scalars and sets are signified
by 𝑎 and A, respectively. The symbols (·)T and (·)ℎ represent
the transpose and conjugate transpose operations, respectively.
The absolute value is given by | · |, and | | · | | indicates the
Frobenius norm. The Gaussian distribution with mean 𝜇 and
variance 𝜎 is represented as CN(𝜇, 𝜎). Lastly, 𝑑𝑖𝑎𝑔(a) refers
to a diagonal matrix with vector a as its diagonal elements.

U
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BS to 
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Fig. 2: UAV-CRIS-enabled MIMO communication for xURLLC.

II. SYSTEM MODEL

Fig. 2 depicts the proposed system model that consists of
a base station (BS) with M ≜ {1, . . . , 𝑚, . . . , 𝑀} antennas,

K ≜ {1, . . . , 𝑘, . . . , 𝐾} number of xURLLC users with L ≜
{1, . . . , 𝑙, . . . , 𝐿} antennas each, and Q ≜ {1, . . . , 𝑞, . . . , 𝑄}
number of UAV-mounted CRIS units where each CRIS con-
tains N ≜ {1, . . . , 𝑛, . . . , 𝑁} number of PEs. The reflection
and transmission coefficient matrix of the 𝑞-th CRIS is given
by 𝚽𝑑

𝑞 = 𝑑𝑖𝑎𝑔{𝜙𝑑(𝑞,1) , . . . , 𝜙
𝑑
(𝑞,𝑁 ) }, ∀𝑑 ∈ D ≜ {r,t}.

𝜙𝑑(𝑞,𝑛) =

(√︃
𝜂𝑑(𝑞,𝑛)𝑒

𝑗 𝜃𝑑(𝑞,𝑛)
)

, 𝜂𝑡(𝑞,𝑛) ∈ [0 𝜂t
max

(𝑞,𝑛) ], 𝜃
𝑡
(𝑞,𝑛) ∈

[0 2𝜋] and 𝜂r(𝑞,𝑛) ∈ [0 𝜂r
max

(𝑞,𝑛) ], 𝜃
r
(𝑞,𝑛) ∈ [0 2𝜋] denote the

amplitude and phase shift response of the 𝑛-th PE’s trans-
mission and reflection coefficients of 𝑞-th CRIS, respectively.
According to the law of conservation of energy, the sum
of the energies of the reflected and transmitted signals are
constrained by the power amplifier, i.e., 𝜙t(𝑞,𝑛) + 𝜙

r
(𝑞,𝑛) ⩽

𝜂max
(𝑞,𝑛) ,∀𝑛 ∈ N , 𝑞 ∈ Q. We assume that xURLLC users and

UAV-CRISs are spatially distributed geographically. Depend-
ing on the position of the users, each user is located either in
the reflection or transmission space of a UAV-mounted CRIS
unit. Let U(𝑘, 𝑞) = {r,t} denote the region of 𝑘-th user w.r.t.
𝑞-th CRIS, i.e., U(𝑘, 𝑞) = r represents that 𝑘-th user is in the
reflection region of the CRIS, whereas U(𝑘, 𝑞) = t represents
that 𝑘-th user is in the transmission region of the CRIS.

A. RSMA-Based Communication Strategy for xURLLC Users

In this work, under the RSMA-based transmission scheme
[41], each xURLLC user receives 𝐿𝑘 messages such that
𝐿𝑘 = min{𝑀, 𝐿},∀𝑘 ∈ K. The collection of messages for the
𝑘-th user is defined as wk = {𝑊 𝑘

1 , . . . ,𝑊
𝑘
𝐿𝑘
}. The 𝑖-th message

designated for the 𝑘-th user is divided into two components:
the common and private segments, denoted as 𝑊c,𝑘

𝑖
and 𝑊p,𝑘

𝑖
,

respectively. The collection of common and private messages
of the 𝑘-th user are denoted as w𝑐,𝑘 = {𝑊c,𝑘

1 , . . . ,𝑊
c,𝑘
𝐿𝑘
} and

wp,𝑘 = {𝑊p,𝑘
1 , . . . ,𝑊

p,𝑘
𝐿𝑘
}, respectively. The common messages

of all the users are combined into 𝐿𝑐 ∈ {1, . . . ,min(𝑀, 𝐿)}
messages denoted by w𝑐 ∈ C𝐿𝑐×1, and encoded together into

a common stream vector of s𝑐 =

[
𝑠𝑐1 , . . . , 𝑠

𝑐
𝐿𝑐

]T
. This s𝑐 is

decoded by all xURLLC users. The private parts of the 𝑘-
th user are independently encoded in a private stream vector

s𝑘 =

[
𝑠

p,𝑘
1 , . . . , 𝑠

p,𝑘
𝐿𝑘

]T
decoded by the 𝑘-th user. Therefore,

the general vector of the data stream to be transmitted is
expressed as s = [sc, s1, . . . , s𝐾 ]T that satisfies E

{
ssℎ

}
= I.

Linear precoders P = [P𝑐,P1, . . . ,P𝐾 ] precode data streams,
where P𝑐 ∈ C𝑀×𝐿𝑐 is the precoder for the common stream
vector and P𝑘 ∈ C𝑀×𝐿𝑘 is the precoder for the private stream
vector of the user 𝑘-th user.

B. Received Signal Modeling for xURLLC User

The signal transmitted by the BS at a time instant 𝑡 is:

x(𝑡) = Pc (𝑡)sc (𝑡) +
∑︁𝐾

𝑘=1
P𝑘 (𝑡)s𝑘 (𝑡). (2)

The 𝑘-th user, ∀𝑘 ∈ K of xURLLC, receives the transmitted
signal x(𝑡) from the BS and 𝑅 the number of UAV-mounted
CRIS units. The signal received by the 𝑘-th user is given by

y𝑘 (𝑡) = A𝑘 (𝑡)x(𝑡) + b𝑘 (𝑡) + z1,𝑘 (𝑡), (3)
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where,

A𝑘 (𝑡) =h𝑘 (𝑡) +
∑︁𝑄

𝑞=1
G(U(𝑘,𝑞) ,𝑞) (𝑡 )
𝑘

(𝑡)𝚽U(𝑘,𝑞) (𝑡 )
𝑞 (𝑡)F𝑞 (𝑡),

(4)

b𝑘 (𝑡) =
∑︁𝑄

𝑞=1
G(U(𝑘,𝑞) ,𝑞) (𝑡 )
𝑘

(𝑡)𝚽U(𝑘,𝑞) (𝑡 )
𝑞 (𝑡)z2,𝑞 (𝑡). (5)

Here z1,𝑘 ∼ CN
(
0, 𝜎2

1,𝑘I𝐿
)

and z2,𝑞 ∼ CN
(
0, 𝜎2

2,𝑞I𝑁
)

are the additive white Gaussian noise (AWGN) vectors at
xURLLC user and CRIS, respectively. Furthermore, h𝑘 ∈
C𝐿×𝑀 , F𝑞 ∈ C𝑁×𝑀 and G(U(𝑘,𝑞) ,𝑞) (𝑡 )

𝑘
∈ C𝐿×𝑁 represent the

channels from BS to 𝑘-th xURLLC user, BS to 𝑞-th CRIS and
𝑞-th CRIS to 𝑘-th xURLLC user, which is in U(𝑘, 𝑞) region
of CRIS. The achievable data rate for MIMO communication
is derived using [42]. The common rate of the 𝑘-th user is
given by

𝑅𝑐𝑘 (𝑡) = log2 ( |I + A𝑘 (𝑡)P𝑐 (𝑡)Aℎ𝑘 (𝑡)P
ℎ
𝑐 (𝑡)T−1

𝑘 (𝑡) |), (6)

where T𝑘 (𝑡) =
∑𝐾
𝑖=1 A𝑘 (𝑡) P𝑖 (𝑡) Pℎ

𝑖
(𝑡) Aℎ

𝑘
(𝑡) + b𝑘 (𝑡) Bℎ

𝑘
(𝑡)

𝜎2
2,𝑘 (𝑡) + 𝜎

2
1,𝑘 (𝑡)I𝐿 . The private rate of the 𝑘-th user is

𝑅
𝑝

𝑘
(𝑡) = log2 ( |I + A𝑘 (𝑡)P𝑘 (𝑡)Pℎ𝑘 (𝑡)A

ℎ
𝑘 (𝑡)J

−1
𝑘 (𝑡) |), (7)

where J𝑘 (𝑡) =
∑𝐾
𝑖=1,𝑖≠𝑘 A𝑘 (𝑡) P𝑖 (𝑡)Pℎ𝑖 (𝑡) Aℎ

𝑘
(𝑡) + b𝑘 (𝑡) Bℎ

𝑘
(𝑡)

𝜎2
2,𝑘 (𝑡) + 𝜎

2
1,𝑘 (𝑡)I𝐿 . The power budget at the 𝑞-th CRIS is

𝑃CRIS
𝑞 =

(

𝚽r
𝑞 (𝑡)F𝑞 (𝑡)P(𝑡)



2
2

)
+ 𝜎2

2,𝑞

(


(𝚽r
𝑞 (𝑡)

)


2

2

)
+(

𝚽t

𝑞 (𝑡)F𝑞 (𝑡)P(𝑡)


2

2

)
+ 𝜎2

2,𝑞

(


(𝚽t
𝑞 (𝑡)

)


2

2

)
,∀𝑞 ∈ Q. (8)

In wireless communication systems, when the 𝑙𝑘 is finite
block length (FBL) and the error probability 𝜉𝑘 is non-zero,
there is a fundamental limit on the achievable data rates 𝑅𝑐

𝑘

and 𝑅
𝑝

𝑘
[41]. This is because, as the block length decreases

or the error probability increases, the system is more prone to
errors, which can limit the information rate. To quantify this
loss, the achievable rate for a given FBL 𝑙𝑐

𝑘
(𝑡) and 𝑙

𝑝

𝑘
(𝑡) in

common and private data rate in RSMA along with decoding
error probability 𝜉𝑘 is expressed as [43]

𝑅𝑐
𝑘
(𝑡) = 𝑅𝑐𝑘 (𝑡) −

√︄
𝑉𝑐
𝑘
(𝑡)

𝑙𝑐
𝑘
(𝑡)

Q−1 (𝜉𝑘)
log𝑒 2

,∀𝑘, (9)

𝑅
𝑝

𝑘
(𝑡) = 𝑅𝑝

𝑘
(𝑡) −

√︄
𝑉
𝑝

𝑘
(𝑡)

