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Abstract—In the rapidly evolving domain of vehicular
metaverse, this study introduces a cutting-edge quantum-
based decentralized and heterogeneity-aware federated learning
framework for vehicular metaverse named QV-FEDCOM,
which stands as a testament to the innovative fusion of
quantum computing principles with federated learning (FL).
This framework is ingeniously tailored to address the challenges
in a vehicular metaverse, offering a cost-efficient and adaptive
solution for the dynamic vehicular landscape. QV-FEDCOM
is strengthened by key components like quantum sequential-
training-program, with reinforcement learning-based dynamic
mode switching to reduce communication costs and manage
vehicle states adaptively, and the quantum vehicle-context-
grouping utilizing hierarchical clustering and simulated annealing
for effective vehicle grouping based on contextual data similarity,
addressing the complexities of data heterogeneity. Additionally,
the integration of quantum-inspired principal component analysis
(Q-PCA) enhances memory efficiency, further optimizing the
framework. These elements converge in the QV-FEDCOM
algorithm, establishing a decentralized, efficient, and context-
aware quantum federated learning (QFL) process that redefines
learning dynamics in the vehicular metaverse. Our study also
introduces an innovative quantum trajectory loss (QTL) function,
specifically designed for trajectory prediction tasks, which
combines the Huber loss with an angular deviation penalty
to robustly handle errors and penalize large deviations in the
predicted trajectory angle. The effectiveness of the QV-FEDCOM
framework is rigorously validated through comprehensive
simulations, with its performance meticulously compared against
various adaptations, showcasing its transformative capabilities
within the vehicular metaverse ecosystem.
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I. INTRODUCTION

AS the Internet-of-Vehicles (IoV) and automated driving
technologies rapidly advance, we are moving towards a

future where vehicles and their networks are fully autonomous.
This evolution will bring about a significant increase in
data processing demands, with vehicular networks potentially
handling terabytes of data per minute. Such a high volume
and speed of data processing, essential in dynamic vehicular
networks, pose substantial challenges [1]. In this context,
federated learning (FL) emerges as a significant advancement
that eliminates the traditional requirement of gathering data
centrally on a singular device, instead distributing the machine
learning process across various clients [2]–[4]. FL enhances
processing efficiency and personalizes learning by utilizing
diverse data from each client, while also facilitating the secure
sharing of insights across a broad network, thereby maintaining
user data confidentiality [4]. Research in this domain has
extensively explored various applications of FL, encompassing
horizontal [5], vertical [6], and transfer learning methodologies
[7]. These algorithms demonstrate the effectiveness of FL in
improving collaborative intelligence and protecting user data
privacy [8], [9], and for our discussion, we will refer to these
traditional methods collectively as classical federated learning
(CFL).

Despite its advantages in privacy and collaborative training,
CFL faces limitations in addressing the challenges posed by
dynamic vehicular networks [10]. These limitations include
data inconsistency, model obsolescence, scalability issues,
high communication costs, difficulty handling heterogeneous
and non-IID data, and resource constraints at edge devices.
Consequently, classical computation methods are unlikely to
meet the processing and quality-of-service demands required
in such networks [11]. Quantum processing emerges as a
promising solution to these challenges [12], [13], addressing
them in the following ways:

• Quantum Speedup for Efficient Model Convergence:
Quantum parallelism enables simultaneous exploration of
multiple states, greatly accelerating model training and
convergence. This is crucial for real-time decision-making
in vehicular networks, where traditional CFL struggles
to process large, dynamic datasets within strict time
constraints.
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• Reduced Communication Overhead: QFL leverages
quantum communication techniques such as entanglement
and teleportation, which allow faster, more efficient
synchronization of model updates across nodes. This
significantly reduces the communication burden compared
to CFL, particularly in large-scale, decentralized
networks.

• Handling Data Heterogeneity: QFL utilizes quantum-
inspired optimization methods like Q-VCG (Quantum
Vehicular-Context Grouping) to dynamically cluster
vehicles based on contextual data. This helps to address
the challenges posed by heterogeneous and non-IID data,
where CFL often struggles to generalize effectively across
different data distributions.

• Memory and Resource Efficiency: Techniques like Q-
PCA (Quantum-Inspired Principal Component Analysis)
compress quantum data, reducing the quantum memory
footprint while preserving essential information. This
optimizes resource utilization in edge environments where
computational power and memory are limited.

• Enhanced Privacy and Security: QFL enhances privacy
by employing Quantum Secure Multi-party Computation
(SMC), enabling secure global model updates without
exposing individual vehicle data. Unlike CFL, which
relies on traditional privacy-preserving techniques, QFL
offers a more efficient and secure approach with lower
overhead.

