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Abstract—In this paper, we investigate an unconventional full-
duplex (FD) integrated rate-splitting multiple access (RSMA)
scheme for improved spectral efficiency (SE) and energy effi-
ciency (EE) performance when compared to the conventional
power-domain schemes. In particular, we focus on improving
the energy efficiency (EE) and spectral efficiency (SE) trade-off
for the multiple users subject to robust beamforming design and
smart inter-user interference mitigation under imperfect channel
state information (CSI). We formulate a multi-objective opti-
mization (MOO) problem, specifically aiming to jointly maximize
EE and SE within the FD-RSMA system by jointly optimizing
the resource allocation subject to the limits on transmit power
and minimum rate, under the assumption of a CSI error
model with a bound. Initially, the MOO problem is converted
into a single objective optimization (SOO) problem using the
weighted sum method, with a trade-off parameter. An iterative
algorithm is employed, utilizing successive convex approximation
and the S-procedure to achieve near-optimal resource allocation
for the transformed SOO problem, with a particular emphasis on
effective interference management. Simulation results highlight
the effectiveness of the FD-RSMA scheme, demonstrating its
superiority over the multi-user FD space division multiple access
by 16.93 % and non-orthogonal multiple access scheme by 76.04
%.

Index Terms—Energy efficiency, full-duplex, rate-splitting mul-
tiple access technique, robust beamforming, SE-EE trade-off,
spectral efficiency.

I. INTRODUCTION

THE advent of sixth generation (6G) networks heralds
transformative advancements in wireless communication
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technology. Within the context of 6G, the critical roles of
spectral efficiency (SE) and energy efficiency (EE) are further
accentuated due to the increasing demands and complexities
of modern connectivity [1]. As 6G aims to support vast data
volumes and ultra-high-definition media, SE becomes crucial
for meeting the escalating need for rapid and seamless connec-
tivity. Simultaneously, EE emerges as a pivotal concern in the
evolution of 6G, driven by the necessity for sustainable and
environmentally friendly technologies [2]. Nevertheless, the
stringent power limitations inherent in 6G networks necessitate
sophisticated optimization techniques that balance high data
throughput with minimal energy consumption. The inherent
trade-off between SE and EE is a central challenge in the
design of wireless communication systems. A crucial approach
to addressing this balance is through the maximization of
resource efficiency (RE), a performance metric designed to
flexibly and effectively harmonize SE and EE [3], [4]. By
focusing on RE, 6G networks can achieve an optimal trade-off,
ensuring efficient resource use and the adoption of sustainable
technology without sacrificing data rates or energy efficiency.

In the pursuit of maximizing network performance, signif-
icant strides can be made through the adoption of innovative
physical layer techniques such as full-duplex (FD) [5] and
rate-splitting multiple access (RSMA) [6]–[9] schemes. FD
technology enables simultaneous transmission and reception
over the same frequency band, effectively doubling spectral
efficiency and optimizing spectrum utilization [5]. Likewise,
RSMA strategically allocates resources using power-domain
multiplexing, allowing for the concurrent transmission of mul-
tiple data streams to different users [10], [11]. By integrating
FD and RSMA methodologies, 6G networks can achieve
notable improvements in RE, striking an optimal balance
between spectral and energy efficiency while meeting the ever-
growing demands for high-speed data transmission in contem-
porary wireless communication systems. This complex inter-
action introduces a fresh level of efficiency, adaptability, and
capacity to 6G wireless communication systems, positioned
to address and surpass the requirements of an increasingly
interconnected global landscape. Consequently, the careful
integration of RSMA and FD emerges as essential for the 6G
wireless communication model. This fusion does not simply
provide marginal advantages; it fundamentally transforms the
operational landscape of wireless systems. The collective po-
tential of these technologies envisions a wireless environment
where spectral and energy efficiencies are not conflicting but
instead work together to forge a groundbreaking, robust, and
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comprehensive 6G communication infrastructure.

A. Background

In the existing literature, numerous authors have extensively
examined the significance of FD communication in resource
allocation. Studies such as [12]–[22] have explored various
aspects of FD technology, focusing on its impact on network
performance. Specifically, works like [12], [14], [15] have
delved into SEM problems in FD communication systems by
addressing interference and proposing advanced optimization
techniques, these studies contribute to significant improve-
ments in SEM. Conversely, other researchers have concen-
trated on EEM within FD systems, as detailed in [16]–[19].
These works focus on reducing energy consumption while
maintaining high data throughput, an essential consideration
for sustainable wireless communication networks. Moreover,
the literature on RSMA has also seen significant contributions
concerning resource allocation dynamics. Key studies such as
[23]–[32] have explored various facets of RSMA, focusing on
its potential to improve network performance. In particular,
research works like [26]–[29] have concentrated on SEM
within RSMA frameworks. In addition, studies such as [30],
[31] address the EEM problem within RSMA systems.

In literature, the SE-EE trade-off problem is addressed in
many existing works [20]–[22], [32]–[40]. A notable contri-
bution is presented in [33], where the authors tackled the
SE-EE trade-off problem by formulating the multi-objective
optimization (MOO) and reformulated the original MOO
problem as a conventional single objective optimization (SOO)
problem using a weighted sum approach. This method allowed
them to achieve a Pareto-optimal solution, demonstrating
the effectiveness of their proposed algorithm over existing
beamforming designs. The scalarization method is utilized
to transform the MOO problem into the SOO problem by
using a function normalization process to regard EE and
SE as quantities without an associated physical unit so that
EE and SE are comparable to be integrated into a utility
function in [35]. In [36], authors addressed the adopted ϵ-
constraint method and the strict robustness to convert the
MOO problem to the SOO problem considering the imperfect
CSI. In [37], the robust SE-EE trade-off problem is addressed
by maximizing the RE. Several studies have focused on the
SE-EE trade-off problem specifically within FD systems. In
[20], [21], the authors formulated the SE-EE trade-off problem
by aiming to maximize system EE for a given system SE.
They derived the necessary conditions under which an FD
transceiver could achieve a better EE-SE trade-off compared to
a half-duplex (HD) transceiver, considering different residual
self-interference (RSI) models. In [41], the MOO of the SE-
EE trade-off problem is addressed using the RE maximization
technique. The work in [22] approached the SE-EE trade-
off problem by maximizing the power-normalized signal-to-
interference-plus-noise ratio (PN-SINR), providing another
perspective on balancing SE and EE in FD systems. Addi-
tionally, in [38], the authors addressed the SE-EE trade-off by
focusing on resource efficiency (RE) maximization and exam-
ined the joint effects of RSI and co-channel interference (CCI)

on the SE-EE trade-off in reconfigurable intelligent surface
(RIS)-aided FD multiple-input multiple-output (MIMO) sys-
tems. The authors in [42], adopted the utility function method
in which a constant is introduced for the objective function
for the selection between the SE and EE. Moreover, the SE-
EE trade-off problem in RSMA-aided systems is discussed in
[32], [39]. In [32], the authors transformed the separate SE
and EE maximization problems into a single equivalent opti-
mization problem. They compared the performance of RSMA
against non-orthogonal multiple access (NOMA) and multi-
user linear precoding (MU-LP), demonstrating that RSMA
offers significant improvements in both SE and EE. In [39], the
authors adopted two distinct approaches to convert the MOO
problem into an SOO problem: the weighted-sum approach
and the weighted-power approach. They derived closed-form
solutions for each SOO problem in a two-user system and
found that RSMA outperforms conventional space-division
multiple access (SDMA) and NOMA in terms of both EE
and SE. In [40], authors addressed the robust SE-EE trade-off
by adopting RE maximization.

