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Abstract—This paper presents an innovative large model
framework for optimizing the task offloading efficiency in
vehicular edge networks, with a focus on ultra-reliable low-
latency communication. We introduce a comprehensive model
that integrates quantum computing with a deep reinforcement
learning (DRL) model, supported by long short-term memory
(LSTM) networks and a digital twin framework. This integration
is designed to address the complexities of distributed vehicular
edge computing networks, targeting efficient latency, energy, and
quality-of-service management. Our model utilizes the parallel
processing capabilities of quantum computing to enhance the
DRL algorithm, effectively handling high-dimensional decision
spaces. LSTM networks provide predictive insights into future
network states in a digital twin framework and ensure real-time
synchronization and adaptive strategy optimization. We employ a
multi-agent framework, encompassing vehicles, unmanned aerial
vehicles, and base stations, each utilizing a Nash equilibrium-
based strategy for optimal decision-making, supplemented by
incentive and penalty functions for reward optimization. Simula-
tion results demonstrate notable improvements in task offloading
efficiency, highlighting the model’s efficacy over conventional
DRL models.

Index Terms—Vehicular edge computing, task offloading,
ultra-reliable low-latency communication, quantum deep rein-
forcement learning, large model framework, long short-term
memory networks, digital twin, and multi-agent systems.

I. INTRODUCTION

FUSION of large models (LMs) and intelligent transporta-
tion systems (ITS) marks a revolutionary development in

the domain of future vehicles and transportation [1]. ITS needs
sophisticated artificial intelligence-enabled LMs as we move
into the era of the sixth generation (6G) networks [2]. Large
language models (LLMs) can revolutionize 6G communication
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by analyzing data, improving signal processing, and generating
code for hardware development, creating intelligent wireless
networks that adapt for an enhanced user experience. A
robust LMs model could encompass LLMs as a subcategory
in its framework. The LMs, empowered by advanced com-
putational technologies like quantum computing and LLMs
redefine the capabilities of large-scale models [1]–[3]. Re-
cent advancements in ultra-definition multimedia streaming
and data-intensive applications emphasize the need for high-
end task processing capabilities, especially for services under
the constraints of ultra-reliable low-latency communication
(URLLC) [4]. While modern mid/low-budget vehicles lack
the specialized hardware for on-board processing of resource-
intensive tasks, mobile edge computing (MEC) offers a so-
lution by bringing computational resources closer to the data
source [5]. MEC integration into vehicles is limited by space,
power, and cost constraints. Therefore, MEC units are mostly
installed at static locations like base stations (BS) and/or
in specialized aerial vehicles [4], [6], [7]. In scenarios with
high computational demands, vehicles can offload these tasks
to MEC and/or to unmanned aerial vehicles (UAVs), thus
optimizing network efficiency and resource management.

In this context, the introduction of digital twins (DT) in
ITS represents a potential paradigm shift [4]. By creating
virtual replicas of physical entities, DT enables real-time
monitoring, simulation, and predictive analytics. This allows
for more effective resource management and optimization in
task-offloading schemes. Vehicles, facing high computational
demands, can employ DTs for strategic task offloading to MEC
units, either through BS and/or UAVs [4], [8]. Building on the
transformative role of DT in ITS and the evolving landscape of
6G networks, the incorporation of modern machine learning
techniques and artificial intelligence becomes imperative for
optimizing large network models [8].

A. Motivations of the work

The authors in [9] proposed a MEC service to the vehicle by
a stationary BS. However, standalone BS topologies serving
vehicles, particularly in areas with heavy traffic loads, cur-
rently face challenges related to bottleneck issues. However,
geographical constraints often limit the establishment of BS
in certain areas. Recent studies focus on these challenges [4],
[10]. A distributed task offloading strategy, covering a wide
geographical area, not only addresses these bottlenecks but
also enhances network coverage for vehicular edge computing
(VEC) services. Modern UAVs offer a solution, providing
greater flexibility and potential for direct line-of-sight (LoS)
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connections with vehicles. Researchers thoroughly investi-
gated the integration of heterogeneous distributed computing
models for edge service provision in modern ITS [4], [7], [10].

Additionally, the complex task of resource allocation across
MEC, vehicles, UAVs, BS, and other entities in the VEC
network presents a dynamic and time-variant optimization
challenge. Deep reinforcement learning (DRL) emerges as an
appropriate solution, effectively handling the stochastic nature
of edge computing resources and channel state information
(CSI) [4], [8], [11]. Zhao et al. explored a deep deterministic
policy gradient (DDPG) based DRL algorithm to train the
offloading strategy in [12]. However, another recent study
proves that a proximal policy optimization (PPO)-based DRL
algorithm offers numerous advantages over DDPG in terms of
sample efficiency, stability, ease of implementation, adaptabil-
ity to constraints, handling sparse rewards, and suitability for
continuous action spaces [13]. Furthermore, DT plays a crucial
role in modern wireless services, creating virtual replicas of
the physical world. This capability allows for more flexible
optimization decisions based on historical data and pattern
analysis within the DT framework [14]. Research [4], [15]
leads to the development of a DT-aided multi-agent DRL
system for task offloading, which assists edge computing in
vehicular networks and proves more efficient than centralized
DRL techniques.

Further enhancing the capabilities of the DT-DRL task
offloading model, Chen et al. explored long short-term mem-
ory (LSTM) networks to process and analyze temporal data
effectively [16]. In a network where conditions and user
demands are stochastic, LSTMs provide the foresight needed
for predictive resource allocation and proactive task offloading,
aligning perfectly with the predictive analytics facilitated by
DTs. The promising potential of quantum computing [17] in
the DRL model introduces a quantum leap in our network
optimization capabilities [18]. By exploiting the immense
processing power of quantum computing, our DRL framework
enables faster and more accurate decision-making in high-
dimensional environments typical of 6G ITS networks.

B. Contributions of the Work

This work proposes novel research, integrating advanced
technological paradigms in DTs, quantum-aided multi-agent
DRL, and VEC within the ITS framework to serve the URLLC
services to the moving vehicles. The key contributions of our
work are outlined as follows:

1) Synchronized Operation of DT and Physical World
Agents: Our approach uniquely employs DTs to uti-
lize historical data using the deep learning-based LSTM
model for more informed decision-making. Using DT
and physical agents for the same entity, we introduce a
novel operational model. This simultaneous and parallel
operation aims for real-time convergence and periodic
synchronization.

2) Distributed Edge Computing in ITS Networks: Our re-
search takes a deep dive into distributed edge computing
within ITS networks. We emphasize the strategic pro-
cessing of tasks within the edge network under specific

constraints, ensuring the timely servicing of vehicular
URLLC’s latency-sensitive task offloading requests.

3) Quantum-Enhanced DRL for Vehicular Task-Offloading
Services: We explore quantum computing within a multi-
agent DRL framework for practical applications in ve-
hicular task offloading. This exploration addresses the
unique challenges posed by vehicular networks’ dynamic
nature, building upon insights from a foundational study
in [18]. Through a quantum-aided multi-agent DRL
framework, our work makes significant progress in man-
aging entanglement. This intricate process is crucial for
optimizing a global function while accounting for the
individual dynamics of each participating agent.

4) Enhanced Task Offloading Efficiency: A major highlight
of our work is the numerical analysis demonstrating that
our proposed model significantly improves task offload-
ing efficiency over the conventional DRL algorithms. This
advancement is quantitatively validated, showcasing the
practical efficacy of our model in optimizing network
resources and performance in real-world scenarios.

The proposed Quantum-DRL framework, which includes
LSTM in a DT architecture, has significant importance for
vehicular networks. It can improve traffic management, safety,
and the effectiveness of autonomous driving systems. The
framework optimizes VEC for URLLC services and promises
to improve intelligent transportation systems by enabling better
real-time data exchange, dynamic traffic control, and sup-
port for autonomous vehicle decision-making processes. Its
application also extends to smart city infrastructure, offering
solutions for energy optimization, congestion reduction, and
emergency response services. This integration enables ad-
vanced vehicular network functions and promotes sustainable
urban mobility and safety.

Rest of the paper is organized as follows: Section II provides
a detailed description of the system model. In Section III,
the problem is formulated. Section IV explains how the
present problem is transformed into a DRL framework. Section
V elaborates on the use of LSTM modeling in DT, and
the integration of digital and physical world using a multi-
agent quantum computing-aided DRL framework. Section VI
presents the numerical results and analysis, demonstrating the
efficiency of our model over traditional DRL methods. Finally,
in Section VII, the paper summarizes the key contributions and
suggests further scope of research.

II. SYSTEM MODEL

We consider an urban terrain where vehicles, identified as
V = {1, . . . , 𝑉}, are provisioned with URLLC technology
to facilitate real-time task processing within strict latency
constraints. These vehicles, geared to handle substantial tasks,
connect with nearby single BS and/or UAVs for efficient
edge computing. Each BS denoted as 𝑏 ∈ B = {1, . . . , 𝐵},
and UAVs, indexed by 𝑢 ∈ U = {1, . . . ,𝑈}, are equipped
with advanced MEC, competent at managing intensive tasks
processing [7]. Each BS in the network is equipped with M
antennas, where M = {1, . . . , 𝑀}. In contrast, every vehicle
and UAV operates with a single antenna setup. Vehicles can
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connect with the 𝑏-th BS while simultaneously offloading
tasks to 𝑢-th UAV. This dual-connectivity framework is pivotal
in ensuring seamless delivery of URLLC services.

In instances where a vehicle falls outside the coverage
of any BS, it solely relies on UAVs for task offloading.
This approach highlights the unique flexibility of the network
architecture, where BSs and UAVs can interconnect with
other UAVs to form a sophisticated network structure. We
consider that the present system model deals with the chal-
lenge of establishing direct links between BS due to complex
topographies such as hill stations. Due to geographical and
infrastructural constraints, achieving direct LoS connectivity
between BSs is often not feasible. Establishing wired con-
nections between BSs can also be obstructed by various
obstacles, making such an approach expensive and difficult
to implement in certain environments. Instead, we rely on the
mobility and flexibility of UAVs to facilitate indirect BS-to-
BS connections. By positioning UAVs at optimal altitudes,
we can ensure direct LoS communication links between BS,
thereby cost-effectively overcoming geographical limitations.
Moreover, the inherent mobility of UAVs offers significant ad-
vantages, allowing for dynamic redeployment based on traffic
load and network conditions, thereby enhancing the network’s
adaptability and efficiency in managing URLLC services.
The various permissible communication configurations in the
present VEC network are illustrated in Fig. 1. This figure
illustrates the comprehensive connectivity possibilities within
the VEC network, highlighting the interplay between vehicles,
BSs, and UAVs in the task offloading process.

A. Vehicle’s Task Offloading Model

The task offloading model in the vehicular network employs
an advanced method to distribute priority among subtasks.
This model dynamically calculates the priority based on
computational complexity, data size, and intrinsic urgency
of tasks, ensuring effective management of task offloading
from vehicles to BSs and/or UAVs. For each task T𝑖 at time
instant 𝑡 from a vehicle 𝑣, which is divided into subtasks
{T𝑖,1,T𝑖,2, . . . ,T𝑖,𝑛}, such that T𝑖 = {T𝑖,1∪T𝑖,2∪· · ·∪T𝑖,𝑛}.
The model calculates the priority P𝑖, 𝑗 of each subtask T𝑖, 𝑗 ,
which is defined as:

P𝑖, 𝑗 (𝑡) =
(
𝛼𝑝 (𝑡)

𝐶𝑖, 𝑗 (𝑡)∑𝑛
𝑘=1 𝐶𝑖,𝑘 (𝑡)

+ 𝛽𝑝 (𝑡)
𝐷𝑖, 𝑗 (𝑡)∑𝑛
𝑘=1 𝐷𝑖,𝑘 (𝑡)

+ 𝛾𝑝 (𝑡)𝜒𝑖, 𝑗 (𝑡)
)
𝜛𝑖, 𝑗 (𝑡)𝜘𝑖, 𝑗 (𝑡),

(1)

where 𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 denote the computational complexity to
process 1 bit of data and data size of subtask T𝑖, 𝑗 , respectively.
𝜒𝑖, 𝑗 ∈ (0, 1) stands for the intrinsic task priority. 𝜛𝑖, 𝑗 ∈ (0, 1)
and 𝜘𝑖, 𝑗 ∈ (0, 1) represent the complexity weight and data
size weight for the subtask, respectively. To ensure a balanced
impact of the respective components, the coefficients 𝛼𝑝 , 𝛽𝑝 ,
and 𝛾𝑝 are subject to the constraint:

𝛼𝑝 + 𝛽𝑝 + 𝛾𝑝 = 1, with 𝛼𝑝 , 𝛽𝑝 , 𝛾𝑝 ∈ (0, 1). (2)

Binary decision variables Γ
𝑖, 𝑗

𝑣,𝑏
= {0, 1} and Γ

𝑖, 𝑗
𝑣,𝑢 = {0, 1}

indicate whether the subtask T𝑖, 𝑗 of vehicle 𝑣 offloads to BS
𝑏 ∈ B or UAV 𝑢 ∈ U. The optimization function, formulated

Task 

Offloading

Vehicle

UAV

Base 

Station

Rate 

Rv,b(t)

Rate

Rv,u(t)

Rb,u(t)

Rb,u(t)

Ru,b(t)

Ru,u'(t)

Ru,u'(t)

Ru,b(t)

Rb,u(t)

Rb,u(t)

Latency = max(Lv,u , Lv,b)

BS to BS no direct link

L
v,

u
L

v,
b

Fig. 1: Interconnected distributed edge node for faster task offloading.

to minimize the total latency across the network, incorporates
this detailed priority allocation:

min
∑︁
𝑣∈V

∑︁
𝑏∈B

∑︁
𝑖, 𝑗

P𝑖, 𝑗 (𝑡)Γ𝑖, 𝑗

𝑣,𝑏
(𝑡)𝐿𝑖, 𝑗

𝑏
(𝑡)

+
∑︁
𝑣∈V

∑︁
𝑢∈U

∑︁
𝑖, 𝑗

P𝑖, 𝑗 (𝑡)Γ𝑖, 𝑗
𝑣,𝑢 (𝑡)𝐿𝑖, 𝑗𝑢 (𝑡),

(3)

where 𝐿𝑖, 𝑗
𝑏

and 𝐿𝑖, 𝑗𝑢 are the processing latency of the offloaded
subtask T𝑖, 𝑗 through 𝑏-th BS and 𝑢-th UAV, respectively.