However, equipping every vehicle and infrastructure
component within the IoV with quantum processors is
impractical. Instead, the concept of the vehicular metaverse
offers a strategic alternative, where quantum computations are
managed at the edge or within virtual environments using
quantum servers [14], [15]. This approach merges quantum
computing advancements with practical implementation
strategies, potentially revolutionizing the operation of vehicular
networks. Thus, integrating quantum computing with FL
is necessary to evolve and meet the challenges of future
autonomous vehicular networks. Classical FL, while effective
today, is not well-suited to handle the communication,
scalability, and heterogeneity issues that will arise in next-
generation vehicular systems. Quantum-based FL, with its
advanced processing, communication, and privacy-preserving
capabilities, is, therefore, the logical next step in this evolution.

Building on this foundation, quantum federated learning
(QFL) presents itself as an innovative solution to overcome
the inherent limitations of CFL [16], [17]. Utilizing quantum
neural networks (QNN) [18], QFL offers an advanced data
processing capability, enhanced model precision, and improved
security, aligning well with the dynamic requirements of
the vehicular metaverse. The transition to QFL is not
just an incremental step but a necessity for keeping
pace with rapid technological advancements and avoiding
obsolescence. Nevertheless, the practical application of QFL in
vehicular networks encounters its own set of challenges [19],
including the integration of diverse data types, the need for
heightened computational power, and addressing quantum-

specific complexities. Several recent articles have addressed
various challenges in quantum communications. For instance,
[20] proposed a novel quantum communication scheme
that improves quantum bit error ratio, yield, and goodput,
circumventing delays associated with conventional approaches
by utilizing realistic noisy pre-shared entanglement. In [21],
the authors study a quantum secure direct communication
protocol to address challenges including reliance on quantum
memory, susceptibility to eavesdropping, and low transmission
reliability, significantly improving robustness and secure
information rate compared to existing protocols. The authors in
[22] explored using the quantum approximation optimization
algorithm to solve the maximum likelihood detection problem.

In recent literature, the exploration of QFL within classical
network contexts has gained significant attention, as evidenced
by studies such as those cited in [19], [23]–[27]. These studies
explored a variety of aspects related to QFL, employing
both quantum-based and classical data models to enhance our
understanding of its practical applications. The study in [24]
specifically examines the influence of data non-uniformity on
the performance of QFL, shedding light on the challenges
posed by varied data sets. Meanwhile, [25] takes a closer look
at the difficulties arising from the data that does not exhibit
independent and identical distribution (non-iid), proposing a
novel framework that decomposes a global quantum channel
into localized channels. This approach significantly improves
QFL performance in non-iid settings, marking a substantial
advancement in the field. Further, [26] introduces an innovative
federated QNN that incorporates quantum teleportation. This
network particularly focuses on optimizing resource allocation
in wireless communications and demonstrates enhanced
efficiency and comparable performance in power allocation
for non-orthogonal multiple access (NOMA)-based systems.
However, the practical application of QFL is not without
challenges. As highlighted in [19], issues such as the
integration of heterogeneous data, increased computational
demands, and quantum-specific complexities remain significant
hurdles. In a similar vein, [28] investigates a QFL-based
approach that prioritizes the safe and effective combination of
local model parameters using quantum bits, applicable across
various model types in both centralized and decentralized
settings. Notably, recent research efforts, particularly those
documented in [29] and [30], have contributed to the
development of efficient FL systems and decentralized, secure
QFL frameworks. Yet, these studies tend to concentrate on
individual components of QFL and lack a comprehensive
analysis of its broader applications, particularly over classical
networks. This observation underscores the need for more
extensive research into QFL, with a specific focus on its
potential within the context of quantum communication
networks (QCNs) [31].

Our study aims to bridge this gap by proposing a
novel framework: a decentralized, context-aware, QFL-based
model, specifically engineered for scalability and apt for
large-scale implementation. We evaluate the effectiveness
of our framework through a simulated vehicle trajectory
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Fig. 1: An illustration of QV-FEDCOM based vehicular metaverse framework.

prediction problem, which serves as a comprehensive
test case for the proposed model. At its core, this
framework efficiently tackles several key challenges inherent
in the dynamic environment of the next-generation vehicular
QCNs: a. Reducing communication costs, b. Handling data
heterogeneity, and c. Optimizing memory consumption.

Our research’s key contributions are summarized as follows:

1) We introduce the quantum-based decentralized and
heterogeneity-aware FL framework for vehicular
metaverse (QV-FEDCOM framework) which innovatively
merges quantum computing principles with FL, a novel
approach that harnesses the strengths of both domains
to optimize learning processes in a distributed vehicular
metaverse.

