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Abstract—Over-the-air computation (OAC) can effectively sup-
port rapid data aggregation from a plethora of devices, exploiting
the inherent superposition property of wireless multiple access
channels. The key challenge in OAC is the synchronization of
multiple devices, which are handled through either the coherent
approach using the beacon transmissions by the fusion center
or the non-coherent approach based on random sequences.
Motivated by the lack of a fair comparison in prior arts, we derive
the closed-form expressions of their mean squared errors (MSEs),
which provides an explicit guideline on which approach to use
and how we improve one compared to the other by adjusting
their key design factors. Thus, this paper provides design insights
into the OAC synchronization method depending on the system
requirements in terms of MSE.

Index Terms—Over-the-air computation, synchronization,
mean squared error, zero-forcing, minimum mean square error.

I. INTRODUCTION

Exploiting the superposition property of wireless multiple
access channels, over-the-air computation (OAC) can provide
rapid and efficient data aggregation from a large number of de-
vices [1]. In OAC, while multiple devices transmit simultane-
ously via the same wireless resources, nomographic functions
of information at the devices can be computed by appropriate
pre- and post-processing with considerably reduced resource
usage compared to the conventional schemes [2]. Further, in
unmanned aerial vehicle (UAV)-aided OAC, the mobility of
UAVs can be exploited to facilitate data aggregation from a
myriad of ground-based devices [3].

However, as noted in [4], when it comes to the implemen-
tation of OAC, the transmit time synchronization of multiple
devices is critical, because the timing error across multiple
devices may cause significant distortion of the combined data
at the fusion center (FC). In literature, the synchronization
methods can be classified into coherent and non-coherent
approaches. In the coherent OAC, as in [3] and [5], each
device synchronizes itself based on periodic beacon signals
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Fig. 1. System model.

transmitted by the FC. It can ensure constructive signal su-
perposition, but is highly subject to estimation errors of the
channel state information (CSI). In particular, phase offsets
(POs) pose a significant challenge in practice, due to timing
offsets (TOs), phase noise, carrier frequency offsets (CFOs),
uplink-downlink channel mismatch, and other impairments [1].
Hence, it is also difficult to analytically characterize the phase
error distribution and the corresponding impact on the OAC
performance. In contrast, the non-coherent OAC techniques
provide robustness against the POs, which include the energy
detection [6], frequency shift keying-based majority vote [7],
and a continuous-valued OAC over a digital scheme [8].

Because of their distinct pros and cons, the choice between
the two approaches depends on the specific requirements and
constraints of a given system or application. However, the
existing literature has not explicitly compared the two OAC
strategies in terms of mean squared error (MSE) performance,
which depends on various system parameters, including phase
error and coordination aspects. Motivated by this limitation,
in this paper we consider the fair comparison of the two
approaches. For the non-coherent approach, we focus on the
method in [6], which aims at continuous value aggregation, for
a fair comparison with coherent approaches. A comparison
with other non-coherent OAC techniques (e.g., [7], [8]) is
deferred for a future study. The original contributions can be
summarized as follows.

• To the best of our knowledge, this is the first study
to fairly compare coherent and non-coherent OAC. As-
suming an OAC network with one FC and a large
number of devices, we clarify their differences in raw data
normalization (or dynamic range of the encoded data),
pre-processing at each device (i.e., transmit coefficients),
and post-processing at the FC (e.g., denoising factors and
offsets).

• We derive the MSEs of both approaches in closed-
form expressions, considering both zero-forcing (ZF) and
minimum mean square error (MMSE) coordination, using
the same theoretical framework. This process provides
explicit guidance in each scenario on which to use and
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how to improve one over the other for given system pa-
rameters. For coherent OAC, we estimate the probability
density function (PDF) for the composite POs, taking
into account various factors that cause phase errors. On
the other hand, the derived MSE for the non-coherent
approach shows how it varies with sequence length.