B. Proposed Digital Twin (DT) Model

We introduce a DT for the current vehicular network,
incorporating a virtual counterpart of the physical network.
This model encompasses vehicles (V), BSs (B), and UAVs
(U), alongside key attributes such as computational resources
and connectivity status. The DT mimics each network compo-
nent, featuring attributes like location, connectivity, available
resources, and task load. The DT continuously synchronizes
with the physical network, providing insights for real-time
adjustments and strategy optimizations.

In the DT model, the CPU frequency ( 𝑓cpu) is pivotal in
assessing the task offloading efficiency. For a base station 𝑏 ∈
B or UAV 𝑢 ∈ U, the available MEC CPU frequency at time
𝑡 is modeled as:

𝑓cpu (𝑡) = 𝑓max (𝑡) − Δ 𝑓 (Tld (𝑡),Tamb (𝑡)) 𝑓max (𝑡), (4)

where 𝑓max (𝑡) denotes the maximum achievable MEC CPU
frequency. The adjustment function Δ 𝑓 (Tld (𝑡),Tamb (𝑡)) is
defined as a complex normal distribution, CN(0, 0.1), ac-
counting for variations due to load and ambient temperature.
The latency for offloading a task T𝑖, 𝑗 from various sources to
destinations are defined considering different scenarios in the
network:

𝑣 → 𝑏 : 𝐿
𝑖, 𝑗

𝑣,𝑏
(𝑡) =

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑣,𝑏 (𝑡)

+ 𝜅𝑏𝑖, 𝑗 (𝑡)
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)

𝑓 𝑏cpu (𝑡)
, (5a)

𝑣 → 𝑢 : 𝐿
𝑖, 𝑗
𝑣,𝑢 (𝑡) =

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑣,𝑢 (𝑡)

+ 𝜅𝑢𝑖, 𝑗 (𝑡)
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)

𝑓 𝑢cpu (𝑡)
, (5b)

𝑢 → 𝑢′ : 𝐿
𝑖, 𝑗

𝑢,𝑢′ (𝑡) =
𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑢′ (𝑡)

+ 𝜅𝑢′𝑖, 𝑗 (𝑡)
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)

𝑓 𝑢
′

cpu (𝑡)
, (5c)

𝑏 → 𝑢 : 𝐿
𝑖, 𝑗

𝑏,𝑢
(𝑡) =

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑏,𝑢 (𝑡)

+ 𝜅𝑢𝑖, 𝑗 (𝑡)
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)

𝑓 𝑢cpu (𝑡)
, (5d)
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𝑢 → 𝑏 : 𝐿
𝑖, 𝑗

𝑢,𝑏
(𝑡) =

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑏 (𝑡)

+ 𝜅𝑏𝑖, 𝑗 (𝑡)
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)

𝑓 𝑏cpu (𝑡)
, (5e)

where the term 𝑅𝑥,𝑦 (𝑡) represents the data transfer rate be-
tween components 𝑥 and 𝑦, where {𝑥, 𝑦} ∈ {B ∪ V ∪ U}
encompass all possible interactions within the BSs, vehicles,
and UAVs. Additionally, 𝑓 𝑧cpu (𝑡), 𝑧 ∈ {B ∪ U}, signifies the
CPU frequency of component 𝑥 at time 𝑡. The binary variable
𝜅𝑧
𝑖, 𝑗
(𝑡) with values in {0, 1} indicates whether the task is being

processed (𝜅𝑧
𝑖, 𝑗
(𝑡) = 1) or not (𝜅𝑧

𝑖, 𝑗
(𝑡) = 0) on component

𝑧. Specifically, in scenarios where 𝜅𝑧
𝑖, 𝑗
(𝑡) = 0, indicating the

task is not processed at node 𝑧, the task is then forwarded to
a connected node 𝑧′. This mechanism ensures dynamic task
allocation and efficient utilization of processing capabilities
across the network components.

As depicted in Fig. 1, vehicles in the network, represented
as 𝑣, possess the capability to offload tasks to either a BS 𝑏

or a UAV 𝑢. It is crucial to emphasize that each sub-task T𝑖, 𝑗

is exclusively offloaded in entirety to a single entity, either
to a BS or a UAV. Post offloading, there exists a provision
for further forwarding the subtask T𝑖, 𝑗 to an immediately
connected node within the network. This means a BS might
relay the task to an associated UAV, or conversely, a UAV
might forward the task to a connected BS or another UAV,
as illustrated in Fig. 1. However, such forwarding of tasks is
carefully managed to align with the URLLC delay thresholds.
There is a predefined limit to the extent of task forwarding
to preclude any unwarranted delays. Within our multi-agent
DRL framework, we have incorporated a sophisticated reward
accumulation model. This model is designed to effectively
mitigate excessive task relaying and to finely tune the task
offloading process. The computation of the delay in this model,
as referenced in (3), is described as:

𝐿
𝑖, 𝑗

𝑏
(𝑡) =

∑︁
𝑢,𝑏,𝑢≠𝑢′

(
𝐷𝑖, 𝑗 (𝑡)
𝑅𝑣,𝑏 (𝑡)

+ Γ
𝑖, 𝑗

𝑏,𝑢

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑏,𝑢 (𝑡)

+ Γ
𝑖, 𝑗

𝑢,𝑢′
𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑢′ (𝑡)

+ Γ
𝑖, 𝑗

𝑢,𝑏

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑏 (𝑡)

+
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)
max𝑧

(
𝑓 𝑧cpu (𝑡)

) ) ,∀{𝑖, 𝑗}, (6)

where Γ
𝑖, 𝑗

𝑏,𝑢
, Γ𝑖, 𝑗

𝑢,𝑢′ , and Γ
𝑖, 𝑗

𝑢,𝑏
are binary variables indicating the

connectivity status between nodes. In a similar vein, if a ve-
hicle’s subtask is offloaded through a UAV, the corresponding
latency 𝐿𝑖, 𝑗𝑢 (𝑡) as per (3) is computed as:

𝐿
𝑖, 𝑗
𝑢 (𝑡) =

∑︁
𝑢,𝑏,𝑢≠𝑢′

(
𝐷𝑖, 𝑗 (𝑡)
𝑅𝑣,𝑢 (𝑡)

+ Γ
𝑖, 𝑗

𝑢,𝑢′
𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑢′ (𝑡)

+ Γ
𝑖, 𝑗

𝑢,𝑏

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑢,𝑏 (𝑡)

+ Γ
𝑖, 𝑗

𝑏,𝑢

𝐷𝑖, 𝑗 (𝑡)
𝑅𝑏,𝑢 (𝑡)

+
𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)
max𝑧

(
𝑓 𝑧cpu (𝑡)

) ) ,∀{𝑖, 𝑗}. (7)

The DT estimates the available CPU frequencies, expressed as
∥ 𝑓 𝑧cpu (𝑡) − 𝑓 𝑧cpu (𝑡)∥, where 𝑓 𝑧cpu (𝑡) represents the estimated de-
viation (i.e., error) in CPU frequency for component 𝑧. These
estimations are crucial for optimizing offloading strategies to
minimize latency and enhance URLLC capabilities.

C. Mobility Model in VEC Network

The total duration of the timeframe 𝑇 is divided into
𝑇 slots, each with duration 𝜏 such that 𝑇 = 𝑇𝜏. Each

vehicle in V is allocated a sub-slot 𝑡 ∈ T to request VEC
services and initiate task offloading [4]. In our proposed
model, vehicles and UAVs, excluding BSs, exhibit mobility
governed by the random waypoint (RWP) model [19]. These
entities are initially randomly distributed within a 3D space,
bounded by X ∈ (−𝑋min, +𝑋max), Y ∈ (−𝑌min, +𝑌max), and
Z ∈ (−𝑍min, +𝑍max). We assume stationary positions for these
elements during the time interval 𝜏 = [Δ𝑡 ,𝑡−1] [4]. In our
modified RWP model, the vertical movement is influenced by
both the speed and the angle of ascent or descent. This is
particularly relevant for vehicles navigating hilly terrains or
UAVs adjusting their altitude. The positions of vehicles and
UAVs are updated at each time slot 𝑡 as follows:

𝑥𝑣 (𝑡) = 𝑥𝑣 (𝑡 − 1) + �̃�𝑣 (𝑡 − 1)Δ𝑡 cos(𝜃𝑣 (𝑡 − 1)), (8)
�̃�𝑣 (𝑡) = �̃�𝑣 (𝑡 − 1) + �̃�𝑣 (𝑡 − 1)Δ𝑡 sin(𝜃𝑣 (𝑡 − 1)), (9)
𝑧𝑣 (𝑡) = 𝑧𝑣 (𝑡 − 1) + �̃�𝑣𝑧 (𝑡 − 1)Δ𝑡 sin(𝜙𝑣 (𝑡 − 1)), (10)

where �̃�𝑣 (𝑡) and �̃�𝑣𝑧 (𝑡) represent the horizontal and vertical
components of velocity, respectively. 𝜃𝑣 (𝑡) is the horizontal
movement direction, while 𝜙𝑣 (𝑡) represents the angle of ascent
or descent relative to the horizontal plane. For vehicles, this
angle can represent the slope of the terrain, whereas for
UAVs, it indicates the angle of altitude change. Hence, the
location of the vehicle 𝑣 at time instant 𝑡 is denoted as
𭟋𝑣 (𝑡) = {𝑥𝑣 (𝑡), �̃�𝑣 (𝑡), 𝑧𝑣 (𝑡)},∀𝑣 ∈ V. A similar approach
is used for the UAVs, with their positions represented as
𭟋𝑢 (𝑡) = {𝑥𝑢 (𝑡), �̃�𝑢 (𝑡), 𝑧𝑢 (𝑡)},∀𝑢 ∈ U. The location of each
BS 𝑏 is fixed and denoted as 𭟋𝑏 = {𝑥𝑏, �̃�𝑏, 𝑧𝑏},∀𝑏 ∈ B.

D. Data Rate Model and Transmission Delay

In our communication model, different transmission strate-
gies are adopted based on the capabilities and roles of the
involved entities as given in Table I.

TABLE I: Communication Models between Different Entities.

From To Mode Channels Data Rate
Vehicle 𝑣 BS 𝑏 SIMO h𝑣,𝑏 ∈ C𝑀×1 𝑅𝑣,𝑏 (𝑡 )
Vehicle 𝑣 UAV 𝑢 SISO ℎ𝑣,𝑢 ∈ C1×1 𝑅𝑣,𝑢 (𝑡 )
UAV 𝑢 UAV 𝑢′ SISO ℎ𝑢,𝑢′ ∈ C1×1 𝑅𝑢,𝑢′ (𝑡 )
BS 𝑏 UAV 𝑢 MISO h𝑏,𝑢 ∈ C1×𝑀 𝑅𝑏,𝑢 (𝑡 )
UAV 𝑢 BS 𝑏 SIMO h𝑢,𝑏 ∈ C𝑀×1 𝑅𝑢,𝑏 (𝑡 )

1) Vehicle to BS Data Rate and Latency Calculation: Data
transmission from a vehicle 𝑣 to a BS 𝑏 (each BS has 𝑀

antennas) in a vehicular network is influenced by path-loss,
Doppler effects due to mobility, imperfect CSI, and the angle-
of-arrival (AoA). Channel gain h𝑣,𝑏 (𝑡) ∈ C𝑀×1 is written as:

h𝑣,𝑏 (𝑡) =
√︁

PL𝑣,𝑏 (𝑡)𝑒 𝑗2𝜋 𝑓𝑑,𝑣 (𝑡 )𝜏 (ĥ𝑣,𝑏 (𝑡) + 𝜖𝑣,𝑏 (𝑡)), (11)

where PL𝑣,𝑏 (𝑡) represents the path-loss. To incorporate this
parameter accurately in our calculations, we need to transform
it from a logarithmic (dB) to a linear scale. This conversion is
achieved by applying the formula 10

PL𝑣,𝑢 (𝑡 )
10 , where PL𝑣,𝑢 (𝑡) is

the path-loss in dB. 𝑓𝑑,𝑣 (𝑡) is the Doppler shift, ĥ𝑣,𝑏 (𝑡) is the
estimated CSI. The term 𝜖𝑣,𝑏 (𝑡) ∈ C𝑀×1 in (11) is the CSI
estimation error. It is characterized by the set as follows [20]:

T𝜖 =
{
𝜖𝑣,𝑏 ∈ C𝑀×1 : ∥𝜖𝑣,𝑏∥ ≤ 𝜏𝑣,𝑏, 𝑣, 𝑏 = 1, . . . , 𝑀

}
, (12)
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where ∥ · ∥ denotes the norm. Within the set, entries of 𝜖𝑣,𝑏
are independent and identically distributed (i.i.d) and assumed
to have zero mean with variance 𝜎2

𝑣,𝑏
. For the present work,

we consider uniformly distributed bounded CSI uncertainty
𝜎2
𝑣,𝑏

= {0.05, 0.10}, as discussed in [20], [21].
The Rayleigh fading scenario between the vehicle 𝑣 and the

BS 𝑏 implies the absence of the LoS path. Thus, the channel
ĥ𝑣,𝑏 (𝑡) is written as:

ĥ𝑣,𝑏 (𝑡) = a𝑣 (𝜗𝑣 (𝑡)) , (13)

where a𝑣 (𝜗𝑣 (𝑡)) represents the steering vector at the BS’s
multiple antennas 𝑀 and expressed as [22]:

a𝑣 (𝜗𝑣 (𝑡)) =
[
1, 𝑒 𝑗

2𝜋𝛿
𝜆(𝑡 ) sin 𝜗𝑣 (𝑡 ) , .., 𝑒 𝑗

2𝜋𝛿
𝜆(𝑡 ) (𝑀−1) sin 𝜗𝑣 (𝑡 ) ]T

, (14)

with 𝛿 as the antenna separation distance and 𝜗𝑣 (𝑡) as the
AoA. This specification highlights that our focus is on the
geometric aspects of the signal reception, particularly how the
signal’s arrival angle at the BS antennas affects the observed
signal [22], without directly addressing the stochastic nature
of the channel gain’s magnitude in the above equation.