B. Interplay of FD and RSMA

The interplay between FD and RSMA is critical for next-
generation wireless communication networks because of the
following advantages.

• FD systems enable simultaneous transmission and re-
ception over the same frequency band, thereby doubling
spectral utilization. However, one of the key challenges
with FD is managing self-interference (SI), especially in
uplink (UL) scenarios where the user equipment typically
transmits at lower power compared to the base station
(BS). In this context, RSMA plays a pivotal role in
mitigating SI. By allowing the BS to transmit common
messages at lower rates, RSMA significantly reduces the
SI in the UL. Once the common interference is handled,
the BS can transmit private messages at higher rates,
maximizing the overall SE. This coordinated interplay be-
tween FD and RSMA improves SE by allowing efficient
handling of SI while ensuring high-rate private message
delivery.

• FD naturally supports scalability by accommodating more
users simultaneously due to its ability to handle both
UL and DL on the same resource. When combined with
RSMA, which dynamically adapts to varying channel
conditions, this approach further enhances the throughput
and fairness of the system. RSMA adjusts the allocation
of resources between users based on their specific channel
states, enabling optimal use of the available spectrum.
This dynamic adaptation ensures that FD-RSMA systems
can operate efficiently even in highly dense networks,
where user demand and network conditions vary fre-
quently.

• The combination of FD and RSMA also improves EE.
In FD systems, the ability to transmit and receive on the
same channel eliminates the need for separate UL and
DL channels, thereby reducing resource usage and energy
consumption. RSMA complements this by optimizing
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power allocation between common and private messages.
By dynamically adjusting the power levels according to
the interference and channel conditions, RSMA ensures
that power is used efficiently, further improving the
overall EE of the communication system. This makes the
FD-RSMA combination ideal for networks that need to
balance high performance with low power consumption.

• RSMA’s inherent robustness to imperfect CSI makes the
combined FD-RSMA system highly resilient to errors in
channel estimation. RSMA splits messages into common
and private parts, allowing the system to handle inaccura-
cies in CSI without significantly degrading performance.
This robustness ensures that the system can maintain high
throughput and reliability even when accurate channel
knowledge is not available, which is a common issue in
practical wireless networks.

The integration of FD and RSMA is highly relevant in
addressing real-world challenges in modern communication
networks. For instance, in ultra-dense networks (UDNs) such
as those deployed in smart cities or massive IoT applications,
achieving high SE and EE is essential to meet the increasing
demand for data and device connectivity. Traditional meth-
ods often struggle with the complexity of balancing these
metrics effectively. Furthermore, this integration finds critical
applications in various advanced wireless scenarios like re-
mote patient monitoring (RPM), autonomous vehicles, smart
grid communications, industrial IoT, augmented reality (AR),
tactical military communications, etc. For example, in RPM
timely data transmission can be life-saving. The full-duplex
capability allows simultaneous UL and DL transmissions,
ensuring that vital health data from patient sensors is sent in
real-time while receiving critical instructions or updates from
healthcare providers without delay. In the UL, RSMA enables
splitting patient data into multiple sub-messages, which are
then transmitted efficiently across the available spectrum. This
ensures critical information is prioritized and delivered swiftly,
even in congested network environments. Common signals
broadcast essential health information, such as alerts or general
updates, to all relevant devices or medical personnel, ensuring
coordinated and rapid responses. Meanwhile, private signals
securely transmit patient-specific data, safeguarding privacy
and enabling personalized care. This seamless, bidirectional
communication, enhanced by the granularity of sub-messages
in the UL, significantly boosts the efficiency and reliability of
RPM systems, leading to improved patient outcomes. How-
ever, managing cross-interference, a significant challenge in
FD transmission, necessitates careful resource allocation and
interference mitigation in the FD-RSMA system to optimize
energy and spectral efficiency, motivating our research.

C. Motivation and contribution

Despite its advantages, the FD-RSMA system remains rel-
atively under-explored. In previous studies [43], a cooperative
RSMA scheme designated the strongest user as an FD relay
for DL transmission but did not fully exploit RSMA operations
for UL and DL transmission at the BS. Moreover, since EE
and SE can potentially conflict with each other meaning that

optimizing resources for one often comes at the expense of
the other, it is essential to investigate the tradeoff between
EE and SE in the FD-RSMA system. This analysis will
provide decision-makers with a comprehensive performance
envelope for both metrics. Importantly, our previous study
on FD-RSMA [44] assumed the availability of perfect CSI,
an assumption not feasible in practical scenarios. Given the
random nature of wireless channels, limited channel capacity,
transmission delays, and inaccuracies in channel estimation,
CSI inevitably contains errors, which can significantly degrade
system performance. Providing a robust optimal resource
allocation strategy for addressing the SE-EE tradeoff in FD-
RSMA systems is highly challenging due to several factors.
These include imperfect CSI and the complex coupling of
variables between the UL and DL scenarios along the RSMA
strategy. The complex relationship between power allocation,
beamforming, and rate-splitting variables further complicates
finding an optimal solution. The presence of imperfect CSI
adds another layer of complexity to the problem [45]. Robust
beamforming and resource allocation need to be designed to
account for norm-bounded channel estimation errors, making
the problem more challenging to solve in practice. and co-
channel interference (CCI). Therefore, the primary challenge
is to achieve optimal power control in the FD-RSMA system,
which requires sophisticated resource allocation and intelligent
interference mitigation. Our work is pioneering in investigating
an RSMA-integrated FD system to develop a robust, spectral,
and energy-efficient multi-user communication system. To
highlight the uniqueness of our study, a brief comparison with
existing works in the literature is provided in Table I.

TABLE I: Comparison of our work with existing literature.

FD RSMA Imperfect
CSI

Description of EE-SE
trade-off problem

[20] ✓ X X Maximize EE for a given
SE

[21] ✓ X X Maximize EE for a given
SE

[32] X ✓ X RE maximization
[33], [34] X X X RE maximization

[35] X X X Scalarization method
[36] X X ✓ ϵ-constraint method
[37] X X ✓ RE maximization
[38] ✓ X X PN-SINR

[39] X ✓ X Weighted-sum approach and
Weighted-power approach.

[40] X ✓ ✓ RE maximization
[41] ✓ X X RE maximization
[42] ✓ X ✓ Utility function method

Our Work ✓ ✓ ✓ RE maximization

The primary contributions of our study are outlined below:
1) Unlike existing works, which either focus on FD or

RSMA, we analyze an FD-integrated RSMA system
where a BS communicates with multiple single-antenna
UL and DL users concurrently in the same time and
frequency slot using RSMA. To the best of the authors’
knowledge, this study marks the first investigation of the
FD-aided RSMA system under imperfect CSI.

2) Subsequently, we focus on RE maximization and formu-
late a robust multi-objective optimization (MOO) prob-
lem subject to constraints on transmit power and rate
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requirements, considering bounded CSI. To solve this
problem efficiently, we transform it into an equivalent
single-objective optimization (SOO) problem and em-
ploy a generalized S-procedure to handle semi-infinite
inequalities and successive convex approximation (SCA)
to solve it.

3) Finally, we validate the computational complexity and
the relative performance improvement of the proposed
FD-RSMA system compared to conventional schemes
through numerical simulations, considering various net-
work parameters. Our simulation results affirm the su-
perior performance of the FD-RSMA system compared
to multi-user FD SDMA and NOMA schemes.