• Lastly, we present simulation results to investigate the
effects of various system parameters on the MSE of both
methods.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an OAC system with
K ground devices uniformly distributed over the disk on the
ground with radius R and an FC with height H . The distance
of the kth device from the origin O is denoted by rk, and
the angle with respect to the x-axis on the ground is ϕk,
where 0 < rk < R and −π < ϕk < π. Additionally,
the position of the FC is given in cylindrical coordinates as
(A, φ,H). The distance dk between the FC and the kth device
is given by dk =

√
A2 + r2

k − 2Ark cos(φ− ϕk) +H2. The
FC aggregates the sensor data measured by the K devices.
Due to space and power constraints, we assume that the FC
and the devices are equipped with a single antenna.

Let hk = αke
jθk be the complex baseband-equivalent

channel between the kth device for k ∈ {1, ...,K} and the
FC, assuming a line-of-sight (LoS) channel between the FC
and devices, where αk = |hk| = 1

dk
and θk = ∠hk = − 2πdk

λ .
Without loss of generality, we assume that α1 ≤ α2 ≤ ... ≤
αK−1 ≤ αK . At the FC, the function of interest (FoI) is the
arithmetic mean as f = 1

K

∑K
k=1mk, where mk is the original

sensing data collected from the kth device. It is assumed
that mk is uniformly distributed from mmin and mmax,
where ∆ = mmax − mmin. As in [5], the sensing data are
independently and identically distributed (i.i.d.) for different k.
In digital modulation, the transmitted signal can be represented
as a complex number, where the sensing data is mapped into
both real and imaginary components [9]. However, because
we consider analog amplitude or energy modulation OAC
schemes; thus, the sensor readings are assumed to be real-
valued, as in [3], [5], [6], [10]. In the following sub-sections,
we treat coherent and non-coherent OAC strategies.

A. Coherent Approach

In the coherent strategy, as in [3] and [5], each device esti-
mates its channel gain in a distributed manner using the beacon
signal transmitted by the FC. In other words, the multiple
devices independently synchronize themselves based on the
reference signal sent by the FC. Through this synchronization,
the FC can receive the coherent superposition of the multiple
signals transmitted from the K devices, which is expressed as

y =

K∑
k=1

hkbksk + w, (1)

where sk = Ψ(mk) denotes the normalized measurement data
to satisfy |sk| ≤ 1. Also, w is the additive white Gaussian
noise (AWGN) following a complex Gaussian distribution with
the zero-mean and variance of σ2.

Further, as in [3] and [11], the transmit coefficient bk for the
coherent OAC is given by bk =

√
pke
−jθk , where pk repre-

sents the transmit power of the kth node. Because the phases
of the received signals from K nodes are coherently combined
by the phase alignment (i.e., ∠hkbk = 0), the dynamic range
of the normalized data is given by −1 ≤ sk ≤ 1. Thus, the
normalization function is

sk = Ψ(mk) =
2mk

∆
− mmax +mmin

∆
, (2)

where both negative and positive values of sk can be fully
utilized. With the channel inversion method, which is widely
used in OAC, as in [5] and [11], the kth node’s transmit
power is given by pk = Pα2

1/α
2
k, where P is a constant that

indicates the maximum transmit power. Also, α2
1/α

2
k is the

normalization factor to compensate for disparate channel gains
of different devices. In other words, the transmit power of the
node with the smallest channel gain α1 becomes P , whereas
the other nodes have transmit powers less than or equal to P .
The devices are constrained to set their average transmission
power not to exceed a maximum power limit, denoted as P .
This implies that, over a period during which the channel
conditions are approximately constant, the transmission signal
of each device satisfies the specified power constraint.

From the received signal in (1), the FC performs the post-
processing to achieve the estimated FoI f̂ as

f̂ = ζ
y

K
+
mmax +mmin

2
, (3)

where the scaling factor ζ is further discussed in Section III-A.