The urban path-loss (in dB) is given by using the Okumura
model [23]:

PL𝑣,𝑢 (𝑡) =69.55 + 26.16 log10 𝑓𝑐 − 13.82 log10 (ℎBS) − 𝑎(ℎveh)
+ (44.9 − 6.55 log10 (ℎBS)) log10 (𝑑𝑣,𝑏 (𝑡)), (15)

where 𝑓𝑐 is the carrier frequency in MHz, ℎBS is the height of
the BS’s antenna above the ground, and 𝑎(ℎveh) is a correction
factor for the height of the vehicle’s antenna, calculated as
𝑎(ℎveh) = (1.1 log10 ( 𝑓𝑐)−0.7)ℎveh−(1.56 log10 ( 𝑓𝑐)−0.8). The
symbol 𝑑𝑣,𝑏 (𝑡) represents the distance between the vehicle 𝑣
and the BS 𝑏 at time 𝑡.

However, in the context of vehicle-to-BS communications,
the 3GPP technical specifications provide detailed path-loss
models catering to various environmental conditions [24].
Among these, the urban macro (UMa) path-loss models are
pivotal for evaluating vehicle-to-infrastructure communica-
tions. These models are differentiated based on LoS and NLoS
propagation conditions, which are expressed as [24]:

PLLoS =

{
PL1, for 10 m ≤ 𝑑𝑣,𝑏 ≤ 𝑑′BP,

PL2, for 𝑑′BP < 𝑑𝑣,𝑏 ≤ 5 km,
(16)

PL1 = 28.0 + 22 log10 (𝑑𝑣,𝑏) + 20 log10 ( 𝑓𝑐), (17)
PL2 = 28.0 + 40 log10 (𝑑𝑣,𝑏) + 20 log10 ( 𝑓𝑐)

− 9 log10

(
(𝑑′BP)

2 + (ℎBS − ℎUT)2
)
, (18)

PLNLoS = max
(
PLLoS, PL′

NLoS
)
, (19)

PL′
NLoS = 13.54 + 39.08 log10 (𝑑𝑣,𝑏) + 20 log10 ( 𝑓𝑐)

− 0.6(ℎUT − 1.5), (20)

where 𝑑′BP is the breakpoint distance for LoS. ℎUT is the height
of the vehicle’s antenna.

The Doppler shift due to the relative velocity between
vehicle 𝑣 and the stationary BS 𝑏 is computed as:

𝑓𝑑,𝑣 (𝑡) =
𝑉𝑣 (𝑡) cos(𝜑𝑣 (𝑡))

𝜆
, (21)

where 𝑉𝑣 (𝑡) is the relative velocity, 𝜑𝑣 (𝑡) ∼ U(−90◦, +90◦)
is the angle of vehicle movement relative to the LoS, and 𝜆 is
the wavelength of the carrier signal. The signal-to-interference-
plus-noise ratio (SINR) at the BS for the signal received from
vehicle 𝑣 is given by:

𝜔𝑣,𝑏 (𝑡) =
𝑝𝑣,𝑏 (𝑡)

��h𝑣,𝑏 (𝑡)
��2

𝜎2
𝑏

, (22)

where 𝑝𝑣,𝑏 (𝑡) is the transmit power from vehicle 𝑣 to BS 𝑏

and 𝜎2
𝑏

is the noise power at BS.
The URLLC achievable rate 𝑅𝑣,𝑏 (𝑡) for communication

from vehicle 𝑣 to BS 𝑏 is calculated as:

𝑅𝑣,𝑏 (𝑡) = B
©«log2

(
1 + 𝜔𝑣,𝑏 (𝑡)

)
−

√︄
𝑉 (𝜔𝑣,𝑏 (𝑡))
𝑙𝑣 (𝑡)

× 𝜁ª®¬ , (23)

where B is the system bandwidth, 𝑉 (𝜔𝑣,𝑏 (𝑡)) represents
the channel dispersion, 𝑙𝑣 (𝑡) is the finite block length, and
𝜁 =

Q−1 (𝜖𝑏 )
log𝑒 2 , where Q−1 (𝜖𝑏) is the inverse of the Gaussian

Q-function with parameter 𝜖𝑏 used to calculate the decoding
error probability. Finally, the transmission latency for the sub-
task T𝑖, 𝑗 from vehicle 𝑣 to BS 𝑏 is determined as: T 𝑏

𝑣 (𝑡) =
𝐷𝑖, 𝑗 (𝑡 )
𝑅𝑣,𝑏 (𝑡 ) . It is worth mentioning here that the convergence of
transmission time in SISO over Rayleigh fading channels
is not directly applicable to the scope and methodologies
employed in our research [25]. Our analysis implicitly assumes
an MISO setting that mitigates the severe effects of deep fades
inherent to Rayleigh fading [25]. This approach allows us to
maintain the assumption of a finite average transmission time,
which is crucial for the practical significance of our latency
calculations. Specifically, for the latency calculation from the
vehicle to the base station in (23), we consider 𝑀 > 1 for the
MISO model, which ensures a finite expected transmission
time in our analyses [25].

2) Vehicle to UAV Data Rate and Latency Calculation:
We adopt a Rician channel model for the vehicle-to-UAV
communication, considering the combination of LoS and non-
line-of-sight (NLoS) components due to the potential for a
clear LoS. The channel gain ℎ𝑣,𝑢 (𝑡) between vehicle 𝑣 and
UAV 𝑢 is modeled as:

ℎ𝑣,𝑢 (𝑡) =
√︁

PL𝑣,𝑢 (𝑡)
(√︂

𝐾

𝐾 + 1
ℎLoS (𝑡)𝑒 𝑗2𝜋 𝑓𝑑,𝑣,𝑢 (𝑡 )𝜏

+
√︂

1
𝐾 + 1

ℎNLoS (𝑡)
)
,

(24)

where 𝐾 is the Rician factor, and we set 𝐾 = 6 [26], [27].
The Doppler shift 𝑓𝑑,𝑢,𝑢′ (𝑡) is modeled as given in (21). The
LoS component ℎLoS (𝑡) and the NLoS component ℎNLoS (𝑡)
are given respectively by:

ℎLoS (𝑡) = 𝑒 𝑗 𝜙 (𝑡 ) , ℎNLoS (𝑡) =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑒 𝑗 𝜃𝑖 (𝑡 ) , (25)

where 𝜙(𝑡) and 𝜃𝑖 (𝑡) represent the random phases for the LoS
and the 𝑖-th NLoS paths, respectively, and 𝑁 is the number of
NLoS paths. The free-space path-loss is given by:

PL𝑣,𝑢 (𝑡) = PL0

(
𝑑𝑣,𝑢 (𝑡)
𝑑0

)−𝛼𝑃𝐿

, (26)
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where 𝑑𝑣,𝑢 (𝑡) is the distance between the vehicle and the UAV,
and 𝛼𝑃𝐿 is the path-loss exponent.

An advanced 3GPP path-loss model [28] in an UMa sce-
nario for UAV communication measures the signal attenuation
in UAV-to-ground and UAV-to-UAV communication scenarios,
where the altitude of UAVs and the environment play signif-
icant roles in determining the quality of the communication
link. These are defined as follows [28]:

PLLoS = 28 + 22 log10 (𝑑) + 20 log10 ( 𝑓𝑐), (27)
PLNLoS = −17.5 + (46 − 7 log10 (ℎ𝑅)) log10 (𝑑𝑣,𝑢) (28)

+ 20 log10 (40𝜋 𝑓𝑐/3) ,

PLoS =

{
1, 𝑑𝑣,𝑢 ≤ 𝑑1,
𝑑1
𝑑𝑣,𝑢

+
(
1 − 𝑑1

𝑑𝑣,𝑢

)
exp

(
− 𝑑𝑣,𝑢

𝑝1

)
, 𝑑𝑣,𝑢 > 𝑑1,

(29)

where PLoS is the probability of having a LoS condition
between the transmitter and receiver. ℎ𝑅 is the height of the
UAV. 𝑑1 is the threshold distance from the transmitter to the
receiver. A smaller 𝑝1 value indicates a faster decrease in LoS
probability, suggesting that LoS conditions become less likely
at shorter distances beyond 𝑑1. According to [24], we estimate
to consider 𝑝1 = 63 for the present work. The above LoS
probability is calculated by considering the fact that the UAV’s
height belongs to a range of 22.5–100 meters. Once a UAV
is flying higher than 𝑑1 = 100 meters in height, the channel
becomes LoS [28].

The SINR for the vehicle-to-UAV link is calculated as
follows:

𝜔𝑣,𝑢 (𝑡) =
𝑝𝑣,𝑢 (𝑡) | ℎ̂𝑣,𝑢 (𝑡) |2

𝜎2
𝑢

, (30)

where 𝑝𝑣,𝑢 (𝑡) is the transmit power from vehicle 𝑣 to UAV
𝑢 and 𝜎2

𝑢 is the noise power. The channels follow imperfect
CSI as discussed in (13).

The URLLC achievable data rate 𝑅𝑣,𝑢 (𝑡) for communication
from vehicle 𝑣 to UAV 𝑢 is:

𝑅𝑣,𝑢 (𝑡) = B
©«log2 (1 + 𝜔𝑣,𝑢 (𝑡)) −

√︄
𝑉 (𝜔𝑣,𝑢 (𝑡))
𝑙𝑣 (𝑡)

× 𝜁ª®¬ . (31)

The transmission latency T 𝑢
𝑣 (𝑡) for a data packet of size

𝐷𝑖, 𝑗 (𝑡) from vehicle 𝑣 to UAV 𝑢 is given by: T 𝑢
𝑣 (𝑡) = 𝐷𝑖, 𝑗 (𝑡 )

𝑅𝑣,𝑢 (𝑡 ) .
3) UAV to UAV Data Rate and Latency Calculation: For

UAV-to-UAV communication, we use a Rician channel model,
which is affected by the Doppler shift due to the relative
motion of UAVs. The channel gain ℎ𝑢,𝑢′ (𝑡) between UAV 𝑢

and UAV 𝑢′ is modeled as (24) and the path-loss is modeled
similar to (26). The SINR for the UAV-to-UAV link is:

𝜔𝑢,𝑢′ (𝑡) =
𝑃𝑢,𝑢′ (𝑡) |ℎ𝑢,𝑢′ (𝑡) |2

𝜎2
𝑢′

, (32)

where 𝑃𝑢,𝑢′ (𝑡) is the transmit power and 𝜎2
𝑢′ is the noise

power. The achievable data rate 𝑅𝑢,𝑢′ (𝑡) is calculated as:

𝑅𝑢,𝑢′ (𝑡) = B
©«log2 (1 + 𝜔𝑢,𝑢′ (𝑡)) −

√︄
𝑉 (𝜔𝑢,𝑢′ (𝑡))

𝑙𝑣 (𝑡)
× 𝜁ª®¬ . (33)

The transmission latency T 𝑢′
𝑢 (𝑡) for a data packet of size

𝐷𝑖, 𝑗 (𝑡) from UAV 𝑢 to UAV 𝑢′ is: T 𝑢′
𝑢 (𝑡) = 𝐷𝑖, 𝑗 (𝑡 )

𝑅𝑢,𝑢′ (𝑡 ) .

4) BS-to-UAV and UAV-to-BS Rate and Latency Model:
In our vehicular network model, BS-to-UAV and UAV-to-BS
communications follow the Rician channel model to accom-
modate the mixed LoS and NLoS scenarios. The Doppler
effect due to relative mobility is also considered, particularly
significant in dynamic UAV environments.

a) BS-to-UAV (MISO): The BS 𝑏 communicates with
UAV 𝑢 using a MISO model. The channel gain between BS
and UAV at time instant 𝑡 is calculated similarly to the (24).
The SINR at the UAV is calculated as:

𝜔𝑏,𝑢 (𝑡) =
𝑃𝑏,𝑢 (𝑡) |h𝑏,𝑢 (𝑡) |2

𝜎2
𝑢

, (34)

where h𝑏,𝑢 ∈ C𝑀×1, 𝑃𝑏,𝑢 (𝑡) is the transmit power and 𝜎2
𝑢 is

the noise power.
The URLLC achievable rate 𝑅𝑏,𝑢 (𝑡) is given by:

𝑅𝑏,𝑢 (𝑡) = B
©«log2 (1 + 𝜔𝑏,𝑢 (𝑡)) −

√︄
𝑉 (𝜔𝑏,𝑢 (𝑡))
𝑙𝑏 (𝑡)

× 𝜁ª®¬ , (35)

and the latency T 𝑢
𝑏
(𝑡) is: T 𝑢

𝑏
(𝑡) = 𝐷𝑖, 𝑗 (𝑡 )

𝑅𝑏,𝑢 (𝑡 ) .
b) UAV-to-BS (SIMO): We use a SIMO model for UAV

𝑢 communicating with BS 𝑏. The channel gain ℎ𝑢,𝑏 (𝑡) is
modeled as similar to (24). The SINR at the BS is written
as

𝜔𝑢,𝑏 (𝑡) =
𝑃𝑢,𝑏 (𝑡) |h𝑢,𝑏 (𝑡) |2

𝜎2
𝑏

, (36)

where h𝑢,𝑏 (𝑡) ∈ C1×𝑀 . The URLLC data rate 𝑅𝑢,𝑏 (𝑡) is:

𝑅𝑢,𝑏 (𝑡) = B
©«log2 (1 + 𝜔𝑢,𝑏 (𝑡)) −

√︄
𝑉 (𝜔𝑢,𝑏 (𝑡))
𝑙𝑢 (𝑡)

× 𝜁ª®¬ , (37)

and the transmission latency T 𝑏
𝑢 (𝑡) is: T 𝑏

𝑢 (𝑡) = 𝐷𝑖, 𝑗 (𝑡 )
𝑅𝑢,𝑏 (𝑡 ) .