𝑙
𝑝

𝑘
(𝑡)

Q−1 (𝜉𝑘)
log𝑒 2

,∀𝑘, (10)

where 𝑉𝑐
𝑘
(𝑡) = 1−(1−Γ𝑐

𝑘
(𝑡)) and 𝑉 𝑝

𝑘
(𝑡) = 1−(1−Γ𝑝

𝑘
(𝑡)) are the

channel dispersion values for the common and private chan-
nels, respectively, where Γ𝑐

𝑘
(𝑡) = | |A𝑘 (𝑡)P𝑐 (𝑡) | |2𝐹/| |T𝑘 (𝑡) | |

2
𝐹

and Γ
𝑝

𝑘
(𝑡) = | |A𝑘 (𝑡)P𝑘 (𝑡) | |2𝐹/| |J𝑘 (𝑡) | |

2
𝐹

, in which | |A| |
𝐹

de-
notes the Frobenius norm of A. The inverse error func-
tion is represented as 𝑄−1 (𝑥) ≜ 1√

2𝜋

∫ ∞
𝑥

exp
(
−𝑡2
2

)
𝑑𝑡. To

ensure the successful decoding of the common message at
each user, the total common transmission rate is defined as
𝑅𝑐 (𝑡) ≜

∑
𝑘∈K 𝑐𝑘 (𝑡), to satisfy the minimum required data

rate constraint such that 𝑅𝑐 (𝑡) ⩽ min(𝑅𝑐
𝑘
(𝑡)). The symbol

𝑐𝑘 (𝑡) represents the portion of the common rate allocated in
time-instant 𝑡 to the 𝑘-th user.

C. Trajectories of UAV-mounted CRIS Units

In this scenario, we consider a three-dimensional (3D)
surface for accommodating 𝐾 stationary xURLLC users. 𝑄
non-stationary UAV-mounted CRIS units serve these users.
The mobility of independent users is beyond our control,
but we can control the placement of UAVs to meet the
service requirements of xURLLC users. Consequently, finding
the optimal locations of UAVs that enable users’ mobility
freedom is paramount within the current system model. Let
the 𝑞-th UAV-mounted CRIS be located at the 3D coordinate
(X𝑞𝑡 ,Y

𝑞
𝑡 ,Z

𝑞
𝑡 ) during time instant 𝑡, exhibiting a uniform ve-

locity of 𝑉𝑞𝑡 ∈ U ∼
[
0, 𝑣𝑞max

]
. Similarly, at time 𝑡, the 𝑘-th user

is at (X𝑘𝑡 ,Y𝑘𝑡 ,Z𝑘𝑡 ). Here, we assume that the orientation of the
RIS is fixed, i.e., all the RISs are oriented in the xz plane.
Therefore, the region at which the 𝑘-th user lies w.r.t the 𝑞-
th UAV-mounted CRIS can be decided using the following
condition. When Y𝑘𝑡 ⩽ Y𝑞𝑡 , the 𝑘-th user lies in the reflection
region of the 𝑞-th UAV-mounted CRIS, otherwise the 𝑘-th user
lies in the transmission region of 𝑞-th UAV-mounted CRIS.

𝑑 =

{
r, if Y𝑘𝑡 ⩽ Y𝑞𝑡
t, otherwise.

(11)

However, in practical scenarios, a single UAV-CRIS unit
cannot simultaneously serve all the xURLLC users at time 𝑡.
We assume that the present BS is responsible for serving any
xURLLC user in 4

3𝜋(Rbs)
3 unit of spherical volume, where

Rbs is the radius of the sphere. To enable the 𝑞-th UAV-CRIS-
assisted service provision for the 𝑘-th user, that user must fall
within the transmission coverage radius (Rq) of the 𝑞-th UAV-
CRIS unit. The distance 𝐷𝑘𝑞 between the 𝑞-th UAV and 𝑘-th
xURLLC user at time instant 𝑡 in 3D space is calculated using
the Euclidean distance as

𝐷𝑘𝑞 (𝑡) =
√︃
(X𝑞𝑡 − X𝑘𝑡 )2 + (Y

𝑞
𝑡 − Y𝑘𝑡 )2 + (Z

𝑞
𝑡 − Z𝑘𝑡 )2. (12)

D. Channel Modeling in the Presence of Imperfect CSI

Due to the mobility of the UAVs, all the communication
links related to the UAVs suffer from a serious Doppler spread
effect. The Doppler frequency for the 𝑞-th UAV is 𝑓𝑞 (𝑡) =
𝑣𝑞 (𝑡) cos(𝜚𝑞 (𝑡)) cos(𝜑𝑞 (𝑡))/𝜆(𝑡), where 𝑣𝑞 (𝑡) is the speed of
the 𝑞-th UAV in meters/second (m/s), 𝜆(𝑡) is the wavelength
of the signal, 𝜚𝑞 (𝑡) ∈ [0, 𝜋/2] and 𝜑𝑞 (𝑡) ∈ [0, 2𝜋) are the
elevation and azimuth angles of arrival (AoAs) at the 𝑞-th
UAV, respectively. Further, we assume the BS maintains LoS
with UAVs. Hence, all the above channels follow the Rician
fading distribution [42] with the Doppler effect. For example,
the channels from the BS to the 𝑞-th UAV-CRIS are modeled
as

F𝑞 (𝑡) = 𝑒 𝑗2𝜋 𝑓𝑞 (𝑡−1)𝑇𝛼

√︄
𝛽F𝑞

𝛽F𝑞
+ 1

FLoS
𝑞 (𝑡) +

√︄
1

𝛽F𝑞
+ 1

FNLoS
𝑞 (𝑡),

(13)
where 𝛽F𝑞

is the Rician factor, and 𝛼 is the propaga-
tion constant. FLoS

𝑞 and FNLoS
𝑞 are the LoS (deterministic)

and non line-of-sight NLoS (Rayleigh) components. The
deterministic LoS component FLoS

𝑞 is modeled as FLoS
𝑞 =
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a𝑞
𝑁

(
𝜗𝐴𝑜𝐴𝑞 (𝑡)

)
(a𝑞
𝑀
)ℎ

(
𝜗𝐴𝑜𝐷𝑞 (𝑡)

)
, where,

a𝑞
𝑁

(
𝜗𝐴𝑜𝐴𝑞 (𝑡)

)
=

[
1, 𝑒 𝑗

2𝜋𝜁
𝜆

sin 𝜗𝐴𝑜𝐴
𝑞 (𝑡 ) ,

. . . , 𝑒 𝑗
2𝜋𝜁
𝜆
(𝑁−1) sin 𝜗𝐴𝑜𝐴

𝑞 (𝑡 )
]T
, (14)

a𝑞
𝑀

(
𝜗𝐴𝑜𝐷𝑞 (𝑡)

)
=

[
1, 𝑒 𝑗

2𝜋𝜁
𝜆

sin 𝜗𝐴𝑜𝐷
𝑞 (𝑡 ) ,

. . . , 𝑒 𝑗
2𝜋𝜁
𝜆
(𝑀−1) sin 𝜗𝐴𝑜𝐷

𝑞 (𝑡 )
]T
, (15)

where 𝜁 is defined as antenna separation distance. 𝜆 is the
wavelength, and we set 𝜁/𝜆 =1/2. The angle of departure
𝜗𝐴𝑜𝐷𝑞 (𝑡) and the angle of arrival 𝜗𝐴𝑜𝐴𝑞 (𝑡) are assumed to be
randomly distributed within [0, 2𝜋).

The channels from the 𝑞-th UAV-CRIS to the 𝑘-th user is
modeled as:

G(𝑑,𝑞)
𝑘
(𝑡) = 𝑒 𝑗2𝜋 𝑓𝑞 (𝑡−1)𝑇𝛼

√√√ 𝛽G(𝑑,𝑞)
𝑘

𝛽G(𝑑,𝑞)
𝑘

+ 1

(
G(𝑑,𝑞)
𝑘

)LoS
+√︄

1
𝛽G(𝑑,𝑞)

𝑘

+ 1

(
G(𝑑,𝑞)
𝑘

)NLoS
(𝑡), (16)

where 𝛽G(𝑑,𝑞)
𝑘

is the Rician factor, 𝑓𝑞 denotes the car-

rier frequency, 𝛼 is the propagation constant.
(
G(𝑑,𝑞)
𝑘

)LoS

and
(
G(𝑑,𝑞)
𝑘

)NLoS
are the LoS (deterministic) and NLoS

(Rayleigh) components. The deterministic LoS component(
G(𝑑,𝑞)
𝑘

)LoS
is modeled as

(
G(𝑑,𝑞)
𝑘

)LoS
= a𝑘

𝐿

(
𝜗𝐴𝑜𝐴(𝑘,𝑞) (𝑡)

)
(a(𝑞,𝑘 )
𝑁
)ℎ

(
𝜗𝐴𝑜𝐷(𝑞,𝑘 ) (𝑡)

)
, where a𝑁

(
𝜗𝐴𝑜𝐴(𝑘,𝑞) (𝑡)

)
is defined as:

a(𝑘,𝑞)
𝐿

(
𝜗𝐴𝑜𝐴(𝑘,𝑞) (𝑡)

)
=

[
1, 𝑒 𝑗

2𝜋𝜁
𝜆

sin 𝜗𝐴𝑜𝐴
(𝑘,𝑞) (𝑡 ) ,

. . . , 𝑒
𝑗

2𝜋𝜁
𝜆
(𝐿−1) sin 𝜗𝐴𝑜𝐴

(𝑘,𝑞) (𝑡 )
]T
, (17)

a(𝑞,𝑘 )
𝑁

(
𝜗𝐴𝑜𝐷(𝑞,𝑘 ) (𝑡)

)
=

[
1, 𝑒 𝑗

2𝜋𝜁
𝜆

sin 𝜗𝐴𝑜𝐷
(𝑞,𝑘) (𝑡 ) ,

. . . , 𝑒
𝑗

2𝜋𝜁
𝜆
(𝑁−1) sin 𝜗𝐴𝑜𝐷

(𝑞,𝑘) (𝑡 )
]T
. (18)

The angle of departure 𝜗𝐴𝑜𝐷(𝑞,𝑘 ) (𝑡) and angle of arrival 𝜗𝐴𝑜𝐴(𝑘,𝑞) (𝑡)
are assumed to be randomly distributed within [0, 2𝜋].