B. Non-Coherent Approach

Now, we consider the non-coherent OAC strategy proposed
in [6] and [12]. This non-coherent approach requires only
coarse block-level synchronization, where the measurement
information is encoded into N symbols with random phase
dithering. Thus, as long as the frames transmitted by K
devices, each of which consists of N repetitions of the same
measured data (i.e., sk) with the random phase rotations, have
sufficiently large overlaps with each other, the measured data
can be retrieved at the FC based on the aggregate received
power over multiple symbols.

In non-coherent OAC, the channel phase θk[n] is not es-
timated, and since the average power must be matched, it is
assumed that each device knows the magnitude αk[n] required
to compensate for different path losses. The devices create
their own sequences with constant envelopes and random
phase dithering. For example, the sequence of the kth device
is [ejXk[1], ejXk[2], ..., ejXk[N ]]T ∈ CN , where n ∈ {1, ..., N}
is the sequence index. Also, Xk[n] is i.i.d. for different k and
n, following the uniform distribution between 0 and 2π in
radian. Then, the FoI is obtained by combining the N received
sequences at the FC. Therefore, the received signal at time slot
(or sequence index) n is

y[n] =

K∑
k=1

hkbk[n]sk + w[n], (4)
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where the channel hk is assumed to be quasi-static (i.e., time-
invariant for N sequence transmissions)). Also, bk[n] denotes
the transmit coefficient of the kth device at the nth sequence,
while sk is the encoded data of the kth device. In addition,
w[n] is the AWGN at the nth time slot with the zero mean
and variance of σ2.

Further, in contrast to the coherent scheme, the encoded
data sk cannot be negative, because positive and negative data
cannot be distinguished due to the lack of phase synchroniza-
tion. As a result, the dynamic range of the normalized data is
given by 0 ≤ sk ≤ 1. Thus, the normalization function, which
converts the raw measurement data mk into sk, is given by

sk = Ψ(mk) =

√
mk

∆
− mmin

∆
. (5)

The transmit coefficient for OAC is given by bk[n] =√
pke

jXk[n], where the transmit power of the kth node is
given by pk = P ′α2

1/α
2
k. For fair comparison for the two

methods for a given network topology (or channel gains),
we set P ′ = 3

2P , because E[|sk|2] = 1
3 for coherent, while

E[|sk|2] = 1
2 for non-coherent. The FC applies the post-

processing to recover the FoI as

f̂ = ζ
1

K

N∑
n=1

|y[n]|2 +mmin −
∆

P ′Kα2
1

σ2, (6)

where ζ for the non-coherent scheme will be presented in
Section III-B.

III. MSE ANALYSIS

Now, in the first two sub-sections, we will analyze the
MSEs of both coherent and non-coherent OAC with ZF and
MMSE schemes, when the FoI is the arithmetic mean. For the
coherent OAC, we consider the impact of the imperfect phase
estimation. We also derive the MSE of the non-coherent OAC
in [6] as a function of various system parameters including
the random sequence length N .

A. Coherent Approach

While the channel magnitude can be estimated using various
methods including location information for the ground-to-air
channel, the phase estimation is challenging. Thus, with POs
caused by TOs, phase noise, CFOs, in-phase and quadrature-
phase imbalance (IQI), the UAV (i.e., FC) jittering effects, and
other impairments, the transmit coefficient bk for the k device
becomes bk =

√
pke
−j(θk+ek), where ek is the PO of the kth

node. It is assumed that the errors for different devices (i.e., ek
with k ∈ {1, ...,K}) are i.i.d. Because there are various factors
causing phase offset in practical communication systems [13]–
[16], it is advantageous to confirm it clearly through hardware
implementation such as software-defined radio (SDR) plat-
forms [1]. However, in practice, SDR platform hardware exists
with different architectures, performances, costs, and sizes, by
which the POs may be characterized differently depending on
specific hardware (or testbed) configurations. As a result, it
is challenging to integrate all of the system-level impairments
into a single random variable with a closed-form PDF for the-
oretical analysis. Therefore, in this paper, we model POs using