III. PROBLEM FORMULATION

The objective of the problem is to minimize the total task
offloading latency in the URLLC-enabled VEC network. In
comparison to the task offloading process for MEC, it is
observed that the results are returned in a significantly smaller
number of bits. Consistent with the findings presented in [14],
the time taken to transmit the computational outcomes back
to the vehicle is negligible. As a result, and in line with the
observations in [14], [29], we can reasonably disregard the
time and power required for transmitting these computation
results back to the vehicle, given the substantially smaller
size of the computation outcomes compared to the volume
of data offloaded. The objective of the problem is to optimize
the overall performance of the URLLC-enabled VEC network
as mentioned in (3). However, considering multiple factors
such as latency, energy efficiency, and quality-of-service (QoS)
ensures a more efficient and reliable network operation. The
objective function is thus formulated to minimize not only the
total latency for task offloading but also to incorporate energy
consumption and QoS considerations:

min
a

∑︁
𝑣∈V

∑︁
𝑖, 𝑗

P𝑖, 𝑗 (𝑡)
( ∑︁
𝑏∈B

Γ
𝑖, 𝑗

𝑣,𝑏
(𝑡)𝐿𝑖, 𝑗

𝑏
(𝑡) +

∑︁
𝑢∈U

Γ
𝑖, 𝑗
𝑣,𝑢 (𝑡)𝐿𝑖, 𝑗𝑢 (𝑡)
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+ 𝜆𝐸
∑︁
𝑣∈V

∑︁
𝑖, 𝑗

𝐸
𝑖, 𝑗
𝑣 (𝑡) − 𝜆𝑄

∑︁
𝑣∈V

∑︁
𝑖, 𝑗

𝑄𝑖, 𝑗 (𝑡)
)
, (38)

where a is a collective action space for the network and is
written as a = {a𝑣 ∪ a𝑢 ∪ a𝑏}, with a𝑣 , a𝑢, and a𝑏 as the
action spaces of the vehicle, UAV, and BS agents, respectively.
A detailed exposition of each agent’s action space, along
with the parameters and functionalities encompassed within, is
provided in Section IV. 𝜆𝐸 and 𝜆𝑄 are the weighting factors
that balance the importance of energy consumption and QoS
against latency in the objective function, 𝜆𝐸 + 𝜆𝑄 = 1. The
energy consumption 𝐸 𝑖, 𝑗

𝑣 (𝑡) associated with offloading subtask
T𝑖, 𝑗 from vehicle 𝑣 at time 𝑡, and 𝑄𝑖, 𝑗 (𝑡) denotes the QoS
for the same task. Hereafter, we use the following constraints
to maintain the operational integrity and efficiency of the
system, ensuring that all processes align with the predefined
performance, resource allocation, and energy consumption
standards:

1) Connectivity Constraints: Each vehicle must be con-
nected to at least one BS or UAV:

𝐶1 : ∀𝑣 ∈ V, ∃𝑏 ∈ B ∪U : Γ𝑖, 𝑗

𝑣,𝑏
= 1 or Γ

𝑖, 𝑗
𝑣,𝑢 = 1. (39)

2) Task Offloading Constraints: Each subtask T𝑖, 𝑗 of a
vehicle can be offloaded to either a BS or a UAV, but not
both:

𝐶2 : ∀𝑣 ∈ V,∀𝑖, 𝑗 : Γ𝑖, 𝑗

𝑣,𝑏
+ Γ

𝑖, 𝑗
𝑣,𝑢 ≤ 1. (40)

3) Resource Constraints: The computational demand of
offloaded task T𝑖, 𝑗 should not exceed the processing capacity
(C ) of BSs or UAVs.

𝐶3 :
∑︁
𝑣∈V

∑︁
𝑖, 𝑗

𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)Γ𝑖, 𝑗

𝑣,𝑏
≤ C𝑏, ∀𝑏 ∈ B. (41)

𝐶4 :
∑︁
𝑣∈V

∑︁
𝑖, 𝑗

𝐶𝑖, 𝑗 (𝑡)𝐷𝑖, 𝑗 (𝑡)Γ𝑖, 𝑗
𝑣,𝑢 ≤ C𝑢, ∀𝑢 ∈ U. (42)

4) Latency Constraints: The latency for the subtask T𝑖, 𝑗

must not exceed a specified threshold 𝜚:

𝐶5 : ∀{𝑖, 𝑗},∀𝑣 ∈ V : 𝐿𝑖, 𝑗
𝑏
(𝑡) ≤ 𝜚, if Γ

𝑖, 𝑗

𝑣,𝑏
= 1. (43)

𝐶6 : ∀{𝑖, 𝑗},∀𝑣 ∈ V : 𝐿𝑖, 𝑗𝑢 (𝑡) ≤ 𝜚, if Γ
𝑖, 𝑗
𝑣,𝑢 = 1. (44)

5) CPU Frequency Constraints: The CPU frequency of
BSs and UAVs must be within the permissible range:

𝐶7 : 𝑓min ≤ 𝑓 𝑧cpu (𝑡) ≤ 𝑓 𝑧max, ∀𝑧 ∈ B ∪U . (45)

6) Data Rate Constraints: The data rate for each link must
satisfy the channel capacity 𝑅(𝑡):

𝐶8 : 𝑅(𝑡) ≤ 𝑅𝑥,𝑦 (𝑡), ∀{𝑥, 𝑦} ∈ {B ∪V ∪U}. (46)

7) Energy Efficiency Constraints: Minimizing the energy
consumption for task offloading. The energy consumption
𝐸
𝑖, 𝑗
𝑣 (𝑡) for offloading subtask T𝑖, 𝑗 from vehicle 𝑣 at time 𝑡

is given by: 𝐸 𝑖, 𝑗
𝑣 (𝑡) = 𝐷𝑖, 𝑗 (𝑡 )

𝑃
𝑖, 𝑗
𝑣 (𝑡 )

, ∀𝑣 ∈ V,∀𝑖, 𝑗 , where 𝑃𝑖, 𝑗
𝑣 (𝑡)

is the power consumption and T 𝑖, 𝑗
𝑣 (𝑡) is the time taken for

offloading subtask T𝑖, 𝑗 . The total energy consumption for
all vehicles in the network should not exceed a predefined
maximum energy budget 𝐸max:

𝐶9 :
∑︁
𝑖, 𝑗

𝐸
𝑖, 𝑗
𝑣 (𝑡) ≤ 𝐸𝑣

max, ∀𝑣 ∈ V . (47)

8) QoS Constraints: Ensuring the QoS for each task of-
floaded to the network involves considering latency, data rate,
and reliability. We define a QoS function as:

𝐶10 : 𝑄𝑖, 𝑗 (𝑡) =
𝑤𝐿

𝐿𝑖, 𝑗 (𝑡)
− 𝑤𝐸𝐸

𝑖, 𝑗
𝑣 (𝑡) ≥ 𝑄min, ∀𝑖, 𝑗 , (48)

where 𝐿𝑖, 𝑗 (𝑡) is the latency of subtask T𝑖, 𝑗 at time 𝑡, 𝑅𝑖, 𝑗 (𝑡)
is the data rate for subtask T𝑖, 𝑗 at time 𝑡, and 𝑤𝐿 and 𝑤𝐸 are
the weights assigned to latency and data rate, respectively. The
weights are chosen to balance the impact of each factor on the
overall QoS. The inverse of latency ensures that lower latency
contributes positively to the QoS. The QoS is considered
adequate if it exceeds a minimum threshold 𝑄min.

9) Network Stability Constraints: Ensuring the stability
of the network involves controlling the rate of change in
offloading decisions, as well as maintaining a balanced load
distribution among the network nodes. The stability is defined
by the following constraints:

a) Offloading Decision Variability: The offloading de-
cision variability is managed using probabilistic functions
P𝑖, 𝑗

𝑣,𝑏
(𝑡) and P𝑖, 𝑗

𝑣,𝑢 (𝑡), representing the probability of change
in offloading decisions to a BS 𝑏 or a UAV 𝑢 for vehicle
𝑣: P𝑖, 𝑗

𝑥,𝑦 (𝑡) = 1/
(
1 + 𝑒−𝑘 ( |Γ

𝑖, 𝑗
𝑥,𝑦 (𝑡 )−Γ

𝑖, 𝑗
𝑥,𝑦 (𝑡−1) |−Δ𝑆max ) ) . The con-

straints are then defined as:

𝐶13 : P𝑖, 𝑗

𝑣,𝑏
(𝑡) ≤ Δ𝑆max, ∀𝑣 ∈ V,∀𝑏 ∈ B. (49)

𝐶14 : P𝑖, 𝑗
𝑣,𝑢 (𝑡) ≤ Δ𝑆max, ∀𝑣 ∈ V,∀𝑢 ∈ U. (50)

b) Load Distribution Constraints: To prevent overload-
ing any single node (BS or UAV) in the network, the load
distribution is controlled as follows:

𝐶14 :
∑︁
𝑣∈V

∑︁
𝑖, 𝑗

Γ
𝑖, 𝑗

𝑣,𝑏
(𝑡)𝐿𝑖, 𝑗

𝑏
(𝑡) ≤ 𝜚, ∀𝑏 ∈ B, (51)

𝐶15 :
∑︁
𝑣∈V

∑︁
𝑖, 𝑗

Γ
𝑖, 𝑗
𝑣,𝑢 (𝑡)𝐿𝑖, 𝑗𝑢 (𝑡) ≤ 𝜚, ∀𝑢 ∈ U, (52)

where 𝐿
𝑖, 𝑗

𝑏
(𝑡) and 𝐿

𝑖, 𝑗
𝑢 (𝑡) are the latencies for processing

subtask T𝑖, 𝑗 through BS 𝑏 and UAV 𝑢 respectively. These
constraints ensure that the network can adapt to changes in
offloading decisions while maintaining a balanced load and
preventing rapid fluctuations that could destabilize the network
operations.

10) Power Constraints for Intermediate Transmission: To
ensure sustainable operation and energy efficiency in the
network, we impose power constraints for both transmission
and processing at BSs and UAVs. The transmission power of
each BS and UAV should not exceed their respective maximum
power limits:

𝐶16 : 𝑃𝑏 (𝑡) ≤ 𝑃max,𝑏, 𝐶17 : 𝑃𝑢 (𝑡) ≤ 𝑃max,𝑢, ∀𝑏, 𝑢, (53)

where 𝑃𝑏 (𝑡) and 𝑃𝑢 (𝑡) are the transmission powers of BS 𝑏

and UAV 𝑢 at time 𝑡, respectively. 𝑃max,𝑏 and 𝑃max,𝑢 are the
maximum allowable transmission powers for the respective BS
and UAV.
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11) Energy Constraints for Task Processing: The energy
consumption for processing tasks at the BS and UAV must be
managed efficiently to adhere to a maximum energy budget.
The energy required for processing a task of size 𝐷𝑖, 𝑗 with
complexity 𝐶𝑖, 𝑗 at the BS and UAV is governed by the
following constraints:

𝐶18 :
∑︁
𝑖, 𝑗

𝐸𝑏
𝑖, 𝑗 (𝑡) =

∑︁
𝑖, 𝑗

𝜉𝑏 (𝐶𝐷)𝑖, 𝑗 (𝑡) ≤ 𝐸𝑏
max,∀𝑏 ∈ B, (54)

𝐶19 :
∑︁
𝑖, 𝑗

𝐸𝑢
𝑖, 𝑗 (𝑡) =

∑︁
𝑖, 𝑗

𝜉𝑢 (𝐶𝐷)𝑖, 𝑗 (𝑡) ≤ 𝐸𝑢
max,∀𝑢 ∈ U, (55)

where 𝐸𝑏
max and 𝐸𝑢

max represent the maximum allowable energy
budget for task processing at each BS and UAV, respectively.
𝜉𝑏 and 𝜉𝑢 are the energy consumption coefficients per unit
data and complexity for the BS and UAV, respectively.

We incorporate an additional constraint to ensure efficient
task load distribution among all subtasks. This constraint
regulates the size of each subtask, maintaining an upper
limit to optimize the distribution process. Mathematically, the
constraint is formulated as:

𝐶20 : 𝐷𝑖, 𝑗 ≤ 𝐷max
𝑖, 𝑗 , (56)

where 𝐷max
𝑖, 𝑗

represents the maximum data size of a subtask.

Fig. 2: Architecture of DT-aided Quantum-DRL-based solution.