The channel from the BS to the 𝑘-th user is modeled as
Rayleigh distribution. Further to this, the large-scale path-
loss (in dB) is 𝑃𝐿𝑖 = 𝑃𝐿0 (𝑑𝑖𝑠𝑡𝑖/𝑑𝑖𝑠𝑡0)−𝛼𝑖 , where 𝑃𝐿0 in dB
denotes the path-loss at the reference distance of 𝑑𝑖𝑠𝑡0, and 𝛼𝑖
where ∀𝑖 ∈ {h𝑘 ,F𝑞 ,G(𝑑,𝑞)𝑘

}, represents the path-loss exponent
between the BS to 𝑘-th xURLLC user, BS to 𝑞-th CRIS and
𝑞-th CRIS to 𝑘-th xURLLC user, respectively. Moreover, 𝑑𝑖𝑠𝑡𝑖
denotes the distance of the 𝑖-th link.

In practice, due to several unwanted obstacles, such as
hardware impairments and fading in the channel, the CSI may
suffer an estimation error. For example, the CSI from the BS
to the 𝑘-th user is expressed as h𝑘 (𝑡) = h̃𝑘 (𝑡) + Δh𝑘 (𝑡) and
the CSI from the BS to the 𝑞-th UAV-CRIS is expressed as
F𝑞 (𝑡) = F̃𝑞 (𝑡) + ΔF𝑞 (𝑡) and 𝑞-th UAV-CRIS to 𝑘-th user is
expressed as G(𝑑,𝑞)

𝑘
(𝑡) = G̃(𝑑,𝑞)

𝑘
(𝑡)+ΔG(𝑑,𝑞)

𝑘
(𝑡), where h̃𝑘 ,F̃𝑞 ,

G̃(𝑑,𝑞)
𝑘

are estimated CSI and Δh𝑘 (𝑡), ΔF𝑞 (𝑡) and ΔG(𝑑,𝑞)
𝑘
(𝑡),

indicate error matrix. In this work, these imperfections are

modeled as the norm-bounded error model [44] given by

∥Δh𝑘 ∥2 ⩽ 𝜚𝑘 ,


ΔF𝑞




2 ⩽ 𝜀𝑞 ,




ΔG(𝑑,𝑞)
𝑘





2
⩽ 𝜑

𝑞

𝑘
, (19)

where 𝜚𝑑 and 𝜀𝑢 denote the downlink and uplink channel’s
error bound, respectively. Considering these uncertainties, the
imperfect channels lie in the bounded region (B) defined as

h𝑘 (𝑡) ∈ B1 =
{
h̃𝑘 (𝑡) + Δh𝑘 : ∥Δh𝑘 ∥2 ⩽ 𝜚𝑘

}
, (20)

F𝑞 (𝑡) ∈ B2 =
{
F̃𝑞 (𝑡) + ΔF𝑞 :



ΔF𝑞




2 ⩽ 𝜀𝑞
}
, (21)

G(𝑑,𝑞)
𝑘
(𝑡) ∈ B3 =

{
G̃(𝑑,𝑞)
𝑘
(𝑡) + ΔG(𝑑,𝑞)

𝑘
:


ΔG(𝑑,𝑞)
𝑘





2
⩽ 𝜑

𝑞

𝑘

}
, (22)

III. PROBLEM FORMULATION

This section focuses on mathematical problem formulation
for RSMA-based sum rate maximization of the xRULLC
users under various constraints. Latency and reliability in the
xURLLC play a crucial role. In this work, we focus on the
end-to-end (E2E) latency, which is approximately proportional
to the block length for point-to-point (P2P) communication
[45]. The sum-rate maximization for all the xURLLC users
under the assistance of URV-aided CRIS units is formulated
as follows:

max
a(𝑡 )

𝑓 (a(𝑡)) =
[∑︁

𝑘∈K
(𝑐𝑘 (𝑡) + 𝑅𝑝𝑘 (𝑡))

]
, (23)

s.t. (𝐶.1) :
∑︁

𝑘∈K
|P𝑘 (𝑡) |2 + |P𝑐 (𝑡) |2 ⩽ 𝑝bs

𝑚𝑎𝑥
(𝑡),

(𝐶.2) :
∑︁

𝑖∈K
𝑐𝑖 (𝑡)⩽ 𝑅𝑐 (𝑡),∀𝑖 ∈ K,

(𝐶.3) : 𝑐𝑘 (𝑡) ⩾ 0, ∀𝑘 ∈ K,
(𝐶.4) : 𝑐𝑘 (𝑡) + 𝑅𝑝𝑘 (𝑡) ⩾ 𝑅min

𝑘 (𝑡),∀𝑘 ∈ K,
(𝐶.5) : 𝑃CRIS

𝑞 (𝑡) ⩽ 𝑝RS
𝑞,𝑚𝑎𝑥
(𝑡),∀𝑞 ∈ Q,

(𝐶.6) : 𝜙t(𝑞,𝑛) + 𝜙
r
(𝑞,𝑛) ⩽ 𝜂max

(𝑞,𝑛) ,∀𝑛 ∈ N , 𝑞 ∈ Q,
(𝐶.7) : |𝜙𝑑(𝑞,𝑛) (𝑡) | ⩽ (𝜂

𝑑
(𝑞,𝑛) )

max,∀𝑛 ∈ N , 𝑞 ∈ Q, 𝑑 ∈ D,
(𝐶.8) : −(Rbs − Rq) ⩽ {X𝑞𝑡 ,Y

𝑞
𝑡 ,Z

𝑞
𝑡 } ⩽ (Rbs − Rq),

(𝐶.9) : 𝐷𝑘𝑞 (𝑡) ⩽ Rq, ∀𝑘 ∈ K, ∀𝑞 ∈ Q,
(𝐶.10) : 0 ⩽ 𝑣𝑞 (𝑡) ⩽ 𝑣max

𝑞 (𝑡), ∀𝑞 ∈ Q,
(𝐶.11) : 0 ⩽ 𝜉𝑘 (𝑡) ⩽ 𝜉max

𝑘 (𝑡), ∀𝑘 ∈ K,
(𝐶.12) : 𝑙𝑘𝑐 (𝑡) + 𝑙𝑘𝑝 (𝑡) ⩽ 𝑙max (𝑡), ∀𝑘 ∈ K,

where a(𝑡) = {P𝑐 (𝑡),P𝑘 (𝑡), 𝑙𝑘𝑐 (𝑡), 𝑙𝑘𝑝 (𝑡), 𝑃CRIS
𝑞 (𝑡), 𝜙t(𝑞,𝑛) , 𝜙

r
(𝑞,𝑛) ,

X𝑞𝑡 ,Y
𝑞
𝑡 ,Z

𝑞
𝑡 , 𝑣𝑞 (𝑡)}. In the following constraints, (𝐶.1) sets

a maximum power budget (𝑝bs
max ) at the BS. (𝐶.2) ensures

the successful decoding of the common message at each
user, while (𝐶.3) guarantees that the common rate remains
positive. Constraint (𝐶.4) enforces a minimum data rate
(𝑅𝑘,min) for each user in the network. (𝐶.5) represents the
power constraint at the CRIS, where 𝑃RS

𝑞,max denotes the
maximum power budget assigned to the 𝑞-th CRIS. (𝐶.6)
indicates the CRIS’s reflection and transmission coefficient
constraint. (𝐶.7) denotes the maximum amplification of the
signal (𝜂𝑑(𝑞,𝑛) )

max at the 𝑛-th element of the 𝑞-th CRIS.
Assuming the BS is located at the center point of a 3D
sphere, i.e., (0, 0, 0). There are strict restrictions on inter-cell
interference; each 𝑞-th UAV-CRIS, at time instant 𝑡, must
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satisfy the positional constraint (𝐶.8). These constraints
ensure that the positional coordinates must lie within the
range. For successful data transmission from the 𝑞-th UAV-
CRIS unit to the 𝑘-th xURLLC user, a distance constraint is
imposed as given in (𝐶.9). Additionally, a maximum velocity
constraint 𝑣max

𝑞 (𝑡) is enforced on the velocity 𝑣𝑞 (𝑡) of the
𝑞-th UAV-mounted CRIS unit in (𝐶.10). To ensure reliability,
a maximum decoding error probability constraint is defined
in (𝐶.11). The latency constraint is addressed in (𝐶.12),
which states that the maximum fixed blocklength should not
exceed 𝑙max. Finally, for E2E delay/latency, the point-to-point
communication is approximately proportional to the block
length [45].

A. Analysis of the Objective Function and Constraints

The present objective function is non-convex. A detailed
analysis shows that the rest of the constraints are convex
except constraint (𝐶.4). Constraint (𝐶.4) is non-convex due
to the presence of the logarithm function. Their linearity or
bound nature determines the convexity of the other constraints.
Furthermore, the formulated problem formulation includes var-
ious types of constraints, including linear inequalities (𝐶.1),
quadratic inequalities (𝐶.5), and non-linear inequalities (𝐶.9).
Additionally, there are other types of constraints, such as a
range constraint (𝐶.8). (𝐶.10), (𝐶.11), and (𝐶.12) involve
upper and lower bounds on variables, and reliability and
latency constraints, respectively.

B. Solving Complex and Time-Variant Optimization Problems

The recent literature exploits DRL techniques to overcome
the limitations of conventional optimization techniques to
solve such problems, as DRL combines the power of deep
neural networks and reinforcement learning together without
relying on explicit mathematical models [33]. DRL agents
learn optimal decision-making policies through trial and error,
using rewards as feedback to guide their learning process. This
approach allows them to adapt and find solutions in complex
and dynamic problem environments. However, training DRL
models is computationally intensive and requires substantial
time. Thus, selecting appropriate network architectures and
training procedures is crucial to ensure convergence and good
performance. To this aim, we explore many DRL-based tech-
niques to solve the present problem and propose an effective
DRL approach while comparing their relative performance.
However, before applying any DRL algorithms, we must
reformulate the present optimization problem as a Markov
decision process (MDP) problem [35].