the non-parametric kernel estimation method and analyze the
MSE. This method calculates the PDF through sampling and
is widely used in the field of communications [17]–[21]. For
example, in [19], when characterizing the objective function in
blind signal separation, the PDF for blind signals is obtained
using Gaussian kernel-based non-parametric estimation. Also,
in [17], for regularized particle filtering, the kernel density
method is used to solve the particle impoverishment problem.
Moreover, since the PDF is estimated through sampling, the
proposed closed-form equations can be directly applied even
for other factors in the future. Especially, because the Gaussian
kernel is distributed over the entire range of the axis and has
the smoothest form, it is the most commonly used kernel.
Therefore, in this paper, we also model the PDF of the POs
using a Gaussian kernel.

In addition, to model composite POs, the random variables
for the individual impairments are assumed to be independent
of each other. Therefore, the mixture of these random variables
is represented by the sum of the random variables, and the
estimator can only sample the composite POs as a whole, not
each random variable (or PO) caused by an individual impair-
ment. With available sample observations {ē1, ē2, ..., ēL}, the
estimated PDF with the Gaussian kernel is

ẑek(e) =
1√

2πhL

L∑
l=1

exp

[
− (e− ēl)

2h2

]
, (7)

where L is the size of the set and −∞ < e <∞. Furthermore,
the constant for smoothing is given by h = Lδ(L−1)σe, where
σe is the standard deviation from the survey set and δ is an
empirical constant.

1) ZF Coordination: As in [3], [5], [22], for the ZF coordi-
nation that ignores the additive noise, the coherent denoising
factor is designed as ζ = ∆

2
√
Pα1

. The following proposition
provides the corresponding MSE.

Proposition 1: The MSE of the coherent OAC with the ZF
coordination is given by

MSE =
∆2

6K
(1− E[cos(ek)]) +

∆2σ2

4Pα2
1K

2
. (8)

Proof: From the estimated FoI f̂ , the MSE is computed
as

MSE = E
[∣∣∣f̂ − f ∣∣∣2] =

Var[mk](2− 2E[cos(ek)]) + ∆2σ2

4Pα2
1K

K

=
∆2

6K
(1− E[cos(ek)]) +

∆2σ2

4Pα2
1K

2
. (9)

It is noted that, we can simplify (8) with E[cos(ek)] =
exp

[
− 1

2h
2
]

1
L

∑L
l=1 cos (ēl) with Gaussian kernel. If a dif-

ferent kernel is employed, the corresponding E[cos(ek)] can
be readily computed [23]. Based on Proposition 1, we can
identify the following key properties of the MSE, which
show the impacts of important system parameters. First, as
the transmit power of the devices, P , increases, the MSE
decreases, because of the reduced noise-related term ∆2σ2

4Pα2
1K

2

in (8). Also, even with infinite power, the MSE has a non-zero
limiting value as limP→∞ MSE = ∆2

6K (1− E[cos(ek)]), which
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is the PO terms. In other words, even with infinite P , the
distortion by the phase estimation error cannot be overcome.
Moreover, as K increases, the MSE decreases. Moreover,
when K →∞, MSE→ 0.

2) MMSE Coordination: In this part, we derive the post-
processing factor ζ for the MMSE coordination that minimizes
the MSE. First, to obtain the MSE, we compute

f̂ − f =
1

K

[
ζ

K∑
k=1

hkbksk + ζw −
K∑
k=1

mk

]
+
mmax +mmin

2

=
1

K

[
K∑
k=1

(ζhkbk −
∆

2
)sk + ζw

]
. (10)

Since E[sk] = 0 and E[|sk|2] = 1/3, the MSE is given by

MSE = E[|f̂ − f |2]

=
1

K2
E

[(
K∑
k=1

|(ζhkbk −
∆

2
)sk|2

)
+ ζ2w2

]
. (11)