IV. MDP FORMULATION IN MULTI-AGENT FRAMEWORK

The integration of Quantum-DRL within a DT framework,
assisted by LSTM networks, forms an effective solution for
optimizing the present task offloading in URLLC-enabled
VEC networks. To deploy this strategy, the optimization
problem is modeled as a Markov decision process (MDP),
where the state space S represents network conditions and
actions A denote task offloading and resource allocation
decisions. Furthermore, a transition model 𝑇 (𝑠, 𝑎, 𝑠′) cap-
tures the probabilistic transition of the network’s state. The
Quantum-DRL utilizes a quantum-enhanced policy 𝜋(𝑎 |𝑠) to
select actions that maximize the expected reward E[R (𝑠, 𝑎)],
while LSTM networks in DT provide a temporal context by
analyzing historical patterns. Our proposed solution model,
as depicted in Fig. 2, adopts a multi-agent approach with
vehicles (V), UAVs (U), and BSs (B) as agents in an urban
URLLC-enabled VEC network. Each agent interacts within
this network to optimize task offloading decisions under strict

latency constraints, considering a Nash equilibrium framework
within a Markovian game model. To apply Quantum DRL, we
define state spaces and action spaces for vehicles, UAVs, and
BSs agents as follows:

1) Vehicle Agent (Aveh): For vehicles (𝑣 ∈ V), the state and
action spaces are comprised of stochastic variables pertinent
to the vehicle’s operation within the network. These spaces
are defined as follows:

• State Space (S𝑣): The state of vehicle 𝑣 at time 𝑡, denoted
as s𝑣 (𝑡) ∈ S𝑣 , is characterized by a tuple of variables
including its location 𭟋𝑣 (𝑡), velocity attributes such as
�̃�𝑣 (𝑡), �̃�𝑣𝑧 (𝑡), 𝜃𝑣 (𝑡), 𝜙𝑣 (𝑡), CSI h𝑣,𝑏 (𝑡) and ℎ𝑣,𝑢 (𝑡), as
well as the path-loss indicators PL𝑣,𝑏 (𝑡) and PL𝑣,𝑢 (𝑡).
So, the state space for vehicle 𝑣 at time 𝑡, denoted as
s𝑣 (𝑡), is defined as:

s𝑣 (𝑡) = {𭟋𝑣 (𝑡), �̃�𝑣 (𝑡), �̃�𝑣𝑧 (𝑡), 𝜃𝑣 (𝑡), 𝜙𝑣 (𝑡),
h𝑣,𝑏 (𝑡), ℎ𝑣,𝑢 (𝑡), PL𝑣,𝑏 (𝑡), PL𝑣,𝑢 (𝑡)}. (57)

• Action Space (A𝑣): The action space a𝑣 (𝑡) ∈ A𝑣 for
vehicle 𝑣 at time 𝑡 comprises a set of control parameters
that directly or indirectly affect the decision-making pro-
cess of the agent Aveh. The capabilities of Aveh include
managing the transmission power level 𝑃𝑖, 𝑗

𝑣 (𝑡), making
decisions on task processing designated by Γ

𝑖, 𝑗

𝑣,𝑏
(𝑡) =

{0, 1} for backend tasks and Γ
𝑖, 𝑗
𝑣,𝑢 (𝑡) = {0, 1} for user-

related tasks. Additionally, Aveh is responsible for task
prioritization, indicated by P𝑖, 𝑗 (𝑡), and determining the
data segment size 𝐷𝑖, 𝑗 . These actions are selected fol-
lowing network constraints and operational objectives.
Therefore, the action space for Aveh at any given time
instant 𝑡 is represented as:

a𝑣 (𝑡) = {𝑃𝑖, 𝑗
𝑣 (𝑡), Γ𝑖, 𝑗

𝑣,𝑏
(𝑡), Γ𝑖, 𝑗

𝑣,𝑢 (𝑡),P𝑖, 𝑗 (𝑡), 𝐷𝑖, 𝑗 (𝑡)}.
(58)

2) UAV Agent (Uuav): The UAV agent Uuav plays a pivotal
role in the decision-making framework of the network, neces-
sitating a well-structured state and action space to define its
capabilities and responsibilities.

• State Space (S𝑢): The state space s𝑢 (𝑡) ∈ S𝑢 of the UAV
agent Uuav incorporates a detailed set of parameters re-
flecting the UAV’s status and environmental interactions.
It includes the UAV’s spatial coordinates 𭟋𝑢 (𝑡), horizontal
and vertical velocities �̃�𝑢 (𝑡) and �̃�𝑢𝑧 (𝑡), and angular
orientations 𝜃𝑢 (𝑡) and 𝜙𝑢 (𝑡). Communication factors are
represented by CSI h𝑢,𝑏 (𝑡) between the UAV and BSs
and ℎ𝑢,𝑢′ (𝑡) for UAV-to-UAV links. Path-loss indicators
PL𝑢,𝑏 (𝑡) and PL𝑢,𝑢′ (𝑡) denote transmission efficiencies.
The state space also encompasses task data size 𝐷𝑖, 𝑗 (𝑡),
task complexity 𝐶𝑖, 𝑗 (𝑡), and available CPU frequency
𝑓 𝑢max (𝑡), essential for computational decision-making.

s𝑢 (𝑡)= {𭟋𝑢 (𝑡), �̃�𝑢 (𝑡), �̃�𝑢𝑧 (𝑡), 𝜃𝑢 (𝑡), 𝜙𝑢 (𝑡), h𝑢,𝑏 (𝑡), ℎ𝑢,𝑢′ (𝑡),
PL𝑢,𝑏 (𝑡), PL𝑢,𝑢′ (𝑡), 𝐷𝑖, 𝑗 (𝑡), 𝐶𝑖, 𝑗 (𝑡), 𝑓 𝑧max (𝑡)}. (59)

• Action Space (A𝑢): The action space a𝑢 (𝑡) ∈ A𝑢 of
Uuav delineates the UAV’s potential actions in response
to its observed state. These actions include managing the
power allocation 𝑃𝑢 (𝑡) for task forwarding to either BS
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or other UAVs, selecting the CPU frequency 𝑓 𝑢cpu (𝑡) for
task processing at the MEC, making decisions on task
processing 𝜅𝑢

𝑖, 𝑗
= {0, 1}, and determining task forwarding

paths via binary variables Γ
𝑖, 𝑗

𝑢,𝑢′ and Γ
𝑖, 𝑗

𝑢,𝑏
. Additionally,

considering the UAV’s role in the network, actions related
to maintaining communication quality, energy efficiency,
and adherence to operational constraints are also integral
to A𝑢. Therefore, the action vector a𝑢 (𝑡) is written as:

a𝑢 (𝑡) = {𝑃𝑢 (𝑡), 𝑓 𝑢cpu (𝑡), 𝜅𝑢𝑖, 𝑗 , Γ
𝑖, 𝑗

𝑢,𝑢′ , Γ
𝑖, 𝑗

𝑢,𝑏
}. (60)

3) BS Agent (Bbs): The BS agent, denoted as Bbs, is an
integral component of the URLLC-enabled VEC network. It
is responsible for managing task offloading from vehicles,
coordinating with UAVs, and ensuring efficient utilization of
network resources. The state and action spaces for the BS
agent are defined as follows:

• State Space (S𝑏): The state space s𝑏 (𝑡) ∈ S𝑏 for a
BS agent at time 𝑡 includes parameters that reflect the
BS’s operational status and its interactions with vehi-
cles and UAVs. This encompasses the BS’s location 𭟋𝑏,
the CSI with vehicles h𝑣,𝑏 (𝑡), and with UAVs h𝑢,𝑏 (𝑡).
Additionally, path-loss indicators PL𝑣,𝑏 (𝑡) and PL𝑢,𝑏 (𝑡),
representing the transmission efficiency to vehicles and
UAVs respectively, are included. The state space also
considers the task data size 𝐷𝑖, 𝑗 (𝑡), task complexity
𝐶𝑖, 𝑗 (𝑡), and the available CPU frequency 𝑓 𝑏max (𝑡), which
are crucial for task processing decision.

s𝑏 (𝑡) = {𭟋𝑏, h𝑣,𝑏 (𝑡), h𝑢,𝑏 (𝑡), PL𝑣,𝑏 (𝑡),
PL𝑢,𝑏 (𝑡), 𝐷𝑖, 𝑗 (𝑡), 𝐶𝑖, 𝑗 (𝑡), 𝑓 𝑏max (𝑡)}. (61)

• Action Space (A𝑏): The action space a𝑏 (𝑡) ∈ A𝑏 of Bbs
includes adjusting the transmission power 𝑃𝑏 (𝑡), deciding
on task processing and offloading 𝜅𝑏

𝑖, 𝑗
= {0, 1}, managing

data forwarding Γ
𝑖, 𝑗

𝑏,𝑢
to UAVs, and optimizing the CPU

frequency allocation 𝑓 𝑏cpu (𝑡) for task processing. This set
of actions is essential to ensure efficient task processing
and is written as

a𝑏 (𝑡) = {𝑃𝑏 (𝑡), 𝜅𝑏𝑖, 𝑗 , Γ
𝑖, 𝑗

𝑏,𝑢
, 𝑓 𝑏cpu (𝑡)}. (62)

A. Multi-Agent Associative Reward Function Formulation

Given the multi-agent setup in our URLLC-enabled VEC
network, we define an associative reward function R (s, a)
to encourage actions that minimize latency, optimize energy
consumption, and enhance the QoS. This function is designed
to reflect the Nash equilibrium strategy [30], ensuring that
no agent benefits by unilaterally changing its strategy. The
overall reward function is a composition of individual rewards
for vehicles (RV), UAVs (RU), and BSs (RB):

R (s, a) = RV (s𝑣 , a𝑣 , s−𝑣 , a−𝑣)+
RU (s𝑢, a𝑢, s−𝑢, a−𝑢) + RB (s𝑏, a𝑏, s−𝑏, a−𝑏), (63)

where R (s, a) represents the total reward function. The in-
dividual reward functions for vehicles, UAVs, and BSs are
denoted by RV , RU , and RB , respectively. In these expres-
sions, s𝑥 and a𝑥 represent the states and actions of agents of

type 𝑥, while s−𝑥 and a−𝑥 represent the states and actions of
all other agents not of type 𝑥, respectively.

1) Vehicle Reward Function (RV): The reward function
for vehicle agents includes the optimization of latency, energy
efficiency, and QoS. This function integrates these aspects
with tailored weights, enabling a comprehensive evaluation of
vehicle agents’ performance. The formulation is as follows:

RV (s𝑣 , a𝑣) = −𝜔𝐿𝐿
𝑖, 𝑗
𝑣 (a𝑣 ,s𝑣) − 𝜔𝐸𝐸

𝑖, 𝑗
𝑣 (a𝑣 , s𝑣)

+ 𝜔𝑄𝑄
𝑖, 𝑗
𝑣 (a𝑣 , s𝑣), (64)

where 𝜔𝐿 , 𝜔𝐸 , and 𝜔𝑄 are the weighting coefficients for
latency, energy, and QoS, respectively.

2) UAV Reward Function (RU): The reward function for
UAV agents emphasizes the importance of efficient task for-
warding and robust energy management, while also ensuring
load balancing. This function is articulated to align UAV
actions with the overarching network objectives:

RU (s𝑢, a𝑢) = 𝜁𝑇𝐹𝑇𝐹𝑖, 𝑗
𝑢 (a𝑢, s𝑢) − 𝜁𝐸𝐸 𝑖, 𝑗

𝑢 (a𝑢, s𝑢), (65)

𝑇𝐹
𝑖, 𝑗
𝑢 (a𝑢, s𝑢) = 𝛼𝜂𝜂

𝑖, 𝑗
𝑢 − 𝛼𝐿𝐿

𝑖, 𝑗
𝑢 + 𝛼𝐿𝐵𝐿𝐵

𝑖, 𝑗
𝑢 , (66)

𝐿𝐵
𝑖, 𝑗
𝑢 = 𝛽𝑇𝐷𝑇𝐷

𝑖, 𝑗
𝑢 + 𝛽𝑅𝑈𝑅𝑈𝑖, 𝑗

𝑢 − 𝛽𝑄𝐿𝑄𝐿
𝑖, 𝑗
𝑢 , (67)

where 𝜁𝑇𝐹 and 𝜁𝐸 are the weights assigned to task forwarding
efficiency and energy consumption, respectively. The task
forwarding metric 𝑇𝐹

𝑖, 𝑗
𝑢 integrates the forwarding success

rate (𝜂𝑖, 𝑗𝑢 ), latency (𝐿𝑖, 𝑗𝑢 ), and load balancing (𝐿𝐵𝑖, 𝑗
𝑢 ). The

load balancing metric 𝐿𝐵
𝑖, 𝑗
𝑢 is further defined by the task

distribution (𝑇𝐷𝑖, 𝑗
𝑢 ), resource utilization (𝑅𝑈𝑖, 𝑗

𝑢 ), and queue
length (𝑄𝐿𝑖, 𝑗𝑢 ), with respective weights 𝛽𝑇𝐷 , 𝛽𝑅𝑈 , and 𝛽𝑄𝐿 .

3) BS Reward Function (RB): The reward function for BS
agents is designed similarly to the UAV agents. This function
aligns BS actions with the network’s objectives, focusing on
efficient task processing and energy efficiency:

RB (s𝑏, a𝑏) = 𝜁𝑇𝑃𝑇𝑃
𝑖, 𝑗

𝑏
(a𝑏, s𝑏) − 𝜁𝐸𝐸 𝑖, 𝑗

𝑏
(a𝑏, s𝑏), (68)

where 𝜁𝑇𝑃 and 𝜁𝐸 represent the weights assigned to task
processing efficiency and energy consumption for the BS
agents, respectively. The task processing efficiency metric
𝑇𝑃

𝑖, 𝑗

𝑏
and the energy consumption metric 𝐸 𝑖, 𝑗

𝑏
are calculated

based on the actions and states specific to the BS agents.

V. PROPOSED MULTI-AGENT LSTM-AIDED
QUANTUM-DRL BASED SOLUTION

In our URLLC-enabled VEC network, each real-world agent
is paired with a digital replica within a DT framework. These
replicas mirror and predict the states and actions of their
corresponding real-world agents, enhancing decision-making
through a synchronized learning process. In this setup, LSTM
networks are pivotal. The LSTM system integrated into each
DT processes historical and current data to predict future states
and actions. This foresight is invaluable for optimizing task
offloading, energy consumption, and QoS in our network.