Structure of the paper:

The considered framework of multi-user RSMA-assisted
FD communications is introduced in Section II. In Section,
III, the problem formulation and proposed solution for the
considered network are discussed. The results of some sim-
ulations obtained using the proposed algorithms are depicted
and discussed in Section IV. Lastly, Section V finishes the
paper with some concluding remarks.

Notations:

The list of notations used in this paper is given in Table II.

TABLE II: List of notations.

Im Identity matrix

CN (0, I) Circularly symmetric complex Gaussian (CSCG)

E{·} Expectation operation

Tr(D) Trace operation

|D| Determinant

∥D∥F Frobenius norm

(D)T Transpose operator

(D)H Hermitian operator

(D)⋆ Optimal value

Re{.} Real component of complex entry

∥D∥2 Second norm

CM×N space of M ×N complex-valued matrices

II. SYSTEM MODEL AND PRELIMINARIES

The considered system model is an FD scenario where a
BS operates in FD mode with Mt transmit antennas and Mr

receive antennas. Here, the BS simultaneously serves D DL
and U UL single-antenna users as illustrated in Fig. 1. The
channels from between BS to d-th DL user, u-th UL user
to BS, u-th UL user to d-th DL user and SI channel are
represented as gDL

d ∈ CMt×1, d ∈ D, gUL
u ∈ CMr×1, u ∈ U ,

h
u,d

∈ C, u ∈ U , d ∈ D and F ∈ CMt×Mr respectively. The
list of symbols used in this paper is depicted in Table III.

In the considered FD-RSMA system, the BS transmits a set
of original messages denoted as MDL ≜ {MDL

1 , . . . ,MDL
D }

TABLE III: List of symbols used.

D Number of DL users
U Number of UL users
Mr Number of receiving antennas at BS
Mt Number of transmit antennas at BS
J {1, . . . , J}
D {1, . . . , D}
U {1, . . . , U}
R {1, . . . ,Mr}
T {1, . . . ,Mt}
gDL
d ∈ CMt×1 Channel between BS to d-th DL user

gUL
u ∈ C1×Mr Channel between u-th UL user to BS

hd,u ∈ C, Channel between u-th UL user to d-th DL user
F ∈ CMt×Mr SI channel
wc ∈ CMt×1 Transmit beamformer for the common stream
wd ∈ CMt×1 Transmit beamformer for the private stream
zu ∈ CMr×1 Receive beamformer for the u-th UL user

Fig. 1: System model.

to the DL users. For each d-th DL user, the message MDL
d

undergoes a division into two parts: the common message,
denoted as MDL

d,c ∈ C, and the private message, denoted as
MDL

d,p ∈ C. It is ensured that E[MDL
d,c (MDL

d,c )H ] = 1 and
E[MDL

d,p (MDL
d,p )H ] = 1 for all d ∈ D. Specifically, all DL

user’s common messages and the distinct dedicated private
messages are encoded by the BS into a unified data stream sDL

c
and sDL

d for each d-th DL user respectively. Consequently, the
BS transmits a superimposed symbol given by

xT =wcs
DL
c

+
∑
d∈D

w
d
sDL
k

, (1)

where w
c

∈ CMt×1 and w
d

∈ CMt×1,∀ d ∈ D are the
transmit beamformers for the common stream and a private
stream of d-th DL user, respectively.

Additionally, each UL user divides its original messages,
denoted as WUL

u , into two separate sub-messages. WUL
u,1

and WUL
u,2 such that E[WUL

u,j (W
UL
u,j )

H ] = 1,∀j ∈ J ≜
{1 . . . J},∀u ∈ U . These sub-messages are subsequently
encoded into distinct streams sUL

u,j ,∀u,∀j and are then trans-
mitted to the BS from the UL users. Thus, the transmitted
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signal by each u-th UL user is expressed as

xUL
u =

∑
j∈J

√
p

u,j
sUL
u,j

,∀u ∈ U , (2)

where p
u,j

,∀u ∈ U , ∀ j ∈ J is the transmit power of the
j-th message of u-th UL user. The signal received by the d-th
DL user is expressed as

y
d
=(gDL

d )HxT +
∑
u∈U

h
d,u

xUL
u + η

d

=(gDL
d )Hw

c
sDL
c

+ (gDL
d )H

∑
i∈D

w
i
sDL
i

+
∑
u∈U

∑
j∈J

h
d,u

√
p

u,j
sUL
u,j︸ ︷︷ ︸

UDI

+ηDL
d

, (3)

where ηDL
d

∼ CN
(
0, (σDL

d )2
)

denotes the additive white
Gaussian noise (AWGN) with zero mean and variance of
(σDL

d )2 at the d-th DL user. The signal received by the d-th
DL user comprises the desired signal from the BS, interference
from UL users, referred to as UL to DL users interference
(UDI), the interference from other DL users, termed as inter-
user interference (IUI), and noise. Thus the received signal at
the BS is expressed as

y
B
=
∑
u∈U

gUL
u xUL

u + FHxT + η
B

(4)

=
∑
u∈U

gUL
u

∑
j∈J

√
p

u,j
sUL
u,j

+ FH

(
w

c
sDL
c

+
∑
d∈D

w
d
sDL
d

)
︸ ︷︷ ︸

SI

+η
B
, (5)

where ηB ∼ CN
(
0, (σUL

BS )
2IMr

)
at the BS. Therefore,

the signal received at the BS is a combination of UL user
messages, SI, and noise.

A. Achievable rate

In DL RSMA, each DL user decodes the common stream
by considering all private streams as IUI along with UDI and
noise. After the DL user uses SIC to decode the common
stream, it’s removed from the received signal. The resulting
signal-to-interference-plus-noise ratio (SINR) for this stream
at the d-th DL user can be written as

γDL
c,d =

|(gDL
d )Hwc |2∑

i∈D
|(gDL

d )Hw
i
|2+

∑
u∈U

∑
j∈J

pUL
u,j

|h
d,u

|2 + (σDL
c,d )2

.

(6)

Using (6), the common rate is computed as

RDL
c,d = log2(1 + γDL

c,d ),∀ d ∈ D. (7)

To guarantee successful decoding of the common stream by
all DL users, the common stream rate RDL

c must be set as
the minimum among the common rates of all users. This
minimum-rate approach ensures that

RDL
c = min{RDL

c,1 . . . RDL
c,D}. (8)

Additionally, during d-th private stream decoding, other private
streams contribute to the interference alongside undesirable
interference (UDI) and noise. The SINR for the d-th private
stream at the corresponding DL user is formulated as

γDL
p,d =

|(gDL
d )Hw

d
|2∑

i∈D,i̸=d

|(gDL
d )Hw

i
|2+
∑
u∈U

∑
j∈J

pUL
u,j

|h
d,u

|2+(σDL
d )2

.