Thus, we can formulate an optimization problem to minimize
the MSE as

min
ζ,bk

1

K2
E

[(
K∑
k=1

|(ζhkbk −
∆

2
)sk|2

)
+ ζ2w2

]
. (12)

In general, this optimization problem is non-convex and dif-
ficult to solve; thus, it is typically tackled by an iterative
algorithm to optimize ζ and bk [24], [25]. The optimal
bk typically follows a threshold-based regularized channel
inversion structure [24], [25]. Moreover, because the closed-
form analytical solution is not available through the joint
optimization of ζ and bk in an iterative manner, we find the
optimal solution for ζ by fixing bk as the channel inversion
policy to derive the closed-form expression of MSE, as in [24].
Consequently, the optimal ζ, which corresponds to ∂ MSE

∂ζ = 0

and ∂2 MSE
∂ζ2 > 0, can be obtained as

ζ =
∆
√
Pα1E[cos(ek)]

2Pα2
1 + 6σ2

K

=
∆E[cos(ek)]

2
√
Pα1 + 6σ2√

Pα1K

. (13)

The corresponding MSE can be readily obtained in the fol-
lowing proposition.

Proposition 2: The MSE of the coherent OAC with the
MMSE coordination can be expressed as

MSE =
∆2

12K
−

(
∆2E[cos(ek)]2

12K + 36 σ2

Pα1

)
. (14)

Accordingly, we can observe the following properties for the
MSE with the MMSE coordination. As the maximum power
for the coherent OAC P increases, the MSE in (14) decreases.
Moreover, even when P →∞, the MSE does not converge to
zero as limP→∞ MSE = ∆2

12K

(
1− E[cos(ek)]2

)
. Only in the

absence of the POs (i.e., ek = 0 for any k), which corresponds
to E[cos(ek)] = 1, the limiting MSE for infinite P becomes
zero.

B. Non-Coherent Approach

In this subsection, we analyze the MSE of the non-coherent
OAC for both ZF and MMSE schemes.

1) ZF Coordination: First, we consider the original non-
coherent approach in [6] with N repetitions of a random phase
sequence, where ζ = ∆

P ′Nα2
1

in (6).
Proposition 3: The MSE of the non-coherent OAC with

ζ = ∆
P ′Nα2

1
is expressed as

MSE =
∆2

NK

(K − 1

4
+

σ2

2P ′α2
1

+
σ4

P ′2Kα4
1

)
. (15)

Proof: Suppose S =
∑N
n=1 |y[n]|2 in (6). Then, we have

S =

N∑
n=1

|
∑
k∈K

hkbk[n]sk + w[n]|2

=

N∑
n=1

K∑
k=1

K∑
i=1
j 6=k

P ′α2
1

√
mk −mmin

∆

mi −mmin

∆
ej(X̃i[n]−X̃k[n])

︸ ︷︷ ︸
=:A

+ 2

N∑
n=1

K∑
k=1

√
P ′α1

√
mk

∆
− mmin

∆
<
{
ejX̃k[n]w∗[n]

}
︸ ︷︷ ︸

=:B

+

N∑
n=1

|w[n]|2︸ ︷︷ ︸
=:C

+N

K∑
k=1

P ′α2
1(
mk

∆
− mmin

∆
). (16)

Because X̃i[n] − X̃k[n] follows the uniform distribution in
[0, 2π] for i 6= k, we have E[A] = 0 and the variance as

Var[A] =
1

4
P ′2α4

1NK(K − 1). (17)

Moreover, because w[n] follows the complex Gaussian distri-
bution with zero mean and variance of σ2, we obtain E[B] = 0
while its variance is given by

Var[B] = P ′Nα2
1σ

2
K∑
k=1

E
[mk

∆
− mmin

∆

]
=

1

2
P ′NKα2

1σ
2.