C. MDP Formulation of the Present Problem

MDP is a mathematical framework that models decision-
making problems in a stochastic environment [23]. It is
characterized by its key attributes, including states, actions,
transition probabilities, and rewards. MDP provides a formal
structure for decision-making problems and is particularly
useful in dynamic and uncertain environments. In our opti-
mization problem, MDP formulation is employed to capture

the sequential decision-making nature of the problem. By
formulating the problem as an MDP, we can exploit the power
of DRL algorithms to learn an optimal policy. Our model
consists of two types of agents: BS-agents, which work for the
BS, and UAV-CRIS agents, which work for a UAV-mounted
CRIS unit. It is important to note that if there are 𝑄 UAV-
mounted CRIS units, then each unit will have its UAV-CRIS
agent. The attributes of the MDP formulation in our problem
are defined as follows:

• State space (S): The continuous state space S represents
the system’s configuration, including the channel
conditions and its associated relevant variables. These
variables in S = {s1, . . . , s𝑡 , . . . , s𝑇 } can take on any
real value within a specified range, allowing for a more
detailed representation of the system’s dynamics and
interactions. In the context of our MA-DRL framework,
we define the state representations for each of the
agent. The state for the BS-agent is written as: sbs

𝑡 (𝑡) =
{𝜉𝑘 (𝑡), 𝑙max (𝑡), 𝑝bs

max
(𝑡), 𝑐𝑘 (𝑡), 𝑅min

𝑘
(𝑡),F𝑞 (𝑡), h𝑘 (𝑡)}. The

state of each UAV-CRIS agent is expressed as: s𝑞𝑡 (𝑡) =
{𝐷𝑘𝑞 (𝑡), 𝜉𝑘 (𝑡), 𝑝RS

𝑞,𝑚𝑎𝑥
(𝑡), 𝜂max

(𝑞,𝑛) , 𝑐𝑘 (𝑡), 𝑅
min
𝑘
(𝑡), 𝑙𝑘 (𝑡),G𝑘 (𝑡)}.

Collectively, the aggregated system state at time instant
𝑡, incorporating both the BS-agent and all UAV-CRIS
agents, is represented as s𝑡 = {sbs

𝑡 ∪ s𝑞𝑡 },∀𝑞 ∈ Q, where
Q denotes the set of all UAV-CRIS agents, and s𝑡 ∈ S.

• Action space (A): The continuous action space A =

{a1, . . . , a𝑡 , . . . , a𝑇 } corresponds to the choices that the
decision-making agent can make. Actions include adjust-
ing UAV positions, velocities, transmission power levels,
CRIS parameters, and other system variables. At time
instant 𝑡, the actions available to the BS agent are repre-
sented by a set as abs

𝑡 = {P𝑐 (𝑡),P𝑘 (𝑡), 𝑙𝑘𝑐 (𝑡), 𝑙𝑘𝑝 (𝑡)}. These
actions are crucial for the adaptive management of the
network’s power distribution and the strategic selection of
communication links to optimize performance. Contrarily,
for each UAV-CRIS agent, the action set is defined as
a𝑞𝑡 = {𝑃CRIS

𝑞 (𝑡), 𝜙t(𝑞,𝑛) , 𝜙
r
(𝑞,𝑛) ,X

𝑞
𝑡 ,Y

𝑞
𝑡 ,Z

𝑞
𝑡 , 𝑣𝑞 (𝑡)}. There-

fore, the total collaborative action space at time instant 𝑡
is written as a𝑡 = {abs

𝑡 ∪ a𝑞𝑡 }, ∀𝑞 ∈ Q, and a𝑡 ∈ A.
• Rewards (𝑟𝑡 ): Rewards in our context are quantified by

evaluating key performance metrics such as data rates,
latency violations, and power consumption. The challenge
lies in designing a reward function that maximizes the
sum rate and considers various constraints. This function
must align with the system’s objectives, promote desired
behavior, and guide the DRL agent toward optimal UAV-
mounted CRIS communication system decision-making.
The overall system performance depends on three main
components: throughput maximization (i.e., leads to la-
tency minimization) power efficiency, and constraint sat-
isfaction. Therefore, we design the reward function as

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝑤1

∑︁
𝑘∈K

𝑓 (a(𝑡)) − 𝑤2

(
P𝑐 (𝑡) +

∑︁
𝑘∈K

P𝑘 (𝑡)+∑︁
𝑞∈Q

𝑃CRIS
𝑞

)
− 𝑤3

∑︁
𝑖
𝜆𝑖 (𝑡) △𝑖 (𝑡), (24)
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where 𝑤1, 𝑤2, and 𝑤3 are weights that determine the
relative importance of each component as mentioned
above, respectively. The symbol 𝜆𝑖 is also a weight
parameter and △𝑖 quantifies the degree of violation for
each constraint 𝑖, using mean squared error (MSE). We
consider 𝑤1 + 𝑤2 + 𝑤3 = 1.

• Transition probabilities: The transition probabilities de-
scribe the likelihood of transitioning from one state to
another when a particular action is taken. These prob-
abilities capture the system’s dynamics, including UAV
mobility and channel variations. However, in the present
work, we do not have any defined transition probabilities
due to the time-variant characteristics of the system. In
DRL, when transition probabilities are unavailable, the
agent learns policies through trial and error.

IV. PROPOSED MULTI-AGENT LSTM-BASED DRL

Our goal is to enhance the learning capabilities of our
agents. One primary challenge is to enable our agents to com-
prehend the relationship between temporal events, which is
crucial for effective action decisions. To address this, our DRL
methodology incorporates the LSTM system [46]. LSTMs
serve as an intelligent memory module for our agents, enabling
them to retain and utilize essential historical information to
make informed present-time decisions [47]. LSTMs assess
the ongoing processes at each time instance, adjusting their
memory accordingly. This memory comprises two segments:
a general information store (C𝑡 ) and a monitor for recent
events (h𝑡 ). Such a design aids agents in concentrating on
relevant past data while excluding inconsequential details. We
then merge this sophisticated memory with a policy network,
directing our agents’ action choices and a value network,
evaluating the current scenario’s desirability.

Fig. 3: Flowchart for LSTM output integration with DRL.

In the process of integrating LSTM with DRL, we outline a
sequential workflow in Fig. 3 that commences with the input of
a series of environmental states observed over time, denoted as
O = {o1, . . . , o𝑡 }. The observed state (o𝑡 = {s𝑡 , a𝑡 , s𝑡+1, r𝑡+1})
serve as inputs to the LSTM network, which systematically
processes the current observation o𝑡 with its accumulated
memory from past sequences, represented by h𝑡−1 and C𝑡−1.
Through this process, the LSTM updates its internal memory
and outputs a feature vector {h𝑡 ,C𝑡 }. This vector captures tem-
poral dependencies and contextual information extracted from
the sequence of inputs, effectively capturing the dynamism
inherent in the environmental states s𝑡 = {sbs

𝑡 ∪ s𝑞𝑡 },∀𝑞 ∈ Q.
Subsequently, this feature vector is channelled into the policy
network, 𝜋𝜃 , and the global value network, 𝑉𝜙 (i.e., critic

network). The policy network is responsible for determining
the next action a𝑡 to be taken for the individual agents. In
contrast, the value network estimates the potential returns
from the current state using Algorithm 3. The action selection
process for each agent (i.e., a𝑡 = {abs

𝑡 ∪ a𝑞𝑡 },∀𝑞 ∈ Q), denoted
as 𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 ), and the centralized state value estimation,
𝑉𝜙 (s𝑡 , h𝑡 ,C𝑡 ), are directly impacted by the LSTM’s output.

Our LSTM network consists of various units: input gate I,
forget gate F, memory cell C, and output gate O. Each of these
gates has associated weights and biases, denoted as (I,WI, bI),
(F,WF, bF), (C,WC, bC), and (O,WO, bO) [40]. At state 𝑡,
the input gate utilizes historical sequences from {o1, . . . , o𝑡−1}
(i.e., see o𝑡−1 in Fig. 4), while the output gate predicts ô𝑡 .
Let 𝜌 be the set of LSTM gates, so 𝜌 = {I,F,C,O}. The
LSTM structure using system parameters o𝑡 is mathematically
represented as [40], [47]:

I𝑡 = 𝑓 act
sig (WIo𝑡 +WIHh𝑡−1 +WICC𝑡−1 + bI), (25)

F𝑡 = 𝑓 act
sig (WFo𝑡 +WFHh𝑡−1 +WFCC𝑡−1 + bF), (26)

C𝑡 = F𝑡 ⊙ C𝑡−1 + I𝑡 ⊙ 𝑓 act
tanh (WCo𝑡

+WCHh𝑡−1 +WCCC𝑡−1 + bC), (27)
O𝑡 = 𝑓 act

sig (WOo𝑡 +WOHh𝑡−1 +WOCC𝑡−1 + bO), (28)

h𝑡 = 𝑓 act
peep (O𝑡 ⊙ 𝑓 act

tanh (WOo𝑡
+WOHh𝑡−1 +WOCC𝑡−1 + bO)), (29)

where ⊙ is element-wise multiplication, and 𝑓 act
sig , 𝑓 act

tanh, and
𝑓 act
peep are the sigmoid, tangent, and peephole activation func-

tions, respectively. The loss function for the LSTM is:

𝑓Loss =
∑︁𝑀

𝑖=1



o𝑖𝑡 − ô𝑖𝑡


2
, (30)

with ô𝑡 and o𝑡 denoting the predicted and target system
parameters at time 𝑡.

Algorithm 1 Optimization of LSTM function in (32)
Initialization:

Learning rate: 𝛼 = 0.001, 1st moment vector: m0 = 0, 2nd moment
vector: v0 = 0, Tolerance: 𝜖 , Number of epochs: 𝑁 , {𝛽1, 𝛽2} = 0.9,
Initialization: 𝜾LM,0 ∼ N(0, 1

𝑛
) .

Optimization Procedure:
1: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁 do
2: for all mini-batches B do
3: Compute gradient: ∇𝜾LM = 𝜕

𝜕𝜾LM

(
𝜾
approx
LM

)
4: Update: m𝑒𝑝𝑜𝑐ℎ = 𝛽1m𝑒𝑝𝑜𝑐ℎ−1 + (1 − 𝛽1 )∇𝜾LM.
5: Update: v𝑒𝑝𝑜𝑐ℎ = 𝛽2v𝑒𝑝𝑜𝑐ℎ−1 + (1 − 𝛽2 ) (∇𝜾LM )2.
6: Correct bias in: m̂𝑒𝑝𝑜𝑐ℎ =

m𝑒𝑝𝑜𝑐ℎ

1−𝛽𝑒𝑝𝑜𝑐ℎ1
.

7: Correct bias: v̂𝑒𝑝𝑜𝑐ℎ =
v𝑒𝑝𝑜𝑐ℎ

1−𝛽𝑒𝑝𝑜𝑐ℎ2
.

8: Update parameters: 𝜾LM = 𝜾LM − 𝛼
m̂𝑒𝑝𝑜𝑐ℎ√
v̂𝑒𝑝𝑜𝑐ℎ+𝜖

.