A. Enhanced LSTM Network in the DT Framework

The LSTM networks consist of sophisticated units: input
gate 𝐼, forget gate 𝐹, memory cell 𝐶, and output gate 𝑂.
These units are crucial for processing and retaining relevant
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historical sequence information, informing future decisions.
The standard mathematical representation of the LSTM struc-
ture is usually expressed as follows:

𝐼 (𝑡) = 𝜎(𝑊𝐼𝑜(𝑡) +𝑊𝐼𝐻ℎ(𝑡 − 1) +𝑊𝐼𝐶𝐶 (𝑡 − 1) + 𝑏𝐼 ), (69)
𝐹 (𝑡) = 𝜎(𝑊𝐹𝑜(𝑡) +𝑊𝐹𝐻ℎ(𝑡 − 1)

+𝑊𝐹𝐶𝐶 (𝑡 − 1) + 𝑏𝐹), (70)
𝐶 (𝑡) = 𝐹 (𝑡) ◦ 𝐶 (𝑡 − 1) + 𝐼 (𝑡)◦

tanh(𝑊𝐶𝑜(𝑡) +𝑊𝐶𝐻ℎ(𝑡 − 1) + 𝑏𝐶 ), (71)
𝑂 (𝑡) = 𝜎(𝑊𝑂𝑜(𝑡) +𝑊𝑂𝐻ℎ(𝑡 − 1) +𝑊𝑂𝐶𝐶 (𝑡) + 𝑏𝑂), (72)
ℎ(𝑡) = 𝑂 (𝑡) ◦ tanh(𝐶 (𝑡)), (73)

where 𝜎() represents the sigmoid activation function, which
maps values into a bounded interval. tanh() denotes the hyper-
bolic tangent activation function, providing outputs between (-
1, 1). ◦ symbolizes element-wise (Hadamard) multiplication.
𝐼 (𝑡), 𝐹 (𝑡), 𝐶 (𝑡), and 𝑂 (𝑡) are the input, forget, memory cell,
and output gates at time 𝑡, respectively. ℎ(𝑡) refers to the
hidden state at time 𝑡. The weights associated with these gates
are denoted as 𝑊𝐼 , 𝑊𝐼𝐻 , 𝑊𝐼𝐶 for the input gate; 𝑊𝐹 , 𝑊𝐹𝐻 ,
𝑊𝐹𝐶 for the forget gate; 𝑊𝐶 , 𝑊𝐶𝐻 , 𝑊𝐶𝐶 for the memory cell;
and 𝑊𝑂, 𝑊𝑂𝐻 , 𝑊𝑂𝐶 for the output gate. 𝑏𝐼 , 𝑏𝐹 , 𝑏𝐶 , and 𝑏𝑂
represent the bias terms for each respective gate.

B. Synchronization with Digital Twins (DTs) and Real World

Each LSTM network is intricately synchronized with its
corresponding real-world counterpart in the proposed DT
framework. This synchronization enables digital replicas to
mirror and predict physical agents’ actions and states accu-
rately, thereby enabling a robust learning mechanism using
the following loss function:

LLoss =

𝑀∑︁
𝑖=1

(𝒐𝑖 (𝑡) − �̂�𝑖 (𝑡))2 + 𝜂𝑤
𝑀∑︁
𝑖=1

Var (�̂�𝑖 (𝑡)) , (74)

where �̂�(𝑡) represents the set of parameters predicted by the
LSTM within the DT, including both the state s ∈ {s𝑣 , s𝑏, s𝑢}
to its corresponding action a ∈ {a𝑣 , a𝑏, a𝑢} for each agent.
𝒐(𝑡) refers to the corresponding actual parameters in the real
world at time 𝑡. The summation runs over all 𝑀 parameters
of interest, ensuring a comprehensive evaluation. Symbol 𝜂𝑤
represents a weighting coefficient that balances the two terms
of the loss function.

The present LSTM optimization algorithm in Algorithm 1
utilizes Adam, a sophisticated optimizer with adaptive learning
rates for each parameter, enhancing convergence efficiency.
The loss function is augmented with a variance term, en-
couraging model diversity in predictions and reducing the
likelihood of overfitting to the training data.

C. Quantum-DRL in DT and Physical Agents

To effectively address the complexities of the URLLC-
enabled VEC network, we propose a quantum-enhanced DRL
algorithm in both the DT and physical agents, as shown in
Fig. 2. This approach combines the computational potential
of quantum computing with the adaptive learning abilities
of DRL. Quantum computing operates on the principles of

Algorithm 1 LSTM Optimization for DT Synchronization.
Initialization:

Learning rate: 𝛼 = 0.001.
Adam parameters: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8.
Number of epochs: 𝑁 , Batch size: 𝐵.
Initialize LSTM parameters 𝜽LSTM ∼ N(0, 1/𝑛) .
Initialize moment vectors: m0 = 0, v0 = 0.

Optimization Procedure:
1: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁 do
2: for each batch B from dataset do
3: Compute gradients ∇𝜽LSTM using BPTT:
4: ∇𝜽LSTM =

𝜕LLoss
𝜕𝜽LSTM

.
5: Update moment vectors:
6: m𝑒𝑝𝑜𝑐ℎ = 𝛽1m𝑒𝑝𝑜𝑐ℎ−1 + (1 − 𝛽1 )∇𝜽LSTM.
7: v𝑒𝑝𝑜𝑐ℎ = 𝛽2v𝑒𝑝𝑜𝑐ℎ−1 + (1 − 𝛽2 )∇𝜽2

LSTM.
8: Correct bias:
9: m̂𝑒𝑝𝑜𝑐ℎ =

m𝑒𝑝𝑜𝑐ℎ

1−𝛽𝑒𝑝𝑜𝑐ℎ1
.

10: v̂𝑒𝑝𝑜𝑐ℎ =
v𝑒𝑝𝑜𝑐ℎ

1−𝛽𝑒𝑝𝑜𝑐ℎ2
.

11: Update LSTM parameters:
12: 𝜽LSTM = 𝜽LSTM − 𝛼

m̂𝑒𝑝𝑜𝑐ℎ√
v̂𝑒𝑝𝑜𝑐ℎ+𝜖

.

13: end for
14: Evaluate model on validation set.
15: Adjust learning rate if needed.
16: end for
17: return Optimized parameters 𝜽LSTM.

quantum mechanics [31], utilizing qubits that can exist in
superposition and entanglement states [32], [33]. This enables
quantum computers to process a vast amount of data simul-
taneously, offering significant computational advantages over
classical computing, especially in optimizing the present com-
plex scenario of vehicular task offloading. To mathematically
derive and analyze the integration of quantum computing in
DRL, particularly for a Quantum-DRL model applied to the
present work, we need to explore several key components:
state encoding, quantum policy network, and action selection.
We frame each of them as follows:

1) Classical State Representation: Let us denote the clas-
sical state of the network at time 𝑡 as s(𝑡), which includes all
relevant information about vehicles (𝑣), UAVs (𝑢), and BS (𝑏).
This can be expressed as a vector: s(𝑡) = [s𝑣 (𝑡), s𝑢 (𝑡), s𝑏 (𝑡)],
where each s𝑥 (𝑡) represents the state of component 𝑥 in the
network.

2) Quantum State Encoding: In our model, quantum states
are encoded from classical states via an encoding function E,
crucial for the multi-dimensional representation in quantum
computation. For a quantum system with 𝑁 qubits, the state
|𝜓⟩ is a superposition of basis states, formulated as [18]
|𝜓⟩ = ∑2𝑁−1

𝑖=0 𝛼𝑖 |𝑖⟩, where 𝛼𝑖 are complex coefficients fulfilling
normalization. The encoding function E transforms classical
state vectors s(𝑡) into quantum states in a 2𝑁 -dimensional
Hilbert space, a process critical for leveraging quantum com-
puting in DRL.

3) Quantum Encoding Process: Given a classical state
vector s(𝑡) in a real or discrete space, the encoding function E
maps this state to a quantum state |𝜓(𝑡)⟩ in a 2𝑁 -dimensional
Hilbert space, defined as:

|𝜓(𝑡)⟩ = E(s(𝑡)) =
2𝑁−1∑︁
𝑖=0

𝛼𝑖 (s(𝑡)) |𝑖⟩. (75)
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The coefficients 𝛼𝑖 (s(𝑡)) are complex-valued functions of s(𝑡),
derived from a set of basis functions { 𝑓𝑖 (s(𝑡))}2𝑁−1

𝑖=0 , and are
normalized as:

𝛼𝑖 (s(𝑡)) =
𝑓𝑖 (s(𝑡))√︃∑2𝑁−1

𝑗=0 | 𝑓 𝑗 (s(𝑡)) |2
, (76)

subject to the condition
∑2𝑁−1

𝑖=0 |𝛼𝑖 (s(𝑡)) |2 = 1.

Lemma 1. Let s(𝑡) be a classical state vector and E an
encoding function for an 𝑁-qubit system. If for every s(𝑡),
the set of basis functions { 𝑓𝑖} satisfies

∑2𝑁−1
𝑖=0 | 𝑓𝑖 (s(𝑡)) |2 > 0,

then the quantum state |𝜓(𝑡)⟩ = E(s(𝑡)) is well-defined and
normalized.

Proof. Given the basis functions { 𝑓𝑖 (s(𝑡))}, the coefficients
𝛼𝑖 (s(𝑡)) are computed by:

𝛼𝑖 (s(𝑡)) =
𝑓𝑖 (s(𝑡))√︃∑2𝑁−1

𝑗=0 | 𝑓 𝑗 (s(𝑡)) |2
. (77)

To satisfy the normalization condition
∑2𝑁−1

𝑖=0 |𝛼𝑖 (s(𝑡)) |2 = 1,
we have:

2𝑁−1∑︁
𝑖=0

������� 𝑓𝑖 (s(𝑡))√︃∑2𝑁−1
𝑗=0 | 𝑓 𝑗 (s(𝑡)) |2

�������
2

=

∑2𝑁−1
𝑖=0 | 𝑓𝑖 (s(𝑡)) |2∑2𝑁−1
𝑗=0 | 𝑓 𝑗 (s(𝑡)) |2

= 1. (78)

Hence, |𝜓(𝑡)⟩ is a valid quantum state. □

4) Quantum Policy Network: The quantum policy network
(QPN ) then inputs these quantum states and outputs trans-
formed states for decision-making. Specifically, the network
uses a quantum circuit Q, parameterized by unitary transfor-
mations, to map encoded states to a probabilistic action space,
facilitating optimal action selection under network constraints,

|𝜓(𝑡)⟩ = E(s(𝑡)) =
2𝑁−1∑︁
𝑖=0

𝛼𝑖 (s(𝑡)) |𝑖⟩, (79)

|𝜙(𝑡)⟩ = Q(|𝜓(𝑡)⟩) = 𝑈 (𝜽 , 𝑡) |𝜓(𝑡)⟩. (80)

In the QPN , the core mechanisms of quantum computing,
namely superposition and entanglement, are crucial for its
functionality. Superposition allows the network to consider
multiple possible states simultaneously rather than being lim-
ited to a single state at any given time. This dramatically
expands the network’s capacity to explore many potential
actions within its action space. Entanglement, on the other
hand, enables a level of interaction between quantum states.
This interaction is pivotal for the QPN as it allows for
complex relationships and dependencies between different
states, essential in making well-informed decisions.

The operations within the QPN are orchestrated by a uni-
tary matrix, denoted as 𝑈 (𝜽 , 𝑡). This matrix is a mathematical
representation of a sequence of quantum gates. Each quantum
gate in this sequence performs a specific transformation on
the network’s quantum states, and their composition, dictated
by 𝑈 (𝜽 , 𝑡), is what executes the decision-making process. The
parameterization of this matrix by 𝜽 and its potential time-
dependence, 𝑡, allow for a dynamic and adaptable system
capable of handling a variety of scenarios and decision criteria.

a) Quantum Circuit Representation: The quantum circuit
Q, operating on an 𝑁-qubit system, acts on the input quantum
state |𝜓(𝑡)⟩ as follows:

|𝜙(𝑡)⟩ = Q(|𝜓(𝑡)⟩) = 𝑈 (𝜽 , 𝑡) |𝜓(𝑡)⟩. (81)

Here, 𝑈 (𝜽 , 𝑡) is a time-dependent unitary matrix, parameter-
ized by 𝜽 , which represents the gate parameters of the quantum
circuit.

b) Decomposition of Unitary Matrix: The unitary matrix
𝑈 is decomposed into a sequence of quantum gates, each
performing single-qubit or multi-qubit operations:

𝑈 (𝜽 , 𝑡) = 𝑈𝑁 (𝜃𝑁 , 𝑡)𝑠𝑈2 (𝜃2, 𝑡)𝑈1 (𝜃1, 𝑡), (82)

where each 𝑈𝑖 (𝜃𝑖 , 𝑡) signifies a unitary operation correspond-
ing to the 𝑖-th gate, controlled by parameter 𝜃𝑖 .

c) Gate Decomposition and Quantum Evolution: The
evolution of the quantum state is governed by the Hamiltonian
𝐻 (𝜽) of the system, leading to:

𝑈 (𝜽 , 𝑡) = 𝑒−𝑖𝐻 (𝜽 )𝑡/ℏ, (83)

where 𝐻 (𝜽) represents a sum of Hamiltonians for each gate,
and ℏ is the reduced Planck constant.

d) Entanglement and Superposition: Entanglement and
superposition are critical in the quantum policy network.
Unitary operations induce entanglement, allowing for the
exploration of a complex state space, and superposition en-
ables simultaneous evaluation of multiple policy outcomes.
Entangled states are represented as:

|𝜓entangled⟩ =
∑︁
𝑖, 𝑗

𝛽𝑖 𝑗 |𝑖⟩ ⊗ | 𝑗⟩, (84)

where 𝛽𝑖 𝑗 coefficients signify entanglement, not factorizable
into products of individual state probabilities.

e) Quantum Measurement and Policy Decision: The
quantum state |𝜙(𝑡)⟩ undergoes a measurement process, col-
lapsing to a classical outcome for policy decisions. This
process is characterized by:

𝑃(𝑚) = ⟨𝜙(𝑡) |𝑃𝑚 |𝜙(𝑡)⟩, (85)

where {𝑃𝑚} are projection operators, and 𝑃(𝑚) is the proba-
bility of observing outcome 𝑚, forming the basis of decision-
making in our quantum-enhanced DRL model.