Lastly, we can readily obtain E[C] = Nσ2 and Var[C] = Nσ4.
Therefore, the MSE of the non-coherent OAC is simplified as

MSE =E
[∣∣∣f̂ − f ∣∣∣2]=E

[∣∣∣∣ζ 1

K
S +mmin −

∆

P ′Kα2
1

σ2 − f
∣∣∣∣2
]

=
∆2

P ′2K2N2α4
1

E
[∣∣A+ B + C −Nσ2

∣∣2]
=

∆2 Var[A+ B + C]
P ′2K2N2α4

1

=
∆2

NK

[K − 1

4
+

σ2

2P ′α2
1

+
σ4

P ′2Kα4
1

]
.

The MSE in Proposition 3 decreases, as the transmit
power P ′, increases. However, even with infinite P ′, the
MSE has the non-zero limiting value as limP ′→∞ MSE =
∆2(K−1)

4NK . In addition, as the number of devices K increases,
∆2

NK

(
σ2

2P ′α2
1

+ σ4

P ′2Kα4
1

)
in (15), which is subject to AWGN,

decreases. However, the other term ∆2(K−1)
4NK is an increasing



5

function of K. Also, with infinite K, the MSE has the
following limiting value limK→∞ MSE = ∆2

4N .
2) MMSE Coordination: We adopt the MMSE coordination

approach to minimize the MSE, enabling the derivation of a
closed-form expression in the non-coherent OAC, similarly
to the MMSE coordination for the coherent OAC in Section
III-A2. First, we obtain the MSE expression as

MSE = E[|f̂ − f |2]

= E[| ζ
K

(A+B+C)+
ζNP ′α2

1−∆

K

K∑
k=1

s2
k−

∆

P ′Kα2
1

σ2|2].

where S is the same as the ZF case in (16) with the identicalA,
B and C. Because E[|sk|2] = 1

2 and E[|s2
k|2] = 1

3 for the non-
coherent OAC, the MMSE minimization problem becomes

min
ζ,bk[n]

ζ2

K2

(
Var[A+B+ C] + E[C2]

)
+

ζ

K
(∆1 − 2∆2)E[C] +

∆2
1

3K2
−∆1∆2 + ∆2

2, (18)

where ∆1 = ζNP ′α2
1 − ∆ and ∆2 = ∆

P ′Kα2
1
σ2. Fixing

bk[n] =
√
pke

jXk[n] as defined in Section II-B, we can obtain
the optimal ζ, which corresponds to ∂ MSE

∂ζ = 0 and ∂2 MSE
∂ζ2 > 0,

in a closed form as

ζ=
4∆K(D2 +3D σ2 + 3σ4)

3D3(1− 1
K + 4N

3 ) + 12Dσ2
(
(1 + 2N)(D2 + σ2)−Nσ2

) ,
(19)

where D = α2
1KP

′. As a result, the MSE is presented in the
following proposition.

Proposition 4: The MSE for the non-coherent OAC with
the MMSE coordination is expressed as

MSE =

∆2(D2 +3D σ2 + 3σ4)(D2(K − 1) + 2DKσ2 + 4Kσ4)

3K D2(D2(1− 1
K + 4N

3 ) + 2σ2((1 + 2N)(D+σ2) + σ2))
.

(20)

Based on Proposition 4, we can identify the following proper-
ties of the MSE. First, with higher P ′, the MSE decreases,
ultimately converging to limP ′→∞ MSE = ∆2(K−1)

−3+K(3+4N) as
P ′ → ∞. Also, as K increases, the MSE approaches the
limiting value of limK→∞ MSE = ∆2

3+4N .