9: end for
10: end for
11: return 𝜾LM.

1) LSTM Network Optimization: The objective of the train-
ing is to optimize the parameters symbolized by 𝜾∗LM and to
develop a curve ℘(o∗𝑡 , 𝜾LM) that minimizes the divergence from
the target system parameters o𝑡 . The optimization function for
the LSTM network is given by:

𝜾∗LM = arg min
𝜾LM

Dev(𝜾LM)
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Fig. 4: Block diagram of the proposed hybridized LSTM-DRL model

= arg min
𝜾LM

∑︁∥o∥
𝑖=1

[
o𝑖𝑡 − ℘(ô𝑖𝑡 , 𝜾LM)

]2
. (31)

Given the complexity in obtaining 𝜾∗LM, an approximation is
considered for simplicity:

𝜾
approx
LM = arg min

𝜾LM
Dev(𝜾LM)

≈
∑︁∥o∥

𝑖=1

[
o𝑖𝑡 − ℘(ô𝑖𝑡 , 𝜾LM)

]2 + 𝜈
∑︁∥o∥

𝑖=1
𝑇 (o𝑖𝑡 , o𝑖𝑡−1)

+ 𝜆 ∥𝜾LM∥2 − 𝜅
∑︁∥o∥

𝑖=1
𝐸 (℘(ô𝑖𝑡 , 𝜾LM)). (32)

In (32),
∑∥o∥
𝑖=1

[
o𝑖𝑡 − ℘(ô𝑖𝑡 , 𝜾LM)

]2 quantifies the divergence be-
tween the predicted system parameters, ô𝑡 , and the authentic
system parameters, o𝑡 . Additionally, the term 𝑇 (o𝑖𝑡 , o𝑖𝑡−1),
𝜈 ∈ (0, 1), signifies the temporal consistency criterion,
striving for coherence between subsequent time steps. The
temporal consistency term penalizes large deviations between
subsequent model predictions to ensure smoothness over
time. We use the log-cosh function for this: 𝑇 (o𝑖𝑡 , o𝑖𝑡−1) =

log
(
cosh

(
o𝑖𝑡 − o𝑖

𝑡−1

))
. The regularization term, represented by

𝜆 ∥𝜾LM∥2, aids in preventing overfitting by penalizing large
model parameter values; we use 𝜆 = 0.1. The entropy term,
𝜅
∑∥o∥
𝑖=1 𝐸 (℘(ô

𝑖
𝑡 , 𝜾LM)), where 𝜅 ∈ (0, 1), promotes prediction

diversity, ensuring that the model does not become overly
deterministic and captures the inherent stochasticity. To op-
timize the LSTM objective function, we employ the proposed
Algorithm 1.

A. Ensembling of Present LSTM with Proposed DRL

Using LSTM states improves our DRL model’s decision-
making capabilities by considering temporal dependencies. We
integrate those LSTM states with the policy and value network
outputs. The policy network, denoted as 𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 ),
outlines the action probabilities. Meanwhile, the value network
symbolized as 𝑉𝜙 (s𝑡 , h𝑡 ,C𝑡 ) provides estimates of expected

rewards from any given state. Following a strategy similar to
the policy optimization methodology presented in [24], we
adopt a clipped surrogate function, 𝐿𝑐𝑙𝑖 𝑝 (𝜃), ensuring a fair
balance between exploration and exploitation as follows:

𝐿𝑐𝑙𝑖 𝑝 (𝜃) = E𝑡
[
min

(
𝜑𝜃𝑡 𝐴̂𝑡 , clip

(
𝜑𝜃𝑡 , 1 − 𝜖, 1 + 𝜖

)
𝐴̂𝑡

)]
. (33)

To understand the influence of shifts in policy parameters
on the clipped objective, we derive 𝐿𝑐𝑙𝑖 𝑝 (𝜃) with respect to
𝜃. This derivation captures the sensitivity of the surrogate
function to changes in the policy parameters. Recognizing
small changes in 𝜑𝜃𝑡 due to changes in 𝜃 can be challenging.
However, using the Taylor series expansion, we approximate
these shifts as:

𝜑𝜃𝑡 ≈ 𝜑
𝜃old
𝑡 +

𝜕𝜑𝜃𝑡

𝜕𝜃

���
𝜃old
(𝜃 − 𝜃old). (34)

In this expression, the gradient describes how the function
changes for small alterations in the policy parameters around
the point 𝜃old. Here, the ratio 𝜑𝜃𝑡 contrasts the new policy,
𝜋𝜃 , with the preceding policy, 𝜋𝜃old , at the time instance 𝑡 and
which is written as:

𝜑𝜃𝑡 =
𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 , h𝑡 ,C𝑡 )

. (35)

To eliminate any sudden policy alterations, we adopt KL
divergence [36] between the novel and earlier policies remains
within the confines of 𝜖 . Therefore, by including the KL policy,
the primary objective function in (33) is consolidated to:

𝐿 (𝜃) = 𝐿𝑐𝑙𝑖 𝑝 (𝜃) + 𝛽 · KL(𝜋𝜃old | |𝜋𝜃 ). (36)

In this equation, 𝛽 steers the KL constraint. With the Taylor
expansion, the divergence between the old and the current
policy becomes:

KL(𝜋𝜃old | |𝜋𝜃 ) ≈
1
2
(𝜃 − 𝜃old)𝑇E𝑡 [∇𝜃 log 𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 )
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Algorithm 2 MA-DRL for xURLLC Communication
Initialization:

Define states S and actions A for agents. Define the reward function
𝑟𝑡 with weights 𝑤1, 𝑤2, 𝑤3, Initialize LSTM. Initialize policy networks
𝜋𝜃 and value networks 𝑉𝜙 , Parameters: episode = 𝐾 , number of steps
per episode 𝑇 , clip parameter 𝜖 , number of LSTM layers 𝐿, number of
hidden units 𝐻, discount factor 𝛾, GAE parameter 𝜆, mini-batch size 𝑀,
entire trajectory 𝜏 (∀𝑡 ∈ 𝑇 ) .

Output: Each agent optimizes resource to maximize (24).
Interaction with environment:
1: for Episode = 1, 2, ..., 𝐾 do
2: for time step 𝑡 do
3: Base Station Agent:

Collect state sbs
𝑡

Select action abs
𝑡 = 𝜋bs

𝜃
(sbs

𝑡 , hbs
𝑡 ,Cbs

𝑡 ) .
4: for each UAV-mounted CRIS Agent ∀𝑖 ∈ Q do
5: Collect states s𝑞𝑡 [𝑖 ] for agent 𝑞.
6: Select action a𝑞𝑡 [𝑖 ] = 𝜋

𝑞

𝜃
(s𝑖𝑡 , h𝑖

𝑡 ,C𝑖
𝑡 ) .

7: end for
8: Execute a𝑡 , where, a𝑡 = (abs

𝑡 ∪ a𝑞𝑡 ) , a𝑞𝑡 [𝑖 ] ∈ a𝑞𝑡 .
9: Receive reward: 𝑟𝑡 (s𝑡 , a𝑡 ) , s𝑡 = (sbs

𝑡 ∪ s𝑞𝑡 )
10: for BS Agent do
11: Update BS agent’s LSTM using Algorithm 1:

Cbs
𝑡 = 𝑓𝑐 (Cbs

𝑡−1, o
bs
𝑡 ) , hbs

𝑡 = 𝑓ℎ (hbs
𝑡−1, o

bs
𝑡 )

12: Add (sbs
𝑡 , abs

𝑡 , 𝑟𝑡+1, hbs
𝑡 ,Cbs

𝑡 ) to trajectory 𝜏
13: if timestep equals 𝑇 then
14: Add trajectory 𝜏 to the set 𝐷
15: Reset the environment to its initial state
16: Reset the LSTM hidden and cell states
17: Initialize a new trajectory 𝜏 = {}
18: end if
19: end for
20: for each UAV-mounted CRIS agent ∀𝑖 ∈ Q do
21: Update 𝑖th agent’s LSTM using Algorithm 1:

C𝑖
𝑡 = 𝑓𝑐 (C𝑖

𝑡−1, o
𝑖
𝑡 ) , h𝑖

𝑡 = 𝑓ℎ (h𝑖
𝑡−1, o

𝑖
𝑡 )

22: Append (s𝑖𝑡 , a𝑖𝑡 , 𝑟𝑡+1, h𝑖
𝑡 ,C𝑖

𝑡 ) to trajectory 𝜏
23: if timestep equals 𝑇 then
24: Add trajectory 𝜏 to the set 𝐷
25: Reset the environment to its initial state
26: Reset the LSTM hidden and cell states
27: Initialize a new trajectory 𝜏 = {}
28: end if
29: end for
30: end for
31: Share information among all agents for cooperation
32: Call Training Algorithm 3
33: end for

×∇𝜃 log 𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 )𝑇
]
(𝜃 − 𝜃old), (37)

where the term E𝑡 [∇𝜃log𝜋𝜃 (a𝑡 |s𝑡 , h𝑡 ,C𝑡 )∇𝜃 log 𝜋𝜃 (a𝑡 |s𝑡 ,
h𝑡 ,C𝑡 )𝑇 ] represents the Fisher information matrix [48], which
captures the expected curvature of the log-likelihood of the
policy trajectory. It quantifies how the distribution of the
policy’s output is sensitive to parameter changes 𝜃. The
quadratic form of the approximation ensures that it is more
accurate when the current policy parameters 𝜃 are close to the
old parameters 𝜃old.