(9)

From (9), the private rate is expressed by

RDL
p,d =log2(1 + γDL

p,d ),∀ d ∈ D. (10)

The rate at the d-th DL user is computed by

RDL
d,tot = CDL

d +RDL
p,d ,∀ d ∈ D, (11)

where CDL
d is part of the common rate intended for d-th DL

user such that
∑

d C
DL
d = RDL

c .
In the UL, the BS employs SIC to decode all sub-messages

transmitted by UL users. The decoding order is predefined,
where the initial sub-message of the order are decoded first,
followed by the subsequent elements. At the BS, sub-messages
with priorities lower than sUL

u,j are decoded and removed first,
treating the rest as interference. This follows the approach in
[46]. We use a specific decoding order called Π [46] to achieve
fair treatment for all users such that

Π ={(sUl
u,j → sUl

u′,j → sUl
u,j′ → sUl

u′,j′) :∣∣gUL
u

∣∣ ≥ ∣∣gUL
u′

∣∣ , l ̸= u′, u, u′ ∈ U , j, j′ ∈ J }. (12)

Although an efficient digital SI cancellation technique is
assumed to be utilized, residual self-interference resulting from
practical hardware limitations still remains despite assump-
tions that a digital SI cancellation technique is utilized [14].
Consequently, the SINR to decode sUl

u,j sub-message of the
u-th user can be expressed as

γUL
u,j =

pUL
u,j

|(gUL
u z

u
|2∑

(m,n)∈Qu,j

pUL
m,n

|gUL
m zm |2 +

(
PSI + σUL2

BS

) , (13)

where zu ∈ CMr×1 denotes the receive beamformer at the BS
to decode the signal from the u-th UL user, Qu,j represents
the set of all the messages which have higher decoding order
than sUL

u,j and PSI = ω(|FHwc |2+
∑
d∈D

|FHw
k
|2) such that ω

is the RSI coefficient. Thus, the overall rate for the u-th user
can be obtained as

RUL
u =

∑
j∈J

RUL
u,j =

∑
j∈J

log2(1 + γUL
u,j ),∀u ∈ U . (14)

The SE for the considered system is expressed as

SE =
∑
d∈D

(CDL
d +RDL

p,d ) +
∑
u∈U

RUL
u . (15)
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B. Power consumption model and Energy Efficiency

The total power consumption of the FD-RSMA system
depends on the transmit power at the BS and the UL users
and the constant power consumed by the circuitry denoted as
PC . The total power consumption of the system is given by

PT =

(∑
d∈D

|w
d
, |2+|w

c
|2
)

+
∑
u∈U

∑
j∈J

pUL
u,j

+ PC , (16)

Apparently, the EE of the considered system is given by

EE =
SE

PT
. (17)

C. Channel state information

In communications systems, the BS must be capable of
determining the SINRs at the receivers based on the precoder.
However, this process demands accurate information about the
channels to the receivers, known as CSI. In frequency division
duplexing (FDD) systems, the BS acquires the necessary CSI
by sending training symbols to users. Each user then estimates
the channel coefficients and sends a quantized version of the
estimated channel vector back to the BS. Thus, BS only has
estimates of the CSI, leading to uncertainty in SINR estimation
for each receiver. Consequently, the precoder design needs
to be carried out in the presence of this uncertainty in the
estimates.

In practice, due to several unwanted obstacles such as
hardware impairments, fading in the channel, etc., CSI may
suffer an estimation error. For example, the CSI from the BS
to the d-th DL user, from the u-th UL user to the BS, and
the UDI channel from u-th UL user to d-th DL user can be
expressed as gDL

d = g̃DL
d + ∆gDL

d , gUL
u = g̃UL

u + ∆gUL
u ,

and hd,u = h̃d,u +∆hd,u respectively, where g̃DL
d , g̃UL

u , and
h̃d,u denotes estimated CSI and ∆gDL

d , ∆gUL
u , and ∆hd,u

indicates error matrices. In this work, these imperfections are
modeled using the norm-bounded error model [47] given by

∥∥∆gDL
d

∥∥
2
≤ ϱd;

∥∥∆gUL
u

∥∥
2
≤ εu; |∆hd,u| ≤ ϖd,u, (18)

where ϱd, εu and ϖd,u denote the DL,UL, and UDI channel’s
error bound respectively. Considering these uncertainties, the
DL,UL, and UDI imperfect channels lie in the bounded region
(B), (F). and (G) defined as

gDL
d ∈ B =

{
g̃DL
d +∆gDL

d :
∥∥∆gDL

d

∥∥
2
≤ ϱd

}
, (19)

gUL
u ∈ F =

{
g̃UL
u +∆gUL

u :
∥∥∆gUL

u

∥∥
2
≤ εu

}
, (20)

hd,u ∈ G =
{
h̃d,u +∆hd,u : |∆hd,u| ≤ ϖd,u

}
. (21)

III. PROBLEM FORMULATION

Notably, the SE increases as the power consumption for
transmission increases. To maximize the SE, it is necessary
to use all available transmit power. However, this approach
may not be ideal for maximizing EE, as EE aims to achieve
a balance between SE and power consumption. As a result,

SE and EE are in conflict in the moderate and high signal-
to-noise ratio (SNR) regimes, leading to a trade-off between
the two metrics. In this subsection, we explore this trade-off
and determine the optimal resource allocation design strategy
that strikes the best balance between SE and EE. We denote
ΥT = {gDL

d ∈ B, gUL
u ∈ F , hd,u ∈ G,∀d ∈ D, u ∈ U} and

Υd = {gDL
d ∈ B, hd,u ∈ G,∀d ∈ D, u ∈ U}. The SE-EE

trade-off can be viewed as a MOO problem given by

(P1) : max
wc ,w,z,P,c

min
Υ

SE(wc ,w, z,P, c) (22a)

max
wc ,w,z,P,c

min
Υ

EE(wc ,w, z,P, c) (22b)

s.t. (C.1) :
∑
d∈D

|w
d
|2 + |w

c
|2 ≤ pDL

max
, (22c)

(C.2) :
∑
i∈D

CDL
i ≤RDL

c,d ,∀Υd,∀d ∈ D (22d)

(C.3) : CDL
d ≥ 0,∀d ∈ D (22e)

(C.4) : RDL
d,tot ≥ RDL

d,min,∀Υd,∀d ∈ D (22f)

(C.5) :
∑
j∈J

pUL
u,j

≤ pUL
u,max

,∀u ∈ U , (22g)

(C.6) :
∑
j∈J

RUL
u,j ≥ RUL

u,min,∀gUL
u ∈ F , u ∈ U , (22h)

(C.7) : |zm| = 1,∀m ∈ U . (22i)

where w = {w
1
, . . . ,w

D
}, z = {z

1
, . . . , z

U
}, P =

{pUL
1,1

, . . . , pUL
U,J

} and c = {CDL
1 , . . . , CDL

D }. (C.1) and (C.5)
are the constraints to limit the transmit power at the BS and at
each UL user, and to ensure that they don’t exceed pDL

max
and

pUL
u,max, respectively. Constraints (C.2) and (C.3) guarantee

successful decoding of the common stream by all DL users.
Additionally, a minimum quality of service (QoS) for each DL
and UL user is guaranteed by the constraints (C.4) and (C.6),
where RDL

d,min and RUL
u,min denote the minimum acceptable

data rates. Finally, constraint (C.7) specifies the unit power of
the receiving beamformer.

In particular, the resource allocation problem in (22) is an
NP-hard non-convex optimization problem that is generally
intractable. Specifically, we epitomize the prime challenges in
solving (22) as follows:

1) The optimization problem stated in (22) poses chal-
lenges due to its non-convex multi-objective functions
and constraints. Additionally, the rate expression has a
complex relationship with optimization variables, mak-
ing it difficult to find a solution.

2) The joint optimization of transmit and receive beam-
forming variables, further complicates the problem and
increases its computational complexity.

3) Currently, exhaustive search can provide globally opti-
mal solutions for these non-convex problems within a
polynomial time frame.