IV. SIMULATION RESULTS

In this section, we will present simulation results to observe
the impacts of various system parameters and validate our
analysis. For simulation, we use mmin = −1, mmax = 1,
and the carrier frequency is 1GHz. The devices are assumed
to be uniformly distributed over the disk with R = 100m
and the height of the FC from the ground H is 200m for
the system model in Fig. 1. In addition, for the coherent
approach, we consider the composite POs are subject to
quantization noise [13], phase estimation error in phase-locked
loop (PLL) circuit [14], UAV jittering effect [15], and IQI
[16]. Following the corresponding models in [13]–[16], we
employ a uniform distribution for quantization noise [13], a

Fig. 2. The MSE performances of coherent and non-coherent OAC, when
Bq = 3, gmin = 1, gmax = 2, K = 100, σ2

e ∈ {0.01, 0.1, 0.5}, and
N ∈ {50, 100, 300}.

Fig. 3. The MSEs with different K and N , when SNR = 20dB, Bq = 4
and σ2

e = 2.

Tikhonov distribution for PLL [14], and Gaussian distributions
for IQI and jittering effect. These factors are assumed to be
independent of each other, by which the composite POs are
expressed as the sum of these phase errors. Other factors
except for the quantization noise are assumed to have the same
variance, and the quantization level is defined as Bq . It is noted
that the non-parametric estimation method proposed in this
paper can be applied to an arbitrary combination of various
impairments that affect the POs. To quantify the degree of the
composite effects, we define the variance of the composite POs
as σ2

e . Moreover, the estimator randomly samples among the
composite POs measured in the entire iteration and computes
the PDF from the sample observations. The reliability of the
proposed closed-form equation is verified by comparing the
simulation and theoretical results.

Fig. 2 shows how the MSEs vary with different average
signal-to-noise ratios (SNRs) of the received signal at the FC.
In the coherent scenario, the MSE significantly deteriorates,
as the variance of the PO σ2

e increases. On the other hand, for
the non-coherent systems, the MSE decreases, as the sequence
length N increases, which is in line with the properties derived
from Propositions 3 and 4. Further, the simulation results are
consistent with the analytical results for the arithmetic mean,
which validate our analysis in the previous section. Also,
comparing the ZF and MMSE schemes, MMSE consistently
yields equal or lower MSEs compared to ZF for both coherent
and non-coherent cases.

In Fig. 3, we investigate the impacts of the number of
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Fig. 4. The variances of the POs σ2
e to achieve the same MSEs with ZF,

when SNR = 15dB and Bq = 1.

Fig. 5. The variances of the POs σ2
e for the same MSEs with MMSE, when

SNR = 15dB and Bq = 1.

devices K and sequence length N on the MSE performance.
The MSE of the coherent OAC decreases, as K increases,
which shows its effectiveness with massive K. On the other
hand, the MSE of the non-coherent OAC decreases, as the
random sequence length N increases. We observe that with
large enough N , the MSE for the non-coherent OAC can
become lower than that for the coherent OAC, which indicates
performance improvement by the pertinent choice of the two
approaches with parameter adjustments. In addition, for both
approaches, MMSE outperforms ZF.

Lastly, Figs. 4 and 5 show the variance of PO σ2
e for the

coherent OAC to achieve the same MSE as that of the non-
coherent OAC for different K and N . It is observed that the
required σ2

e values of the simulation and analysis are almost
the same, meaning that we can determine which approach
to use based on the derived MSEs for the given system
parameters. In addition, σ2

e , which gives the same MSEs,
decreases, as K decreases. Also, it increases with higher N ,
because the MSE of the non-coherent OAC improves.

V. CONCLUSION

In this paper, we have made a fair comparison between
the coherent and non-coherent OAC approaches following
the same theoretical framework and clarified the differ-
ences including the data encoding, pre-processing, and post-
processing. Further, the MSEs of both approaches with the ZF
and MMSE schemes have been derived in closed-form expres-
sions, which capture how the two MSEs change depending on
the key system parameters such as transmit power, channel
gain, and the number of devices. In particular, the MSE of
the coherent OAC is highly susceptible to the POs, whilst the
sequence length is the key factor in that of the non-coherent
OAC. In addition, we have presented simulation results to

validate our analysis and investigated the impacts of various
system parameters.
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