Having established the modifications and constraints on
policy updates to ensure a smooth evolution of the agent’s
strategy, our next focus is on maximizing the agent’s cumula-
tive rewards over time, which is encapsulated as:

𝑉𝜙 (𝑠) = E𝜋
[∑︁∞

𝑡=0
𝛾𝑡𝑟𝑡 | s0 = s

]
. (38)

To ensure effective learning, it becomes imperative to under-
stand how shifts in the value function parameters influence
the expected return. This sensitivity of the value function, in

terms of its parameters 𝜙, is expressed as:
𝜕𝑉𝜙 (𝑠)
𝜕𝜙

= E𝜋

[∑︁∞
𝑡=0
𝛾𝑡 𝐴GAE

𝑡

𝜕𝛿𝑡

𝜕𝜙
| s0 = s

]
. (39)

By understanding the above gradient, agents can make more
informed decisions, attributing the influence of 𝜙 on expected
returns, thereby aiding in efficient credit assignment. With the
aid of GAE in (39), the advantage 𝐴̂𝑡 is formulated as:

𝐴̂GAE
𝑡 =

∑︁∞
𝑙=0
(𝛾𝜆)𝑙𝛿𝑡+𝑙 , (40)

where 𝛾 signifies the discount factor, 𝜆 manages the bias-
variance equilibrium, and 𝛿𝑡+𝑙 equates the disparities between
authentic rewards and predicted values:

𝛿𝑡+𝑙 =𝑟𝑡+𝑙 +𝛾𝑉𝜙 (s𝑡+𝑙+1,C𝑡+𝑙+1,h𝑡+𝑙+1) −𝑉𝜙 (s𝑡+𝑙 ,C𝑡+𝑙 ,h𝑡+𝑙). (41)

The 𝐿 (𝜃) in (36) updates the policies and concurrently updates
the value network using MSE loss:

L𝑀𝑆𝐸 (𝜙) =
1
𝑀

∑︁𝑀

𝑖=1
(𝑉𝜙 (s𝑖 , h𝑖 ,C𝑖) − 𝑉̂𝑖)2. (42)

By minimizing L𝑀𝑆𝐸 (𝜙), the agent refines its value estimates.
Concurrently, optimizing 𝐿 (𝜃) guides the policy towards ac-
tions that maximize expected future rewards. The delicate
balance between these updates, ensured by our surrogate loss
and KL divergence constraints, leads to a robust and effective
learning algorithm. Our MA-DRL-LSTM-based algorithm is
provided in Algorithm 2.

Algorithm 3 Training in DRL for xURLLC Communication
Initialization:

Markovian property: The environment follows the MDP framework.
Policy Initialization: Initial policies are stochastic. Exploration: 𝜖 -greedy.

1: for each trajectory 𝜏 in 𝐷 do
2: for timestep = 1, 2, ..., length of 𝜏 do
3: BS agent do
4: Compute TD error:

𝛿bs
𝑡+𝑙 = 𝑟𝑡+𝑙 + 𝛾𝑉 (s

bs
𝑡+𝑙+1,C

bs
𝑡+𝑙+1, h

bs
𝑡+𝑙+1 )−

𝑉 (sbs
𝑡+𝑙 ,C

bs
𝑡+𝑙 , h

bs
𝑡+𝑙 )

5: for each UAV-mounted CRIS agent ∀𝑖 ∈ Q do
6: Compute TD error:

𝛿
𝑞

𝑡+𝑙 [𝑖 ] = 𝑟𝑡+𝑙 + 𝛾𝑉 (s
𝑖
𝑡+𝑙+1,C

𝑖
𝑡+𝑙+1, h

𝑖
𝑡+𝑙+1 )−

𝑉 (s𝑖
𝑡+𝑙 ,C

𝑖
𝑡+𝑙 , h

𝑖
𝑡+𝑙 )

7: end for
8: Collect TD error: 𝛿𝑡+𝑙 = (𝛿bs

𝑡+𝑙 ∪ 𝛿
𝑞

𝑡+𝑙 )
9: Compute GAE: 𝐴̂𝐺𝐴𝐸 (𝛾,𝜆)

𝑡 =
∑𝑇−𝑡

𝑙=0 (𝛾𝜆)
𝑙 ∥ 𝛿𝑡+𝑙 ∥

10: Compute 𝑟𝑡 =
∑𝑇−𝑡

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘+1

11: end for
12: end for
13: for each mini-batch of size 𝑀 do

Policy update:
14: Compute stochastic policy gradient: ∇𝜃𝐿𝑐𝑙𝑖𝑝 (𝜃 )

≈ 1
𝑀

∑𝑀
𝑖=1 ∇𝜃 min

(
𝜑𝜃
𝑖
𝐴̂𝑖 , clip

(
𝜑𝜃
𝑖
, 1 − 𝜖 , 1 + 𝜖

)
𝐴̂𝑖

)
15: Compute overall objective function:

𝐿 (𝜃 ) = 𝐿𝑐𝑙𝑖𝑝 (𝜃 ) − 𝛽 · KL(𝜋𝜃old | | 𝜋𝜃 )
Value network update:

16: Compute MSE loss gradient for 𝑉𝜙 :
∇𝜙L𝑀𝑆𝐸 (𝜙) ≈ 1

𝑀

∑𝑀
𝑖=1 ∇𝜙 (𝑉𝜙 (s𝑖 , h𝑖 ,C𝑖 ) − 𝑉̂𝑖 )2

17: Update: 𝜙 ← 𝜙 + 𝛼∇𝜙L𝑀𝑆𝐸 (𝜙)
18: end for

B. Multi-Agent Approach

Our MA-DRL approach emphasizes coordination and coop-
eration among UAV-mounted CRIS agents and BS agents to
enhance sum data rate maximization in xURLLC networks.
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TABLE II: List of simulation parameters and their corresponding values.

Parameters Value Parameters Value Parameters Value Parameters Value
BS’s antennae 𝑀 = 4 [14] BS transmission power 33 dBm Noise at RIS 𝜎2

2,𝑞 = −80dBm [6] Maximum block-length 𝑙𝑚𝑎𝑥 = 256 [49]
xURLLC’s antennae 𝐿 = 3 [12] Minimum data rate 𝑅min

𝑘
= 1bps/Hz [14] Noise at xURLLC 𝜎2

1,𝑘 = −80dBm [6] Carrier frequency 𝑓𝑞 = 2.0GHz [7]
No. of xURLLC 𝐾 = 6 [16] UAV max velocity 𝑣max

𝑞 = 10m/s [7] Rician factor ∀𝛽 = 10 [24] Decoding error probability 𝜉max
𝑘

= 10−9 [2]
Antenna separation 𝜁 = 7.5cm PE’s max amplitude 𝜂𝑑

𝑚𝑎𝑥

(𝑞,𝑛) = 10 [50] Path-loss exponent: h𝑘 𝛼𝑖 = (3.5, 3.0) No. UAV-mounted CRIS unit 𝑄 = 4 [16]

No. of PE in CRIS 𝑁 = 72 CSI error norm bound { 𝜚, 𝜀, 𝜑} = 0.01 [44] Path-loss exponent: G(𝑑,𝑞)
𝑘

𝛼𝑖 = (2.75, 2.50) Path-loss exponent: F𝑞 𝛼𝑖 = (3.0, 2.75)

We carefully extend the traditional actor-critic methods by
integrating a joint action-learning phase where agents learn
not just individually but also consider the impact of their
actions on the system’s objectives. This is done through
collaborative reward calculation, helping to understand how
actions interrelate and guide the system toward goals.

To further enhance the stability and performance of our
multi-agent LSTM-based DRL framework, we introduce target
networks for both the actor and the critic components. This
addition aims to mitigate the rapid oscillations in value esti-
mates and policy updates that can hamper the learning process.
Target networks provide more stable target values for the
TD error calculations and policy updates, thereby smoothing
the training dynamics and facilitating better convergence. We
employ separate target networks for the policy and value
functions, denoted as 𝜋𝜃 ′ (target actor) and 𝑉𝜙′ (target critic),
respectively. These networks are clones of their corresponding
main networks but with their parameters (𝜃′ for the actor and
𝜙′ for the critic) updated less frequently. This setup ensures
that the target values against which the main networks’ outputs
are compared remain relatively stable over several iterations.
Target networks’ parameters are updated using a soft update
strategy defined by the equations:

𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′, (43)
𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′, (44)

where 𝜏 = 0.005 controls the rate at which the target networks
are updated. This integration ensures that the target values
evolve smoothly, contributing to the overall stability of the
training process. During the training phase, the TD error for
the base station agent and the UAV-mounted CRIS agents is
calculated using the target critic network. This modification to
the TD error calculation utilizes the target critic for estimating
the value of the next state, significantly enhancing the stability
of the value updates. The adjusted TD error calculation in Al-
gorithm 3 for the base station agent, for instance, is represented
as:

𝛿bs
𝑡+𝑙 = 𝑟𝑡+𝑙 + 𝛾𝑉𝜙′ (s

bs
𝑡+𝑙+1,C

bs
𝑡+𝑙+1, h

bs
𝑡+𝑙+1)

−𝑉𝜙 (sbs
𝑡+𝑙 ,C

bs
𝑡+𝑙 , h

bs
𝑡+𝑙). (45)

The inclusion of target networks in our framework is antici-
pated to significantly reduce the volatility of policy and value
estimates during training.

C. Computational Complexity Analysis of Proposed Algorithm

During interaction with the environment, the algorithm
collects state-action-reward data for both the base station
agent and each UAV-mounted CRIS agent, updates LSTM
memory cells (O(𝐿)), appends trajectory data, shares informa-
tion, and conducts mini-batch training updates (O(𝑀)). The
overall time complexity for this interaction is approximately

O(𝐾 · 𝑇 · (1 + 𝐿 · 𝑞 + 𝑀)). For the training algorithm, which
involves TD errors, GAE, discounted rewards, and policy and
value network updates, the time complexity is approximately
O(𝐷 ·𝑇 · (1+𝑀)). Therefore, the total time complexity of the
entire algorithm is O(𝐾 ·𝑇 · (1 + 𝐿 · 𝑞 +𝑀) + 𝐷 ·𝑇 · (1 +𝑀)).

D. Proposed MA-DRL Convergence Analysis

Consider a multi-agent system where each agent 𝑖 utilizes a
policy 𝜋𝜃𝑖 and a critic 𝑉𝜙𝑖 , parameterized by vectors 𝜃𝑖 and 𝜙𝑖 ,
respectively. Target networks for actors and critics are denoted
as 𝜋𝜃 ′

𝑖
and 𝑉𝜙′

𝑖
, updated with coefficients 𝜏𝜃 and 𝜏𝜙 , ensuring

smooth updates. According to the policy gradient theorem, the
update rule for the policy parameters 𝜃𝑖 is:

𝜃
(𝑘+1)
𝑖

= 𝜃
(𝑘 )
𝑖
+ 𝛼E𝜋𝜃𝑖

[
∇𝜃𝑖 log 𝜋𝜃𝑖 (a𝑡 |s𝑡 )𝐴𝜋 (s𝑡 , a𝑡 )

]
, (46)

where 𝐴𝜋 (s𝑡 , a𝑡 ) = 𝑄 𝜋 (s𝑡 , a𝑡 ) − 𝑉 𝜋 (s𝑡 ) represents the advan-
tage function, and 𝛼 is the learning rate. The critic parameters
𝜙𝑖 are updated using the MSE loss:

𝜙
(𝑘+1)
𝑖

= 𝜙
(𝑘 )
𝑖
− 𝛽∇𝜙𝑖

[
𝑟𝑡+1 + 𝛾𝑉𝜙𝑖 (s𝑡+1) −𝑉𝜙𝑖 (s𝑡 )

]2
, (47)

where 𝛽 is the critic’s learning rate. The soft update rules for
the target networks are defined as:

𝜃′𝑖 ← (1 − 𝜏𝜃 )𝜃′𝑖 + 𝜏𝜃𝜃𝑖 , 𝜙′𝑖 ← (1 − 𝜏𝜙)𝜙′𝑖 + 𝜏𝜙𝜙𝑖 , (48)

which stabilizes learning by providing more consistent target
values for policy and value updates.