4) While an exhaustive search can theoretically find the op-
timal solution, the exponential growth of computational
complexity with the total number of variables makes it
impractical to implement in practice.

Given the inherent difficulties in finding an optimal solution to
the optimization problem given in (22), a practical approach
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is to seek a high-quality sub-optimal solution for the resource
allocation problem. In the following section, we address the
challenges mentioned above and propose an efficient and ef-
fective resource allocation scheme. The objective is to develop
a solution that strikes a balance between computational com-
plexity and performance, providing significant improvements
over existing approaches.

A. Proposed solution

To handle the conflicting objectives in problem (P1), we use
the weighted sum method, which converts the MOO problem
to the SOO problem by prioritizing each objective function.
The RE objective function of the SOO problem is given by

O
EE−SE,1

=
ϱ

φEE
EE +

(1− ϱ)

φSE
SE, (23)

where ϱ is the trade-off parameter and φEE and φSE are
the normalization factors. Due to the fractional form of the
objective function in (23), solving it directly is challenging.
To address this, we apply the Dinkelbach method [41], which
converts the fractional form into a subtractive form. Conse-
quently, the objective function in (23) is transformed as

O
EE−SE,2

= φ
SE−EE

SE − qPT , (24)

where φ
SE−EE

= (ϱφSE + (1 − ϱ)φEE)/(φSEφEE) and q
is the network price. By dividing the transformed objective
function with φ

SE−EE
, (24) is transformed as

O
EE−SE,3

= SE −
(

qPT

(φ
SE−EE

)

)
. (25)

By replacing the positive constant q/φ
SE−EE

with χ/(1−χ),
for 0 < χ < χEE < 1, where χEE/(1−χEE) = qφEE/φSE

and multiplying with (1− χ), (25) is written as

O
EE−SE,4

= (1− χ)SE − χPT . (26)

The objective function O
EE−SE,4

in equation (26) transforms
the SE-EE trade-off problem, with ϱ as the trade-off param-
eter, into a SE-PT trade-off problem with χ as the trade-off
parameter. O

EE−SE,4
seeks to maximize SE while minimizing

total power consumption. Consequently, the solution to the
MOO problem in (P1) can be derived from the subsequent
SOO problem, as follows:

(P2) : max
wc ,w,z,P,c

min
Υ

(1− χ)

ξ
SE

SE − χ

ξ
PT

PT (27a)

s.t. (C.1), . . . , (C.6), (27b)

where ξ
SE

and ξ
PT

are the normalizing factors, calculated
by maximizing SE and minimizing PT respectively [33]. At
χ = 0, the problem (P2) can be simplified to maximize SE,
while at χ = 1, the problem reduces to minimizing power
consumption. The energy-efficient solution is achieved at χEE .

The formulated in problem (P2) is non-convex due to the
coupling of variables in the objective functions (27a), con-
straints (C.2), (C.4) and (C.6). Given the non-convexity of the
optimization problems within (P2), achieving globally optimal
solutions in polynomial time through standard mathemati-
cal optimization methods remains intractable. Consequently,

pursuing high-quality sub-optimal solutions for the resource
allocation tasks becomes a more attractive approach. In pursuit
of tractability, we employ a matched-filter design principle for
the mth receive beamformer at the BS, drawing inspiration
from [48]. This criterion dictates that z

m
= gUL

m /||gUL
m ||. We

utilize successive convex approximation and SDP to design
the optimization variables [49]. Necessary for our later deriva-
tions, two useful lemmas concerning multiple complex values
uncertainties are introduced as follows.

Lemma 1. (General S-Procedure) Define the quadratic func-
tions of the variable x ∈ Cn×1:

pi(x) = xHUix+ 2Re{uH
i x}+ ui, i = 0, · · · , T,

where Ui = UH
i . The condition {pi(x) ≥ 0}Ti=1 ⇒ p0(x) ≥ 0

is satisfied if only there exist ∀i,ϖi ≥ 0 such that[
U0 u0

uH
0 u0

]
−

T∑
i=1

ϖi

[
Ui ui

uH
i ui

]
⪰ 0.

Lemma 2. (General sign-definiteness) For a given set of
matrix U = UH , {Yi,Zi}Ti=1, the following LMI satisfies

U ⪰
T∑

i=1

(
YH

i XiZi + ZH
i X

H
i Yi

)
,∀i, ||Xi||F ≤ ρi,

if and only if there exist real numbers ∀i, µi ≥ 0 such that
U−

T∑
i=1

µiZ
H
i Zi −ρ1Y

H
1 · · · −ρTY

H
T

−ρ1Y1 µ1I · · · 0
...

...
. . .

...
−ρTYT 0 · · · µT I

 ⪰ 0.

It is noted that Lemma 2 can be proved by applying Lemma
1 and the detailed proof is given in [50].

The problem to optimize w
c
,w,P, c (i.e. problem (P2)) can

be reformulated as

(P3) : max
wc ,w,P,c

min
Υ

(1− χ)

ξ
SE

SE − χ

ξ
PT

PT (28a)

s.t. (C.1), . . . , (C.6). (28b)

Using auxiliary variables λDL
c,d , λDL

p,d , λUL
u,j , µDL

c,d , µDL
p,d and

µUL
u,j the expressions in (6), (9) and (13) are relaxed as follows

|(gDL
d )Hwc |2 ≤ λDL

c,d µDL
c,d ,∀gDL

d ∈ B, d ∈ D, (29)

|(gDL
d )Hw

d
|2 ≤ λDL

p,d µ
DL
p,d ,∀gDL

d ∈ B, d ∈ D, (30)

|gUL
u zu |2 ≤ λUL

u,jµ
UL
u,j /p

UL
u,j

,∀gUL
u ∈ F , u ∈ U , j ∈ J , (31)

where

µDL
c,d ≥

∑
i∈D

|(gDL
d )Hw

i
|2 +

∑
u∈U

∑
j∈J

pUL
u,j

|h
d,u

|2 + (σDL
c,d )2,

(32)

µDL
p,d ≥

∑
i∈D,
i̸=d

|(gDL
d )Hw

i
|2 +

∑
u∈U

∑
j∈J

pUL
u,j

|h
d,u

|2 + (σDL
d )2,

(33)

µUL
u,j ≥

∑
(m,n)∈Qu,j

pUL
m,n

|gUL
m zm |2+PSI + σUL2

BS . (34)
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Lemma 3 is introduced to approximate the constraint (29)
at w(i)

c
.

Lemma 3. At w(i)
c

, substituting gDL
d = g̃DL

d + ∆gDL
d ,

the lower bound of the left side of constraint (29) can be
approximated as

(∆gDL
d )HAc,d∆gDL

d +2Re{aHc,d∆gDL
d }+ac,d, (35)

where Ac,d = 2Re{w
c
(w(i)

c
)H} − w(i)

c
(w(i)

c
)H, ac,d =

(Ac,d)
Hg̃DL

d , ac,d = (g̃DL
d )HAc,dg̃

DL
d .

Proof. Firstly, |(gDL
d )Hwc |2 is approximated at w(i)

c
using a

first-order Taylor expansion, thus the inequality with lower
bound is written as

|(gDL
d )Hwc |2 ≤ 2Re{(gDL

d )Hw(i)
c
wH

c
gDL
d }

− (gDL
d )Hw(i)

c
w(i),H

c
gDL
d . (36)

Replacing gDL
d with g̃DL

d +∆gDL
d in (36), (36) is expressed

as (37) given in the top of the next page. |(gDL
d )Hwc |2 can be

expressed as (∆gDL
d )HAc,d∆gDL

d +2Re{aHc,d∆gDL
d }+ ac,d,

which completes the proof.