5) Action Selection in Quantum Multi-Agent DRL Frame-
work: The action selection in our Quantum-DRL framework is
a critical process intricately designed to handle the multi-agent
dynamics of the URLLC-enabled VEC network. This process
integrates quantum computing principles with DRL techniques
to efficiently navigate the complexities of the problem space,
aiming to optimize network performance while adhering to
constraints like latency, energy efficiency, and QoS.

a) Quantum Multi-Agent Optimization: In our approach,
each agent (vehicle, UAV, and BS) independently selects ac-
tions that contribute to the global objective of the network. The
optimal action set a∗ (𝑡) at time 𝑡 for all agents is determined
by collaboratively solving an optimization problem in (38):

a∗ (𝑡) = arg min
a∈A

J (s(𝑡), a), (86)

where J is the objective function encapsulating latency,
energy, and QoS metrics as mentioned in (38).
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Algorithm 2 Multi-Agent Quantum-DRL to Solve Eq. (38).
1: Initialize: Quantum policy networks Π𝜃𝑣 , Π𝜃𝑢 , Π𝜃𝑏

for each agent type.
2: Initialize critic 𝐶𝜙𝑣 , 𝐶𝜙𝑢 , 𝐶𝜙𝑏

, experience replay D𝑣 , D𝑢, D𝑏 .
3: Set learning rates 𝛼Π , 𝛼𝐶 , discount factor 𝛾, and exploration rate 𝜖 .
4: for each episode 𝑒 = 1, 2, . . . , 𝐸 do
5: Reset environment and obtain initial state s(0) .
6: for each time step 𝑡 = 1, 2, . . . , 𝑇 do
7: for each agent type 𝑥 ∈ {𝑣, 𝑢, 𝑏} do
8: Encode classical state s𝑥 (𝑡 ) into quantum state |𝜓𝑥 (𝑡 ) ⟩.
9: Compute reward R𝑥 for state s𝑥 (𝑡 ) using Algorithm 3.

10: Select action a𝑥 (𝑡 ) using Π𝜃𝑥 with exploration and R𝑥 .
11: Execute a𝑥 (𝑡 ) and find reward 𝑟𝑥 (𝑡 ) and new state s𝑥 (𝑡 +1) .
12: Store transition (s𝑥 (𝑡 ) , a𝑥 (𝑡 ) , 𝑟𝑥 (𝑡 ) , s𝑥 (𝑡 + 1) ) in D𝑥 .
13: Sample random minibatch from D𝑥 .
14: Update critic 𝐶𝜙𝑥 by minimizing loss:

L(𝜙𝑥 ) = ED𝑥

[(
𝑟𝑥 (𝑡 ) + 𝛾𝐶𝜙′

𝑥
(s𝑥 (𝑡 + 1) ) − 𝐶𝜙𝑥 (s𝑥 (𝑡 ) )

)2
]
.

15: Update policy Π𝜃𝑥 using gradient ascent:

∇𝜃𝑥 𝐽 (Π𝜃𝑥 ) = ED𝑥

[
∇𝑎𝑥𝑄 (s𝑥 , a𝑥 |𝜙𝑥 ) |a𝑥=Π𝜃𝑥 (s𝑥 )∇𝜃𝑥Π𝜃𝑥 (s𝑥 )

]
.

16: end for
17: if terminal state or 𝑡 = 𝑇 then
18: Break and proceed to the next episode.
19: end if
20: end for
21: end for

b) Quantum-Assisted Decision Making: Each agent em-
ploys quantum computing techniques to explore the vast action
space efficiently. This is achieved by encoding the decision-
making problem into a quantum state and utilizing quantum
algorithms for optimization:

|𝜓opt,𝑥 (𝑡)⟩ = arg min
|𝜓𝑥 ⟩

⟨𝜓𝑥 |Ĵ𝑥 (s𝑥 (𝑡), â𝑥) |𝜓𝑥⟩. (87)

Here, |𝜓opt,𝑥 (𝑡)⟩ represents the quantum state corresponding to
the optimal action for agent type 𝑥, and Ĵ𝑥 and â𝑥 denote the
quantum representations of the objective function and action
operators, respectively.

c) Quantum Policy Network Integration: In the
Quantum-DRL model, QPNs are integral for each agent
type, formalized mathematically as:

ΠQPN ( |𝜓(𝑡)⟩) =
∑︁
𝑎∈A

𝑝(𝑎 |𝜓(𝑡))𝑎, (88)

where |𝜓(𝑡)⟩ is the quantum-encoded state of the network
at time 𝑡, and A is the action space. The function ΠQPN
maps |𝜓(𝑡)⟩ to a probability distribution over the action space,
with 𝑝(𝑎 |𝜓(𝑡)) representing the probability of choosing action
𝑎 given the state |𝜓(𝑡)⟩. This mapping is crucial for action
selection and alignment to optimize global network objectives
while adhering to the constraints of the URLLC-enabled VEC
environment. The training of QPN involves adjusting its
parameters to maximize the expected reward, given by:

EΠQPN [R] =
∑︁
s∈S

𝜌(s)
∑︁
𝑎∈A

𝑝(𝑎 |𝜓(s))R (s, 𝑎), (89)

where R (s, 𝑎) is the reward function, 𝜌(s) is the distribution
over states, and S is the set of all states. Through this
quantum-assisted multi-agent DRL approach, encapsulated in
Algorithm 2, our model adeptly balances individual agent
autonomy with global network optimization, effectively tack-
ling the challenges in task offloading, resource allocation, and

enhancing overall network performance in URLLC-enabled
VEC networks.

D. Incentive and Penalty Functions in Reward Optimization

In our multi-agent Quantum-DRL framework, we intro-
duce incentive and penalty functions to encourage desirable
actions and discourage actions that could negatively impact
the network’s performance. These functions are integrated
into the Nash equilibrium-based reward optimization algorithm
(Algorithm 3), as outlined in Section 3.

1) Incentive Function: The incentive function, I𝑥 (a𝑥 , s𝑥),
rewards agents for actions that align with the network’s objec-
tives, such as reducing latency, improving energy efficiency,
and enhancing QoS. It is defined as a weighted sum of the
following performance incentive metrics:

• Latency reduction incentive: We use an incentive function
to reward the agent for reducing latency as follows:

Ilat (a𝑥 , s𝑥) = (𝜔lat) max(0, 𝜚 − 𝐿𝑥 (a𝑥 , s𝑥)), (90)

where 0 < 𝜔lat < 1 is the weight for latency reduction, 𝜚
is the target latency threshold, and 𝐿𝑥 (a𝑥 , s𝑥) represents
the latency for action a𝑥 and state s𝑥 .

• Energy efficiency incentive: The following function en-
courages the agent for energy-efficient actions:

Iene (a𝑥 , s𝑥) = 𝜔ene

(
1 − 𝐸𝑥 (a𝑥 , s𝑥)

𝐸 𝑥
max

)
, (91)

where the weight incentive is 0 < 𝜔ene < 𝜔lat, and
𝐸𝑥 (a𝑥 , s𝑥) is the energy used by the agent for the given
action and state, and 𝐸 𝑥

max is the maximum allowed
energy consumption.

• QoS incentive: The following function provides an incen-
tive in reward calculation for improving the QoS:

Iqos (a𝑥 , s𝑥) = 𝜔qos max(0, 𝑄𝑥 (a𝑥 , s𝑥) −𝑄min), (92)

where 0 < 𝜔qos < 1 − (𝜔lat + 𝜔ene), and 𝑄𝑥 (a𝑥 , s𝑥)
measures the QoS using (48) for the action and state,
with 𝑄min being the minimum QoS target.

2) Penalty Function: The penalty function, P𝑥 (a𝑥 , s𝑥),
imposes penalties on actions that deviate from the network’s
objectives or violate constraints. It is defined as a weighted
sum of the following defined penalty metrics:

• Latency excess penalty: The function Plat (a𝑥 , s𝑥) =

𝜆lat max(0, 𝐿𝑥 (a𝑥 , s𝑥) − 𝜚) penalizes exceeding the la-
tency threshold. We consider 𝜚 = 10 ms for this work.
0 < 𝜆lat < 1 is the penalty weight for latency excess.

• Energy excess penalty: Function Pene (a𝑥 , s𝑥) =

𝜆ene max(0, 𝐸𝑥 (a𝑥 , s𝑥) − 𝐸 𝑥
max) penalizes for exceeding

the maximum allowed energy consumption. 𝜆ene is the
penalty weight and 0 < 𝜆ene < 𝜆lat.

• QoS deficit penalty: Function Pqos (a𝑥 , s𝑥) =

𝜆qos max(0, 𝑄min − 𝑄𝑥 (a𝑥 , s𝑥)) penalizes for falling
below the minimum QoS target. 𝜆qos is the penalty
weight and 0 < 𝜆qos < 1 − (𝜆ene + 𝜆lat).

These functions are used within the Nash equilibrium-based
reward optimization
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TABLE II: Simulation Parameters for the Proposed Work.

Parameter Value Parameter Value Parameter Value Parameter Value

𝑓 𝑧cpu (𝑡 ) 10 GHz [14] 𝜎2
𝑧 −90 dB 𝑃max,𝑣 −30 dB [29] 𝑅 (𝑡 ) 10 Mbps [4]

𝑈 10 𝑓 𝑧cpu (𝑡 ) ±0.15 GHz [4] 𝑃max,𝑏 −10 dB [4] 𝜏 20 ms [4]
𝐵 4 �̂� 1 s 𝑃max,𝑢 0 dB 𝛿 0.005 m [4]
𝜃𝑣 (0, 2𝜋 ) 𝜙𝑣 (−10, 10)◦ 𝑀 4 𝑙𝑥 100
𝛼𝑃𝐿 (2.25, 2.75) 𝜖𝑏 10−6 C𝑧 2.7 × 108 𝜚 10 ms [4]
𝐸𝑣

max 0.5 Joule [4] B 10 MHz [14] 𝑄min 60 Δ𝑆max 0.5
𝜉𝑧 10−6 J/cycle 𝐷max

𝑖, 𝑗
1 MB 𝐸𝑧

max 33.2 J 𝐶𝑖, 𝑗 330/byte [4]

𝜆 0.009 m 𝑐 3𝑒+8 m/s [4] 𝑉𝑢 (10, 50) m/s 𝑉𝑣 20 m/s [29]

Algorithm 3 Nash Equilibrium Based Reward Optimization.
1: Input: S𝑣 , S𝑢, S𝑏; A𝑣 , A𝑢, A𝑏; Π𝜃𝑣 , Π𝜃𝑢 , Π𝜃𝑏

.
2: Initialize:
3: for each agent type 𝑥 ∈ {𝑣, 𝑢, 𝑏} do
4: Initialize reward functions R𝑥 .
5: Initialize Quantum-DRL policies Π𝜃𝑥 .
6: Initialize constraint functions C𝑥 .
7: end for
8: Nash Equilibrium Computation:
9: while not converged do

10: Define utility functions 𝑈𝑥 (a𝑥 , a−𝑥 ) for each agent 𝑥.
11: Compute Nash equilibrium a∗ satisfying:
12: for each agent 𝑥 do
13: a∗𝑥 = arg maxa𝑥 ∈A𝑥 𝑈𝑥 (a𝑥 , a∗−𝑥 ) .
14: end for
15: Update Π𝜃𝑥 based on a∗ for each agent 𝑥.
16: end while
17: Reward Adjustment with Incentives and Penalties:
18: for each agent 𝑥 at each time step 𝑡 do
19: Compute incentive I𝑥 (a𝑥 , s𝑥 ) based on defined incentive functions.
20: Compute penalty P𝑥 (a𝑥 , s𝑥 ) based on defined penalty functions.
21: Adjusted reward R

𝑎𝑑 𝑗
𝑥 = R𝑥 + I𝑥 − P𝑥 .

22: end for

E. Handling Network Disruptions

Our framework employs Quantum-DRL and LSTM within
a DT architecture to ensure stability against network dis-
ruptions and data inconsistencies. Quantum-DRL dynamically
adapts to changing network conditions, while LSTM predicts
future states, enhancing the system’s preemptive adjustment
capabilities. The DT simulates various disruption scenarios,
allowing for strategy testing and preparation. Integrated ro-
bustness, redundancy, and edge computing further strengthen
the system, enabling local data processing and reducing cen-
tral server dependency. This multi-layered approach ensures
uninterrupted operation and reliability, crucial for real-world
vehicular network applications.

VI. NUMERICAL RESULTS AND ANALYSIS

In our system, the decision-making process, powered by
LSTM and Quantum-DRL algorithms, is centrally executed
within the DT in the cloud. This setup includes digital agents
consistently synchronized with physical world agents in BS
and UAVs through a dedicated feedback channel. While com-
puting in the cloud-based DT, the Quantum-DRL algorithms
directly influence the physical agents’ task processing and
operational strategies, ensuring efficient network management.
In our experimental setup, the Quantum-DRL network is
configured with 4 quantum circuit layers, each comprising 6
qubits to represent the state space intricately. A combination of

PauliX, PauliY, PauliZ, Hadamard, and CNOT gates, alongside
parameterized rotation gates (RX, RY, RZ), is utilized for quan-
tum operations. Google’s Cirq framework and TensorFlow
Quantum are used to construct and simulate quantum circuits.
The LSTM networks in DT incorporate 3 layers, each with 128
neurons, a dropout rate of 0.3, and use the ReLU activation
function. Training is conducted over 1000 epochs with a batch
size of 64 using the Adam optimizer at a learning rate of
0.001. The DRL model employs an epsilon-greedy exploration
strategy with a carefully designed reward function focusing on
latency, energy efficiency, and QoS. The discount factor 𝛾 is
set to 0.99, emphasizing the significance of future rewards in
the agent’s decision-making process.