Under the assumptions of Lipschitz continuity and bounded
gradients [51], stochastic approximation theory guarantees
convergence of {𝜃 (𝑘 )

𝑖
} and {𝜙 (𝑘 )

𝑖
} to local minimizers of the

expected return and value functions. The updates for 𝜃𝑖 and
𝜙𝑖 reduce the KL-divergence between the policies and the
target policies, thereby ensuring convergence to a policy that
maximizes the expected return as follows:

min
𝜃𝑖 ,𝜙𝑖

KL(𝜋𝜃 ′
𝑖
| |𝜋𝜃𝑖 ) + 𝜆E𝜋𝜃′

𝑖

[
𝑄
𝜋𝜃′

𝑖 (𝑠, 𝑎)
]
, (49)

where 𝜆 is a penalty term moderating the rate of convergence
and promoting exploration. This describes the agents’ gradual
convergence towards an optimal policy performance measure
in a complex, stochastic multi-agent environment.

V. NUMERICAL RESULTS AND ANALYSIS

In this section, we extensively evaluate the performance of
our proposed scheme using comprehensive simulations. As
benchmarks, we compare our proposed LSTM-based MA-
DRL algorithm against three popular DRL algorithms: deep-Q
networks (DQN) [11], DDPG [10], and the PPO approach [24],
known for its stability through the clipped objective function.

In our DRL simulations, we adhere to rigorously selected
parameter configurations derived from best practices in the
literature [4], [7], [9]–[11], [16], [24]. The learning rate (𝛼)
is fixed at 0.001, complemented by a discount factor (𝛾) of
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0.99 [25]. We allocate an experience replay buffer of 106

samples and designate a batch size of 64 for consistent network
updates. For the DQN algorithm, the exploration rate (𝜖) starts
at an assertive 1.0, decaying to a minimum threshold of 0.01 at
a decay rate of 0.995. The pivotal update of the target network
occurs every 500 step. Our network configuration boasts
four strategically crafted hidden layers (i.e., fully connected
with a dropout probability of 0.2), each with 256 neurons,
operationalized with the ReLU activation function. In the
DDPG domain, the actor and critic networks, equipped with
four hidden layers of 256 neurons, exhibit learning rates of
0.0001 and 0.001, respectively. The soft update coefficient (𝜏)
stands at a precise 0.005, and our exploration is accentuated
by the Ornstein-Uhlenbeck noise process with a 𝜃 of 0.15
and a 𝜎 of 0.2. Turning our attention to the PPO algorithm, it
inherits the actor and critic learning rates of 0.0001 and 0.001,
respectively. The policy’s clip range remains non-negotiable
at 0.2 [24], and we’ve instated the GAE parameter (𝜆) at
0.9. Both the policy and value networks are fortified with
four hidden layers of 128 neurons each, operating under the
ReLU activation function. For scenarios demanding recurrent
architectures, our LSTM layers are carefully designed with 256
cells. Furthermore, we set the LSTM’s dropout rate at 0.25 to
mitigate overfitting. The sequence length is fixed to 100 time
steps, ensuring adequate memory for temporal dependencies.

A. Simulation Setup and Parameters

In the subsequent subsection, we comprehensively describe
the environmental setup, other simulation parameters, and
relevant details. In addition to the proposed algorithm, DQN,
DDPG, and PPO algorithms are implemented using Python
and TensorFlow. The computational resources employed for
these simulations comprise an RTX GPU with 16 GB of
memory, 40 GB of RAM, and an Intel i7 CPU operating
at 2.90 GHz. Our system model operates in a stochastic
environment wherein the channel state undergoes continuous
alterations within specified boundaries at each time step.

In our model, we define a spherical space encompassing
750m3, within which all communication nodes coexist. Base
Station (BS) is located at the central coordinate (0, 0, 10) in
the (𝑥, 𝑦, 𝑧) plane, while 𝑧 ⩾ 0. The UAV-mounted CRIS
units navigate throughout the designated volume and are uni-
formly distributed. Additionally, xURLLC users are spatially
distributed within a subset of this space, occupying 300m3.
Further essential parameters and their corresponding values
are carefully tabulated in Table II. Unless we redefine the
parameter with new values, the value remains fixed as given
in Table II anywhere in the following text.

B. Numerical Results and Discussions

In Fig. 5, the convergence plot distinctly illustrates the
superior performance of our proposed LSTM-based MA-
DRL algorithm in comparison to the established DQN [11],
DDPG [10], PPO [24], MADDPG [28], and MAPPO [30]
benchmarks. Our method’s fusion of LSTM networks allows
it to effectively capture long-term dependencies in state-action
sequences, thus providing a minute understanding of temporal
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Fig. 5: Convergence plot: Comparing with existing DRL algorithms.

dynamics. When paired with our precisely designed functions,
this inherent capability ensures optimal action selection and
value approximation explicitly tailored for our problem do-
main. Moreover, our multi-agent framework facilitates a more
comprehensive view of the environment, emphasizing cooper-
ative and strategic decision-making. Together, these elements
of temporal understanding and function design precision give
our algorithm a decisive advantage in the defined environment.
Around episode number 1750, it can be observed that both the
proposed algorithm and PPO approach a state of convergence,
indicating stable learning. In contrast, DDPG and DQN display
evident oscillatory behaviours, suggesting they have not con-
verged consistently. Notably, the proposed LSTM-based DRL
algorithm’s performance significantly surpasses PPO, DDPG,
and DQN, registering accumulated average reward gains of
1.19 times, 1.62 times, and 2.34 times higher, respectively.

TABLE III: A comparative analysis of different RIS modes in sum
rate maximization (bps/Hz), 𝑄 = 4, 𝑁 = 72, 𝐾 = 6, {𝑀, 𝐿} = 4.

RIS Perfect
CSI

Imperfect
CSI

RIS Perfect
CSI

Imperfect
CSI

PT 21.587 14.259 PRAT 24.846 17.153
AT 23.417 16.287 PSTAR 27.129 18.351
PR 20.118 15.637 ARPT 27.032 18.027
AR 22.324 17.178 ASTAR 27.758 18.658

Proposed: CRIS Perfect CSI: 31.327 Imperfect CSI: 22.654

Table III showcases the superior performance of the pro-
posed CRIS model when it integrates with our system model,
and the LSTM-based DRL algorithm manages the resource
allocation. The results manifest the edge the CRIS model
holds over other RIS operation modes in perfect and imperfect
channel scenarios. This enhanced performance is attributed
to the adept self-assessment and mode selection capabilities
of individual PE elements in the RIS, a distinctive feature
of our model. It is pivotal to underline that traditional RIS
modes also operate within our proposed system model, further
emphasizing the efficacy of CRIS. For example, compared
to the advanced ASTAR mode, the CRIS model shows an
approximately ∼ 12.87% performance improvement in the
Perfect CSI scenario. Similarly, CRIS exhibits superiority in
the Imperfect CSI context, improving about ∼ 21.42% relative
to the ASTAR mode.

In our subsequent in-depth performance analysis presented
in Fig.6a, we compare various transmission schemes. Specifi-
cally, we investigate our chosen RSMA technique, contrasting
it with SDMA and NOMA schemes. Empirical evaluations
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(a) Comparison with different transmission schemes.
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Fig. 6: Overall analysis of transmission schemes, CRIS number impact, and xURLLC user impact on total throughput.
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Fig. 7: Analysis of receiving antennas, FBL and CRIS unit effect, and decoding error probability effect on throughput.

show that the RSMA scheme, coupled with the UAV-mounted
CRIS modules in a MIMO system, consistently outperforms
the other methods, whether we account for optimal phase
design for the PE elements in CRIS or ignore it. The salient
advantage of RSMA emerges from its inherent ability to
utilize both the spatial domain, through multiple antennas,
and the power domain. This dual-domain utilization ensures
that users experiencing a range of channel conditions receive
optimal service, all while minimizing interference. Meanwhile,
SDMA, which allows spatial differentiation of users in a
MIMO setting, sometimes faces obstacles, particularly in high-
user-density scenarios. Similarly, NOMA, known for its power
domain multiplexing, occasionally exhibits sensitivity when
encountering imperfect channel state information, a challenge
that MIMO settings tend to amplify. For the scenario with
optimal CRIS phase shift design, RSMA outperforms SDMA
by approximately 10.38% and surpasses NOMA by around
22.48% when 72 PE elements are in individual CRIS units.

As depicted in Fig. 6b, a systematic examination of the sum
throughput for RSMA reveals the influence of the number
of PE elements within varying CRIS configurations. As the
number of PE elements escalates, coupled with increased
CRIS units, the resultant throughput experiences significant
enhancement. For a configuration deploying 4 CRIS units and
72 PE elements, a throughput of 22.339 bps/Hz is achieved.
This value is approximately 10.32% superior to the ∼ 20.25
bps/Hz realized with 2 CRIS units. Furthermore, compared
with the throughput of 17.247 bps/Hz from a single CRIS unit
setup, the four-unit configuration demonstrates an impressive
gain of nearly ∼ 29.53%.

Fig. 6c demonstrates the sum throughput performances
of RSMA, SDMA, and NOMA schemes as the number of

xURLLC users increases, each utilizing a fixed number of
UAV-mounted CRIS units. Specifically, when the number of
xURLLC users is 16, RSMA manifests a 32.156 bps/Hz
throughput. This throughput is approximately ∼ 7.14% supe-
rior to the 30.012 bps/Hz achieved using SDMA and a com-
mendable ∼ 14.22% higher than the 28.154 bps/Hz observed
with NOMA. An intriguing observation across all schemes
is the consistent increase in sum rate despite the constant
resources such as transmission power and the number of UAV-
mounted CRIS units. This phenomenon can be justified by
the multi-user diversity inherent to wireless communication
systems. As the user count grows, the system exploits these
users’ distinct and independent channel conditions, maximiz-
ing the sum rate. In particular, schemes like RSMA proficiently
exploit the spatial domain, implying that an increment in
user count leads to enhanced utilization of spatial resources,
culminating in an augmented sum rate.