Using Lemma 3, constraint (29) is approximated as

(∆gDL
d )HAc,d∆gDL

d +2Re{aHc,d∆gDL
d }+ac,d ≤ λ̃DL

c,d , (38)

where λ̃DL
c,d = λDL

c,d (µDL
c,d )

(i)

+ (λDL
c,d )

(i)

µDL
c,d −

(λDL
c,d )

(i)

(µDL
c,d )

(i)

.
Similarly, the inequality (30) is linearly approximated at

w(i)
d

, pUL
u,j

(i), µDL
c,d

(i), µDL
p,d

(i) and µUL
u,j

(i) are given as

(∆gDL
d )HAp,d∆gDL

d +2Re{aHp,d∆gDL
d }+ ap,d ≤ λ̃DL

p,d ,
(39)

where
λ̃DL

p,d = λDL
p,d (µ

DL
p,d )

(i)

+ (λDL
p,d )

(i)

µDL
p,d − (λDL

p,d )
(i)

(µDL
p,d )

(i)

,

Ap,d = 2Re{w
d
(w(i)

d
)H} −w(i)

d
(w(i)

d
)H,

ap,d = (Ap,d)
Hg̃DL

d , ap,d = (g̃DL
d )HAp,dg̃

DL
d ,

To handle the associated constraint in equation (38), the
parameters in Lemma 1 can be set as follows

T = 1,U0 = Ac,d,u0 = ac,d, u0 = ac,d − λ̃DL
c,d ,x =

∆gDL
d ,U1 = −I, u1 = ϕ2

c,d.
Using Lemma 1, the linear matrix inequality (LMI) of (38)
is given as [

κc,dIMt
+Ac,d ac,d

aHc,d cc,d

]
⪰ 0,∀d ∈ D, (40)

where κc = {κc,1 . . .κc,D} are the slack variables and cc,d =
ac,d − λ̃DL

c,d −κc,dϕc,d. Similarly, the LMI of the inequality in
(39) is written as[

κp,dIMt
+Ap,d ap,d

aHp,d cp,d

]
⪰ 0,∀d ∈ D, (41)

where κp = {κp,1 . . .κp,D} are the slack variables and cp,d =
ap,d − λ̃DL

p,d − κp,dϕp,d.
Note that constraints (40) and (41) are LMI’s, which can be

solved by convex optimization tools. Further, denoting W =
[w1 , . . . ,wD

] and W−d = [w1 , . . . ,wd−1
,w

d+1
, . . . ,w

D
]

and using the triangle inequality property [31] i.e, |x+ y|2 ≤
(|x|+ |y|)2 = |x|2+ |y|2+2|x|.|y|, the semi-infinite inequality
constraint in (32) and (33) are written as

||(gDL
d )HW||22 ≤ µDL

c,d −
∑
u∈U

∑
j∈J

pUL
u,j

ĥ
d,u

− (σDL
c,d )2, (42)

||(gDL
d )HW−d

||22 ≤ µDL
p,d−

∑
u∈U

∑
j∈J

pUL
u,j

ĥ
d,u

−(σDL
d )2, (43)

where ĥ
d,u

is given as

ĥ
d,u

≜ max
|∆hd,u|≤ϖd,u

|h
d,u

|2 = |h̃
d,u

+∆hd,u|2

≤ |h̃
d,u

|2 +ϖ2
d,u + 2|h̃

d,u
|ϖd,u. (44)

Similarly, by adopting the Schur’s complement [51], the LMI
of (42) is written as[

µ̃DL
c,d bH

c,d
bc,d I

]
⪰ 0,∀d ∈ D, (45)

where bc,d = ((gDL
d )HW)H and µ̃DL

c,d = µDL
c,d −∑

u∈U

∑
j∈J

pUL
u,j

ĥ
d,u

−(σDL
c,d )2. To incorporate imperfect channels,

gDL
c,d = g̃DL

c,d +∆gDL
c,d is substituted in (45) and represented as

follows[
µ̃DL

c,d b̃H
c,d

b̃c,d I

]
⪰−

[
0

WH

]
(∆gDL

c,d )H
[
I 0

]
−
[
I
0

]
∆gDL

c,d

[
0 W

]
,∀d ∈ D, (46)

where b̃c,d=((g̃
DL
d )HW)H . To utilize Lemma 2, we introduce

the following parameters for (46) as

U =

[
µ̃DL

c,d b̃H
c,d

b̃c,d I

]
,Y1 = −

[
0 W

]
,

Z1 =
[
I 0

]
,X1 = (∆gDL

d )H.

Further, considering the worst-case scenario, the LMI of
constraint (42) is given byµ̃DL

c,d − βc,d b̃H
c,d 01×Mt

b̃c,d ID ϱdW
H

0Mt×1 ϱdW βc,dIMt

 ⪰ 0,∀d ∈ D, (47)

where βc = [βc,1, · · · , βc,D]T represents the slack variables.
Similarly the LMI for the constraint in (43) is written asµ̃DL

p,d − βp,d b̃H
p,d 01×Mt

b̂p,d ID−1 ϱdW
H
−d

0Mt×1 ϱdW−d
βp,dIMt

 ⪰ 0,∀d ∈ D, (48)

where b̃p,d = ((g̃DL
d )HW−d

)H and µ̃DL
p,d = µDL

c,d −∑
u∈U

∑
j∈J

pUL
u,j

ĥ
d,u

−(σDL
p,d )2. βp = [βp,1, · · · , βp,D]T represents

the slack variables.
To tackle the semi-infinite inequality constraint in (34), we

rewrite |gUL
m z

m
|2 as

|gUL
m z

m
|2 = (z

m
)H((g̃UL

m )Hg̃UL
m + (g̃UL

m )H∆gUL
m +

(∆gUL
m )Hg̃UL

m + (∆gUL
m )H∆gUL

m )z
m
,

= zH
m

(
(g̃UL

m )Hg̃UL
m + Λm

)
zm . (49)
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(g̃DL
d +(∆gDL

d )H)
(
wcw

(i),H
c +w(i)

c wH
c −w(i)

c w(i),H
c

) (
g̃DL
d +∆gDL

d

)
= (∆gDL

d )H
(
2Re

{
wcw

(i),H
c

}
−w(i)

c w(i),H
c

)
∆gDL

d

+ 2Re
{
g̃DL
d

(
2Re

{
wcw

(i),H
c

}
−w(i)

c w(i),H
c

)
∆gDL

d

}
+ (g̃DL

d )H
(
2Re

{
wcw

(i),H
c

}
−w

(i)
k w(i),H

c

)
g̃DL
d . (37)

where Λ
m

is the norm-bounded error matrix given as

||Λ
m
||

≤ ||(g̃UL
m )H∆gUL

m ||+ ||(∆gUL
m )Hg̃UL

m ||+ ||(∆gUL
m )H∆gUL

m ||,
≤ ||(g̃UL

m )H|| ||∆gUL
m ||+ ||(∆gUL

m )H|| ||g̃UL
m ||+

||(∆gUL
m )H|| ||∆gUL

m ||,
≤ ε2m + 2εu||g̃UL

m || = ςm. (50)