In our simulation, BSs are evenly distributed across a 3D
space, with x and y coordinates ranging from −1000 to 1000
meters and a z-axis height of 40 to 60 meters. UAVs are
allocated within a broader area of −1500 to 1500 meters on
both 𝑥 and 𝑦 axes and at heights of 30 to 75 meters. Following
the RWP model, vehicles move in a space extending from
−1250 to 1250 meters on both 𝑥 and 𝑦 axes at altitudes
between 0 and 20 meters. The rest of the simulation parameters
and their respective values are listed in Table II, where symbol
𝑥 and 𝑦 present 𝑥 ∈ {B ∪ U ∪ V} and 𝑧 ∈ {B ∪ U},
respectively. We select some crucial parameter values from
[4], [14], [29] while other parameter values are fixed carefully
to fit practically in our model.

As depicted in Fig. 3, the proposed Quantum-DRL algo-
rithm significantly outperforms the standard PPO [13] and
DDPG [12] algorithms where all the algorithms are executed
in a multi-agent environment along with LSTM. At the 1000th

episode, Quantum-DRL demonstrates a substantial perfor-
mance gain, accruing a normalized reward value that surpasses
PPO’s by approximately 53.17% and DDPG’s by 84.81%.
This pronounced improvement is particularly evident beyond
episode 400, where Quantum-DRL consistently maintains an
elevated reward value. This trend culminates in near conver-
gence around episode 600, marking the stabilization of policy
learning. Contrary to this, PPO’s convergence trajectory is
more gradual, with a noticeable stabilization near episode 800.
As seen in Fig. 3, the multi-agent Quantum-DRL algorithm
shows performance similar to the Standard multi-agent PPO
Algorithm around episode 200. This observation is indeed
correct and reflects Quantum-DRL’s exploration phase. It is
important to note that during this phase, the rewards might
not always reflect the algorithm’s ultimate capability as it is
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Fig. 3: Convergence plot.
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Fig. 4: Impact of DRL time-steps in latency.

100 120 140 160 180

30

40

50

60

70

A
ve

ra
ge

 E
ne

rg
y 

Co
ns

um
tio

n 
(J

)

Maximum Size (KB) of each Sub-task 

 Proposed Model
 Quantum-DRL Without LSTM
 Quantum-DRL Without DT
 Single-Agent Quantum-DRL
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not yet focused on exploiting the learned strategies. As the
episodes progress, Quantum-DRL begins to utilize its learned
experiences, transitioning more towards exploitation, which
leads to an increase in reward and a reduction in the variance
of the rewards. This transition is evidenced by the higher
and more stable rewards obtained from around episode 600
onwards, surpassing the standard multi-agent PPO and DDPG.

In task offloading latency in the proposed work, we consider
the actual task (i.e., T𝑖) size to be 1 MB. Fig. 4 plots total
latency (i.e., network plus processing) versus the number of
time steps in each episode. In our experimental evaluation, the
proposed multi-agent-Quantum-DRL with LSTM in the DT
model demonstrated superior performance over its counter-
parts. At the 10th time step, it achieved a significant reduction
in latency, outperforming the Single-Agent Quantum-DRL by
approximately 30.11%, the proposed multi-agent-Quantum-
DRL without LSTM by about 63.18%, the multi-agent PPO
Model by roughly 20.72%, and the multi-agent DDPG model
by approximately 72.47%. The primary reasons for this no-
table performance include the advanced predictive capabilities
of the LSTM integrated within the DT, which enabled more
accurate forecasting and adaptation to the dynamic network
environment. As we can note from Fig. 4, the proposed multi-
agent Quantum-DRL model significantly outperforms standard
multi-agent PPO and DDPG algorithms in minimizing task
offloading latency across various timesteps. This is clear from
the consistently lower latency achieved by multi-agent and
single-agent Quantum-DRL configurations. Interestingly, even
when the LSTM component is removed from the Quantum-
DRL model, it performs better than its LSTM-equipped PPO
and DDPG models. This highlights the robustness of the
Quantum-DRL and its superior ability to adapt to dynamic en-
vironments. Including LSTM further enhances this capability,
as shown by the increased latency in the non-LSTM version,
particularly as the number of timesteps grows. This underlines
the critical role of LSTM in capturing temporal dependencies
essential for efficient policy exploitation over time.

Fig. 5 demonstrates the superior energy efficiency of the
proposed Quantum-DRL model with LSTM for vehicular net-
work task offloading. At a maximum sub-task size of 100 KB,
the model reduces energy consumption by 10.83% compared
to the Quantum-DRL without LSTM, by 39.82% relative to
Quantum-DRL without DT, and by 37.30% against the Single

 UAVs: Many (10)
 BSs: Many (10)
 Vehicle Density: Low (2)
 UAVs: Few (4)
 BSs: Few (4)
 Vehicle Density: High (8)
 Vehicle Density: Dense (20)

Fig. 6: Improve QoS by varying CPU frequencies in diverse scenarios.

Agent Quantum-DRL. This performance enhancement is pri-
marily due to the integration of LSTM within the DT frame-
work, which enables predictive modeling of network condi-
tions, thereby facilitating more efficient offloading decisions
and reducing energy consumption. The use of LSTM becomes
particularly beneficial as the task size increases, demanding
the transmission of more data packets under stringent network
conditions. Moreover, the model optimizes energy use more
effectively than single-agent systems, which may incur higher
penalties and achieve suboptimal results due to centralized
decision-making in complex network environments. Including
DT in the multi-agent setup ensures better synchronization
between actual and virtual replicas of the network, optimizing
sub-task distribution and enhancing overall energy efficiency.

To effectively represent and analyze the QoS values ∀{𝑖, 𝑗}
within the network, as illustrated in Fig. 6, we implement a
normalization process for the QoS constraint outlined in 𝐶10.
The adjustment is calculated as follows:

𝑄𝑖, 𝑗 (𝑡) = 100 × ©«
𝑤𝐿

𝐿𝑖, 𝑗 (𝑡 ) − 𝑤𝐸𝐸
𝑖, 𝑗
𝑣 (𝑡) −𝑄min

𝑄max −𝑄min

ª®¬ +𝑄min, (93)

where 𝑤𝐿 = 0.7 and 𝑤𝐸 = 0.3, emphasizing the greater
importance of reducing latency (𝑤𝐿) due to its critical im-
pact on QoS, compared to energy expenditure (𝑤𝐸). This
weighting reflects our prioritization of latency minimization
in the network’s performance criteria. Further analysis reveals
that adding MEC nodes, including BSs and UAVs, enhances
the network’s QoS by exploiting increased computational
capabilities. However, it is important to note that as the number
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of vehicles in the network increases, a reduction in QoS
occurs. This decline is primarily due to the increased demand
for task offloading, which exhausts the processing capacities
of the MEC nodes. Particularly, the simultaneous handling of
multiple requests by the BSs and UAVs reduces the available
CPU resources, 𝑓 𝑏cpu (𝑡) and 𝑓 𝑢cpu (𝑡) respectively, thereby im-
pacting the QoS negatively. This scenario highlights the chal-
lenges in maintaining high QoS in densely populated vehicle
environments and the need for efficient resource management
strategies to optimize network performance. In our analysis
of MEC processing speeds at 10 GHz, the effectiveness of
utilizing UAVs over BSs for improving network QoS becomes
evident. For instance, with a high concentration of UAVs and
a lower vehicle density, QoS reaches an optimal value of
100, in contrast to a scenario with fewer UAVs and a higher
vehicle density, where the QoS is 85.25, marking a significant
improvement of approximately 17.30%. This performance
enhancement is attributed to the advantageous LoS conditions
afforded by UAVs, typically deployed at heights ranging from
22.5 to 100 meters. Furthermore, the LoS conditions are
favourable in UAV scenarios compared to the NLoS conditions
in BS communications, which suffer from Rayleigh fading
over average distance ≈ 1000 meters, resulting in higher
latency and reduced QoS.

Furthermore, as shown in Fig. 6, indicate that when the
computing capability of each MEC node is set at 5 GHz,
the dense vehicular network (with 20 vehicles) experiences
the lowest QoS as when the number of BSs and UAVs
is 4. However, as we incrementally increase the processing
capability of MEC, there is a corresponding improvement in
QoS. This demonstrates that while our system can handle
more vehicles, it also requires sufficient network resources to
manage the increase in task offloading demands effectively.

Fig. 6 demonstrates a distinct dependency on CPU fre-
quency in QoS performance during task offloading. For exam-
ple, at a CPU frequency of 7.5 GHz and a low vehicle density
(2), the system achieves a QoS of 86.26, suggesting efficient
handling in less congested environments. However, increasing
vehicle density to 8 causes a reduction in QoS to 65.96, high-
lighting congestion’s detrimental effects on service quality. In
scenarios with a limited number of UAVs (4), the QoS slightly
improves to 87.27, indicating the beneficial role of UAVs in
offloading processes. Contrarily, a larger UAV count (10) leads
to a lower QoS of 77.12, pointing to potential inefficiencies
from managing more nodes. Similarly, a sparse BS setup (4)
yields a QoS of 81.18, reflecting respectable performance with
minimal infrastructure. Remarkably, an increased number of
BSs (10) boosts the QoS to 97.42, highlighting the importance
of infrastructure adequacy for optimal network service.

Fig. 7 illustrates the relationship between network latency
and finite block length (FBL) in URLLC services. The analysis
reveals a clear trend of increasing latency with larger FBLs
across various scenarios involving different vehicle densities ∈
(2, 8), UAV numbers ∈ (4, 10), and BS distributions ∈ (4, 10).
In a low-density traffic environment, a UAV can connect with
a maximum of two vehicles and four BSs concurrently. On the
other hand, in a high-density traffic environment, a UAV can
connect with up to ten BSs and eight vehicles. For instance,
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Fig. 7: Network latency against block length for various scenarios.

TABLE III: Analysis of different path-loss models for the vehicle.

Latency: Vehicle-to-BS Latency: Vehicle-to-UAV
Task Size Okumura 3GPP UMa Free Space 3GPP UMa
100 KB 0.001010 s 0.008986 s 0.0018 s 0.0018 s
1 MB 0.010109 s 0.089863 s 0.0184 s 0.0180 s
10 MB 0.101093 s 0.898631 s 0.1841 s 0.1805 s

at a block length of 500 bits, the latency in a low vehicle
density environment is observed at 2.94 ms, representing
a substantial increase compared to the latency at 100 bits,
recorded at 1.63 ms. This increase in latency, a consequence
of extended encoding and decoding times inherent in longer
FBLs, is particularly pronounced in high-density vehicular
environments and with greater numbers of UAVs and BSs. The
data highlights the criticality of optimizing FBL in URLLC
systems to achieve an effective balance between throughput
and latency, adhering to the theoretical framework where
latency is proportionally related to the block length (𝑛), i.e.,
𝐿 (𝑛) ∝ 𝑛.

Our comprehensive evaluation compares various path-loss
models, investigating their impact on latency during vehicular
network data transmissions, as listed in Table III. We evaluate
the Okumura model [23] against the 3GPP UMa path-loss
model (see (16)-(20)) [24] for vehicle-to-BS communications
and compare the free space path-loss model with the 3GPP
UMa model [24] for vehicle-to-UAV links (see (27)-(29)).
Present findings indicate that the Okumura model consistently
outperforms the 3GPP UMa model in predicting lower laten-
cies across varied data sizes for vehicle-to-BS links due to
its lower path loss estimations in urban scenarios, deviating
from the 3GPP UMa model’s conservative design for diverse
urban conditions. For the present simulation, we consider
𝑑′BP = 100 m, ℎBS = 25 m, ℎUT = 1.5 m, and block length
𝑛 = 1000. Contrarily, vehicle-to-UAV communication latencies
exhibit minimal differences between the free space and 3GPP
UMa models, indicating both models’ convergence in LoS
conditions typical of UAV communications, where the free
space model’s idealistic clear LoS assumptions closely match
the real-world scenarios captured by the 3GPP UMa model’s
LoS considerations.

Our analysis highlights three prime factors used in our
proposed algorithm: (i) Transitioning to a multi-agent setup
from a single-agent framework significantly enhances perfor-



16

mance through distributed cooperative optimization based on
Nash equilibrium, as demonstrated in Fig. 4. (ii) Quantum
computing integration facilitates parallel computation for state
space exploration and action selection, offering an edge over
conventional PPO and DDPG-based DRL algorithms by reduc-
ing training episodes and time, as shown in Fig. 3, addressing a
significant limitation of traditional DRL methods. (iii) Incor-
porating LSTM strategies adds predictive analysis based on
historical data, enhancing decision accuracy by predicting the
future states, validated through numerical analysis in Fig. 5.

VII. CONCLUSIONS

In this study, we developed an innovative framework for
task offloading in URLLC-enabled VEC networks, utilizing
a multi-agent system that integrates quantum-enhanced DRL
with LSTM networks within a DT architecture. Our Quantum-
DRL algorithm surpassed traditional DRL methods, achieving
a 53.17% and 84.81% enhancement over standard PPO and
DDPG, respectively in convergence and reward maximiza-
tion. Further, integrating LSTM within the DT significantly
improved predictive analytics, leading to efficient decision-
making in task offloading, energy management, and QoS. This
optimization resulted in a 30.11% reduction in task offload-
ing latency compared to multi-agent-Quantum-DRL without
LSTM and a 39.82% decrease in energy consumption against
the multi-agent-Quantum-DRL without DT. This research em-
phasizes the effectiveness of combining quantum computing
with advanced machine learning techniques in a distributed
technology environment, opening up possibilities for improved
optimization of future ITS networks.
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