Fig. 7a presents the sum throughput performance of RSMA,
SDMA, and NOMA schemes against the increasing number
of receiving antennas at the xURLLC user. Distinctly, when
the number of receiving antennas is 8 and with 1 CRIS,
RSMA achieves a throughput of 21.5847 bps/Hz, which
is approximately ∼ 8.68% higher than the 19.856 bps/Hz
achieved by SDMA and about ∼ 14.39% more than the
18.865 bps/Hz observed with NOMA. In the configuration
with 2 CRIS, RSMA records a throughput of 25.879 bps/Hz,
marking a gain of approximately ∼ 7.88% over SDMA’s
23.987 bps/Hz and an impressive ∼ 19.47% over NOMA’s
21.6547 bps/Hz. This consistent outperformance of RSMA can
be attributed to its adeptness in harnessing the spatial domain.
Unlike SDMA and NOMA, RSMA optimally leverages spatial
multiplexing, enabling simultaneous transmission of several
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data streams, thus boosting the sum rate. The addition of CRIS
units further amplifies RSMA’s capabilities, permitting it to
shape the wireless environment favourably. As the number
of receiving antennas rises, the benefits from spatial diversity
and multiplexing in RSMA become even more pronounced,
leading to its pronounced superiority over SDMA and NOMA.

In Fig. 7b, we investigate the interplay between the FBL,
the count of CRIS units, and the number of transmitting
antennas at the BS on the sum throughput within the RSMA
paradigm. Focusing on configurations where the number of
transmitting antennas at the BS equals 4, we find substantial
fluctuations in the RSMA’s efficacy contingent on the FBL
and the employed CRIS elements. Specifically, with FBL =

100, escalating the CRIS units from 1 to 4 augments the
throughput by an impressive ∼ 63.15%. In contrast, for FBL
= 200, the throughput experiences a boost of ∼ 20.51% when
transitioning from a singular CRIS unit to a 4-unit assembly.
These findings underscore the intrinsic merit of integrating
more CRIS modules, particularly in settings characterized by
a reduced FBL.

Fig. 7c showcases the sum throughput performance of
RSMA under a fixed packet error probability rate of 𝜉𝑘 = 10−9

as facilitated by various algorithms, namely our Proposed
LSTM-based DRL, PPO [24], DQN [11], and DDPG [10],
as the finite block length size increases. An imperative obser-
vation from the table is the distinct supremacy of the Proposed
LSTM-based DRL over the other algorithms at all finite block
lengths. For instance, at a block length of 500, the LSTM-
based DRL achieves a throughput of 30.757 bps/Hz. This is
an impressive 11.7% improvement over the next best, which is
27.547 bps/Hz achieved by PPO for the same block length and
a massive 26.9% gain over DDPG’s 24.132 bps/Hz. The DQN,
in this scenario, lags even further. The results suggest that our
LSTM-based DRL adeptly handles the challenges posed by the
intricate dynamics of RSMA, especially under the rigorous
reliability constraints of xURLLC. LSTM, which inherently
captures temporal dependencies, probably empowers the DRL
to better predict and react to the ever-changing state of the
wireless environment.

Proposed MA-DRL:
Approaching Convergence.
Episode  1300

Fig. 8: Convergence plot: multi-agent multi-actor-critic networks.

Fig. 8 illustrates the convergence characteristics of a multi-
agent framework encompassing our proposed MA-DRL and
established benchmark DRL algorithms such as MA-DDPG
[28] and MA-PPO [30]. Each agent, whether a BS or UAV-
mounted CRIS, is equipped with an actor-network for making
action decisions and a critic network for assessing the cur-
rent state’s desirability. These networks are complemented by

corresponding target networks, a target actor-network (𝜋𝜃 ′ )
and a target critic network (𝑉𝜙′ ), which are updated less
frequently to provide stable targets for temporal-difference
error calculations and policy updates, thereby smoothing the
training dynamics. This configuration of multi-actor-critic-
based learning networks facilitates smoother convergence and
achieves a marginally higher accumulated reward compared to
the results shown in Fig. 5, which utilized a single actor-critic
network. The superior performance of our MA-DRL can be
attributed to the enhanced stability provided by the target net-
works, which mitigates the oscillations commonly seen with
frequent updates in MA-DDPG [28] and the over-exploration
issues in MA-PPO [30]. Additionally, our framework’s ability
to maintain a consistent learning trajectory without the abrupt
policy shifts typically observed in MA-PPO further enhances
its reward accumulation over time. For the proposed MA-DRL,
we observe a more rapid convergence by ≈ 1300th episode in
Fig. 8, as compared to the convergence rates depicted in Fig. 5.
The integration of target networks and the refined handling
of multi-agent dynamics significantly reduce the instability
associated with frequent updates of Q-values and policies,
offering a more stable benchmark for learning, which enhances
the overall convergence properties of the algorithm.

Fig. 9a demonstrates the impact of packet error rate on
individual data rate for different numbers of PE elements (i.e.,
RIS elements) in the proposed CRIS module. It is noted that
relaxing the packet error rate increases the individual data
rate. The data rate also gets enhanced as the number of PE
elements is increased. At a packet error rate of 10−9, which
is considered the maximum for xURLLC, the CRIS module
with 128 RIS elements significantly increases the data rate
by approximately 9.28 times compared to the system with
no CRIS module, and about 1.53 times when compared to
the system with 64 RIS elements. These gains highlight the
efficiency of incorporating a larger number of PE elements in
the CRIS module for enhancing communication performance
in critical network scenarios.

Fig. 9b demonstrates the impact of xURLLC’s short packet
length (i.e., FBL) on packet error rate for the present work.
Increasing the packet length in xURLLC increases the packet
error rate due to greater exposure to channel imperfections
and error propagation risks. Importantly, the RSMA tech-
nique substantially lowers the PER over SDMA and NOMA
schemes. For a packet length of 256 bits, RSMA achieves
a PER of 1.41 × 10−14, whereas SDMA and NOMA exhibit
PERs of 1.07 × 10−13 and 1.821 × 10−13, respectively. This
shows that RSMA reduces the PER by approximately 7.59
times compared to SDMA and about 12.92 times compared
to NOMA at this packet length. This significant reduction in
PER by RSMA can be attributed to its relative robustness to
imperfect CSI, which is critical in SDMA for beamforming
and in NOMA for power allocation. By not strictly requiring
perfect CSI, RSMA maintains lower PERs under practical
channel conditions.

Fig. 9c illustrates the throughput dynamics in xURLLC
networks, focusing on users’ average proximity to the base
station under varying CSI conditions. Users are grouped within
this range at a distance of 50 meters, revealing NOMA’s
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Fig. 10: Variance in training: a Box plot of accumulated rewards for
MA-DRL, MA-PPO, and MA-DDPG across different random seeds.

superior performance in managing dense user clusters by
efficiently leveraging power domain resources. This results in
a throughput gain of 9.55% under imperfect CSI and 9.54%
under perfect CSI compared to SDMA, emphasizing NOMA’s
effectiveness in high-density settings up to 100 meters. As the
distance increases to 300 meters, RSMA begins to significantly
outperform both NOMA and SDMA, with gains of 20.53%
and 54.46% over SDMA and NOMA respectively, under
imperfect CSI and 15.57% and 52.17% under perfect CSI.
These notable improvements with RSMA at extended ranges
are due to its hybrid approach, which adeptly combines power
and spatial domain strategies. This dual-domain exploitation
enables RSMA to adaptively manage interference and allocate
resources more dynamically, thereby enhancing throughput
and network efficiency in scenarios with dispersed user dis-
tributions and varied channel conditions. The robustness and
flexibility of RSMA make it particularly effective for ensuring
reliable and high-throughput communications across larger
distances in xURLLC networks.

Fig. 10 presents the box plot for the MA-DRL, MA-PPO,
and MA-DDPG algorithms to demonstrate the variance in the
training phase. Each box plot captures the median, interquartile
range (IQR), and outliers, providing a comprehensive view of
the data distribution across different training scenarios. The
median, a robust measure of central tendency, is indicated by
the line within each box. The box itself, spanning from the first
quartile (25th percentile) to the third quartile (75th percentile),
encapsulates the middle 50% of the data and illustrates the
data’s dispersion. Whiskers on the plots extend up to 1.5
times the IQR from the quartiles, effectively highlighting the
spread of the majority of the data. This box plot layout

is useful in conveying how each algorithm performs under
varying conditions influenced by the random seed selection,
specifically using seeds 42, 60, and 123. Such visualization
aids in understanding the sensitivity of each algorithm to
initialization and other stochastic factors, thereby providing
insights into their stability and robustness. The accumulated
reward in episode 2000 is used as a metric to measure the
effectiveness of the training process for each algorithm in the
MA-DRL context.

VI. CONCLUSIONS

A key aspect of our research was the innovative design of a
CRIS unit. This unit is characterized by its adaptability; each
element within the CRIS is proficiently engineered to syn-
chronize with the environment, determining and selecting the
most optimal operational mode. This dynamism ensures that
the CRIS consistently yields superior outcomes, optimizing
communication over any conventional mode of operations by
the RIS. Moreover, integrating this CRIS with UAVs endows
the system with heightened mobility and expansive area cov-
erage, surmounting conventional limitations. Our introduction
and successful deployment of the multi-agent LSTM-based
DRL strategy fortify the research’s significance. This method,
set against traditional algorithms like PPO, DQN, and DDPG,
consistently displayed superior performance. It demonstrated
its superiority in navigating the complex dynamics of RSMA,
especially when offering gains of 11.7% and 26.9% in sum
throughput compared to PPO and DDPG, both operating under
the strict xURLLC reliability constraint of a packet error
probability rate of 10−9. Our developed system showcases
innovative design and precision in performance, which ensures
the highest level of xURLLC reliability. The key insights that
are derived from our work can be briefly summarized as

The practical implementation of UAV-mounted CRIS tech-
nologies introduces complex challenges that span across vari-
ous interdisciplinary fields, from micro-controller design spe-
cific to CRIS operations to advancements in UAV dynamics
for enhanced stability and adaptability. While presently unex-
plored in our study, this multifaceted research domain opens a
significant scope for future investigations. Recognizing these
challenges does not emphasize a limitation of our current
research but rather outlines a clear path for future work.
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