Using (50), (31) and (34) are transformed with their lower
bounds as

pUL
u,j

zH
u

(
(g̃UL

u )Hg̃UL
u + ςuI

)
z

u
≤ λ̃UL

u,j ,∀m ∈ U (51)

µUL
u,j ≥

∑
(m,n)∈Qu,j

pUL
m,n

zH
(
(g̃UL

m )Hg̃UL
m + ςmI

)
z

m

+ PSI + σUL2

BS , (52)

where

λ̃UL
u,j =λUL

u,j (µ
UL
u,j )

(i)

+ (λUL
u,j )

(i)

µUL
u,j − (λUL

u,j )
(i)

(µUL
U,j)

(i)

,

Denoting λc = {λDL
c,1 . . . λDL

c,D}, λp = {λDL
p,1 . . . λDL

p,D},
λ = {λUL

1,1 . . . λUL
J,D}, µc = {µDL

c,1 . . . µDL
c,D},

µp = {µDL
p,1 . . . µDL

p,D}, µ = {µUL
1,1 . . . µUL

U,J} and
Φ = {w

c
,w,P, c,λc,λp,λ,µc,µp,µ,βc,βp} and using the

LMIs in (40), (41), (47) and (48) and the inequalities in (51)
and (52), the problem (P3) is transformed as

(P4) : max
Φ

OBJ (53a)

s.t. (C.1), (C.3), (C.5), (40), (41), (47), (48), (51), (52),
(53b)

(C2.2) :
∑
i∈D

Ci≤ log2(1+λDL
c,d ),∀d ∈ D, (53c)

(C2.4) : C
DL
d +log2(1+λDL

p,d ) ≥ RDL
d,min,∀d ∈ D,

(53d)

(C2.6) :
∑
j∈J

log2(1 + λUL
u,j ) ≥ RUL

u,min,∀u ∈ U ,

(53e)

where OBJ is defines as

OBJ =
(1− χ)

ξ
SE

(∑
d∈D

(CDL
d + log2(1 + λDL

p,d ))

+
∑

u∈U
log2(1 + λUL

u,j )
)
− χ

ξ
PT

PT . (54)

Note that by solving (P4) optimally in an iterative manner,
we can gradually improve the lower bound. Moreover, the
objective function in (P4) increases monotonically, which
ensures convergence to a stationary point. The trade-off pa-
rameter χ is adjusted to achieve the desired priority of the
objective functions. χ = 0 is used to optimize the SE objective
function, while χEE is used to optimize EE, which can be
obtained from (27a) = 0. The optimal SE-EE trade-off problem

Algorithm 1 Proposed Algorithm

1: Initialize w
(i)
c , w(i), P(i), µc

(i), µp
(i), µu

(i), χ(j), jmax,
imax and i = j = 1.

2: Evaluate ξ
SE

and ξ
PT

.
3: while j ≤ jmax do
4: while i ≤ imax do
5: Evaluate w

(i+1)
c , w(i+1), P(i+1) using problem

(P4)
6: Evaluate SE and EE using (15) and (17) respec-

tively
7: i → i+ 1
8: end while
9: Obtain χ(j+1) = SEξPT /(SEξPT + EEξSE)

10: j → j + 1
11: end while
12: Output: χ∗,w(∗)

c ,w(∗), P(∗).

under the SCA framework is summarized in Algorithm 1.
The step 1 of Algorithm 1 indicates the initialization of
auxiliary variables and iterations and the maximum number
of iterations. In step 2, normalization parameters ξ

SE
and

ξ
PT

are evaluated by maximizing the SE and minimizing
the total power respectively. Using solver CVX, we obtain
w

(i+1)
c , w(i+1), P(i+1) using problem (P4) in step 5. In step

6, SE and EE are evaluated at w(i+1)
c , w(i+1), P(i+1) using

(15) and (17) respecively. Update the inner iteration loop for
the OBJ convergence in step 7. The trade-off parameter is
updated in step 9. In step 10, the outer iteration loop is updated
for the trade-off parameter convergence. Further, as evident
from Algorithm 1, the computational complexity of step 5 is
significantly higher than other steps that use SDP to obtain
an optimal solution [52]. The number of arithmetic operations
required to solve a standard real-valued SDP problem.

min
x∈Rn

cTx s.t. A0 +

n∑
i=1

xiAi ⪰ 0, ∥x∥2 ≤ R.

where Ai denotes the symmetric block-diagonal matrices
with P diagonal blocks of size al × al, l = 1, . . . , P , is upper
bounded by

D = O


(

I∑
i=1

di + 2l

)1/2

g

g2 + g

I∑
i=1

d2i +

I∑
i=1

d3i︸ ︷︷ ︸
due to LMI


 ,

(55)
where g = g1+g2 in which g1 and g2 represents the number

of variables w and wc given by g1 = D ∗Mt and g2 = Mt
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TABLE IV: Complexity analysis.

Variable Dimension of block (di)
w d1 = Mt + 1

d2 = Mt +D

wc d3 = Mt + 1,

d4 = Mt +D + 1

TABLE V: Run time complexity.

DL users UL users Transmit antennas Runtime complexity (sec)
3 2 5 872.34
3 2 2 577.12
5 2 5 1236.11
5 2 2 899.79
3 4 5 874.94
3 4 2 580.73
5 4 5 1245.59
5 4 2 903.23

respectively, and I represents the number of LMIs of size di
given in Table IV.

The detailed running time complexity of the proposed
algorithm is analyzed with the following system configuration:
2.90 GHz Intel(R) Core(TM) i7-10700 CPU with 40 GB
RAM. For the different numbers of DL users, UL users, and
transmit antennas the run-time complexity of the system is
given in Table V, where we can observe that the runtime
complexity is majorly influenced by the DL users and transmit
antennas. This observation is also supported by the complexity
analysis expression given in (55).

IV. SIMULATION RESULTS

In this section, we show the effectiveness of the proposed
FD-RSMA. Toward this, we use Monte Carlo simulations
with over 100 independent realizations of randomly generated
channels to evaluate the average performance and effectiveness
of the proposed Algorithm 1. Additionally, we investigate the
impact of RSMA on the overall performance of the network,
comparing it to both SDMA and NOMA. For simulation, it
is assumed that the BS has Mt = 5 transmit and Mr = 8
receive antennas and located at (0,60m). Moreover, we set D
= 4 DL users, and U = 2 and assume that users are distributed
randomly circularly symmetric Gaussian centered at (xUL, 0),
xUL = 30 m and (xDL, 0), xDL = 30 m respectively, within
a radius of Rc = 30 m [22]. The minimum rate for DL and
UL users and the available transmit power at the BS and
the UL users are set respectively as RDL

d,min = RDL
min = 0.1

and RUL
u,min = RUL

min = 0.1 and pDL
max = pmax = 40 dBm

and pUL
u,max = pUL

max = 0 dBm. The noise power is set as
σUL2

BS = σDL2

d = −74 dBm,∀d. Furthermore, the large-scale
path-loss (in dB) is followed as PLi

= PL0
(di/d0)

−αi , where
PL0

= −30 dB denotes the path-loss at the reference distance
of d0 = 1m, and αi ( ∀i ∈ gDL

d ,gUL
u ,F, hd,u) represents the

path-loss exponent between the BS and the d-th DL user, the
u-th UL user-BS, the SI channel, and the u-th UL user-d-th DL
user links, respectively. Besides, di denotes the distance of the
ith link, and the path-loss exponents are assumed to be αi =
2.2. We assume that all links’ except the SI channel suffer from
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Fig. 2: Trade-off analysis

small-scale fading which follows the the Rayleigh distribution.
The small-scale facing of the SI channel follows the Rician
distribution. The norm bound of the imperfect channels are
considered as ϱd = εu = ϖd,u = δ, ∀d ∈ D and u ∈ U .

The results of the trade-off analysis for the FD-RSMA
system are presented in Fig. (2). In this analysis, the objective
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Fig. 3: Number of receive antenna (Mr) vs Full-duplex EE and SE.

function of the SOO problem is referred to as resource effi-
ciency (RE). Figs. (2a), (2b), and (2c) illustrate the influence of
trade-off parameter χ on RE, full-duplex SE, and full-duplex
EE, respectively, considering different UL and DL transmit
powers for both perfect and imperfect CSI scenarios. The
values of ξ

PT
and ξ

SE
in RE are set to the maximum total

power consumption given by pDL
max

+ U ∗ pUL
max

+ PS and
the minimum QoS required given by D ∗ RDL

min + U ∗ RUL
min

respectively. When χ = 0, the focus is on maximizing
SE, aiming to achieve maximum RE by harnessing the full
potential of available transmit power. Consequently, at χ = 0,
we observe the maximum of full-duplex SE, accompanied by
the minimum full-duplex EE. In contrast, when χ = 1, the
emphasis shifts to minimizing transmit power, utilizing only
the necessary power to meet QoS requirements. This results
in high EE but not necessarily at its maximum, and there is
a corresponding decrease in SE. In both scenarios, there is
a need to compromise between SE and EE, as maximizing
one comes at the expense of the other. As χ increases from
0 to 1, the influence of the power minimization component
becomes increasingly dominant, causing the BS to operate
at lower power levels. This establishes an SE-EE trade-off:
SE experiences a decline while EE sees an increase until the
optimal χ is reached. At this optimal point, the maximum
EE is achieved, accompanied by an improvement in SE. This
trade-off highlights the inherent tension between maximizing
SE and minimizing energy consumption in the considered FD-
RSMA system. This behavior is evident in Figs. (2b) and (2c).
Beyond the optimal χ, further increases result in decreased EE,
SE, and RE. Furthermore, full-duplex SE for the perfect CSI
is higher than the imperfect CSI. At χ = 1, the impact of
imperfections, PDL

max, and PUL
max on RE, EE, and SE diminish

due to the power minimization problem.
The impact of the number of receive antennas (Mr) on

the full duplex EE and full duplex SE for different trade-
off parameters considering both perfect and imperfect CSI
is shown in Fig. 3. We can observe that the increase in Mr

increases both EE and SE due to enhanced diversity improving
the signal reception. This leads to an increase in theUL rate,
notably for the EE which is nearly optimal with χ = 0.66
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Fig. 4: System Convergence.

is higher than the χ = 0 and χ = 1. Because of rate
maximization, the SE when χ = 0 dominates compared to
χ = 0 and χ = 0.66. Further increase in Mr causes the
EE and SE to saturate. In addition, as expected, when perfect
CSI is available, the EE and SE are always higher than the
case when only imperfect CSI is available. As the number of
receiving antennas increases, the impact of imperfect CSI is
more noticeable in SE maximization cases due to the increased
difficulty of estimating the channel. But, in near-optimal cases,
the effect of imperfect CSI on SE decreases.

The convergence of the full-duplex EE using the optimal
transmit and receive beamformers,UL power allocation, and
trade-off parameter χ from algorithm 1 is shown in Fig. 4.
FD-RSMA is compared with FD-NOMA and FD-SDMA with
perfect and imperfect CSI with the latter used as a benchmark
scheme. Here, the normalizing parameters ξ

PT
and ξ

SE
are

obtained by minimizing power and maximizing full-duplex SE
problems respectively while satisfying the corresponding QoS
constraints. Using the ξ

PT
and ξ

SE
, full-duplex EE is obtained

for the optimal χ by updating it iteratively using step 9 of
algorithm 1. In all the cases, the optimal EE is achieved after 8
iterations. FD-RSMA outperforms FD-NOMA and FD-SDMA
by 76.04 % and 16.93 % respectively due to better interference
management. Furthermore, full-duplex EE for the perfect CSI
is higher than the imperfect CSI in all three schemes.

In Fig. 5, the relationship between full-duplex EE and
full-duplex SE, and PUL

max for different PDL
max is illustrated.

At each PUL
max, the full-duplex EE and SE are determined

using optimal transmit and receive beamformers,UL power
allocation, and the trade-off parameter χ. As PUL

max increases,
the trade-off parameter χ decreases, signaling a shift towards
maximizing full-duplex SE. This transition leads to a rise in
overall transmit power, subsequently causing a reduction in
full-duplex EE. The total transmit power increases until it
satisfies the QoS constraint, plateauing for further increases
in PUL

max and resulting in saturation in full-duplex SE and EE.
At a higher norm bounded error δ = 0.05, the decrease in
full-duplex EE is more pronounced than the decrease in SE.
This discrepancy arises because, at higher δ, the BS utilizes
more power to achieve a better EE-SE trade-off. At elevated
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values of PUL
max, optimal χ is crucial for the BS to employ

limited transmit power, minimizing the impact of PDL
max on

full-duplex EE.

Fig. 6 illustrates the dependence of full-duplex EE and full-
duplex SE on the DL power PDL

max for various RSI (ω) sce-
narios, considering both perfect and imperfect conditions. At
each PDL

max, the optimal transmit and receive beamformers,UL
power allocation, and trade-off parameter χ are employed to
obtain the full-duplex EE and SE. As PDL

max increases, the
optimal χ decreases, resulting in an increase in DL transmit
power. This, in turn, causes a decrease in full-duplex SE
and leads to a reduction in full-duplex EE until the QoS
constraint is reached. Beyond this point, further increases
in PDL

max result in minimal changes to both full-duplex SE
and EE. Additionally, an increase in the RSI coefficient from
−130 dB to −120 dB is observed to lead to a decrease in both
full-duplex SE and EE. At higher values of PDL

max, achieving
a better EE-SE trade-off involves optimizing χ to encourage
the BS to use limited transmit power. This strategy minimizes
the impact of imperfections, ω and PDL

max on both full-duplex
spectral SE and EE.

V. CONCLUSION

This paper studied RSMA-Integrated FD communications
with the objective of achieving a better understanding of the
EE and SE trade-offs. In particular, we formulated the MOO
problem to maximize SE and EE to optimize the transmit and
receiver beamformers at the BS as well as power allocation at
the ULs under imperfect CSI conditions in order to optimize
the transmit and receiver beamformers. The formulated prob-
lem was reformulated to the SOO problem using a weighted
sum approach. Next, we proposed an iterative algorithm based
on the SCA scheme using the generalized S-procedure to
achieve a near-optimal solution. Monte Carlo simulations are
used to show the impact of trade-off parameter on the SOO
function, FD SE, and EE with perfect and imperfect CSI.
The dependency ofUL transmit power on FD EE and SE
for different DL transmit powers and the dependency of DL
transmit power on FD EE and FD SE for different residual
self-interference was presented. The simulation results show
that FD-RSMA is outperforms both FD-NOMA and FD-
SDMA by 16.93 % and 76.04 % respectively due to better
interference management. Finally, it is anticipated that the
analysis, algorithms, and simulation results presented in this
paper will find application in future wireless networks where
FD communications and RSMA will be expected to play a
pivotal role in delivering high SE while improving EE.
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