2) We develop three key components within the
QV-FEDCOM framework: Q-STP for reducing
communication costs and ensuring robust model
training by dynamically managing vehicle states; Q-VCG
for scalable, context-based vehicle grouping to address
data heterogeneity; and Q-PCA to compress memory and
reduce the quantum memory footprint.

3) Subsequently, we integrate Q-STP, Q-VCG, and Q-PCA
into the QV-FEDCOM framework, creating the QV-
FEDCOM algorithm, which facilitates a decentralized,
memory-efficient, and context-aware QFL process.

4) Additionally, incorporate a loss function specifically
designed for trajectory prediction tasks named QTL which
combines the Huber loss with an angular deviation penalty
to handle both small and large errors robustly and penalize
large deviations in the predicted trajectory angle.

5) Finally, we assess the effectiveness of our framework
through simulations for vehicle trajectory prediction. The
comparative performance analysis of the QV-FEDCOM
algorithm with its various adaptations offers insightful
benchmarks and highlights its capabilities within the

framework’s ecosystem.

Structure of the paper: The paper is structured as follows.
Section II presents the system model. Section III discusses
the proposed optimization method of the communication
cost, followed by the description of handling contextual
data in Section IV, and the Q-PCA program in Section V.
Section VI outlines the design of the decentralized quantum-
based federated learning algorithm, QV-FEDCOM. Section VII
details the experimental setup, while Section VIII discusses
the simulation results. Section IX discusses the complexity
analysis and Section X concludes the paper.

II. SYSTEM MODEL

In this study, we explore a suburban vehicular metaverse
environment comprising K vehicles, as depicted in Fig. 1,
equipped with intelligent agents, each outfitted with quantum
processors, real-world data collection sensors, sophisticated
AI functionalities, and state-of-the-art connectivity modules.
Each of these vehicles are engaged in an intricate interplay
of both learning and sharing. They consistently enhance
their localized QNN models and occasionally synchronize
with a comprehensive global model hosted on an edge
server. Multiple edge servers, serving as aggregators, enable
independent and concurrent global model updates. Our
QV-FEDCOM framework operates over t rounds, each
divided into r time slots. During these slots, vehicles
refine models, apply the quantum parameter shift rule for
gradient calculation, and communicate updates to the edge
server. Communication decisions are optimized through mode
indicators for adaptability and efficiency. The central server
models are updated based on all vehicle inputs. Scheduled
synchronizations, governed by Rsync, which denotes the
synchronization interval or the frequency at which these
synchronizations occur, guarantees consistent alignment with
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the global model for all vehicles, irrespective of their
communication frequencies.

In QFL-based vehicular environments, communication cost
is a critical factor. We focus on costs related to both local
vehicle-to-vehicle communication and communication with
the server. The communication cost depends on the distance
between vehicle i and the edge server (di), the size of the
transmitted quantum data (si), the available bandwidth (b), and
the data transmission rate (e). The size of the transmitted data
(si) directly impacts communication overhead, representing
the data exchanged between vehicles and the server in each
iteration. For a vehicle’s quantum state, represented by qubits
Q, each qubit is encoded using bq bits, leading to a total size
of Q × bq . Additionally, the quantum neural network (QNN)
parameters P , each using bp bits, contribute P × bp to the
update size, along with ancillary data A represented as ba bits.
Hence, the total quantum update size for the ith vehicle is:

si = (Q× bq) + (P × bp) + ba . (1)

Next, the estimation of the transmission rate involves
considering both local data processing within each vehicle
and data transmission to the edge server. Following the same
method used in (1), we define (si,local) and (si,server) as the
size of the quantum data update required for local transmission
and transfer to the server, respectively. The local transmission
speed is denoted as υlocal. Thus, the local transmission time
and server transmission time are calculated, respectively, as

ti,local =
si,local
υlocal

, (2)

ti,server =
si,server

b
. (3)

In this study, we mainly focus on the communication cost
involved in the local communication among the vehicles and
the communication cost incurred in server communication.
Thereby, we estimate the overall communication cost as

CCi = LocalCCi + ServerCCi . (4)

Here, local and server communication costs are calculated,
respectively, as

LocalCCi = ti,local × Clocal , (5)
ServerCCi = ti,local × Cserver × f(di) , (6)

where Clocal and Cserver are constants that represent the cost
per unit time for local and server communications, respectively.
f(di) = 1 + α × di is a linear function that represents the
additional cost incurred due to the distance and α is a constant
that represents the rate at which cost increases with distance.

III. OPTIMIZING COMMUNICATION COST

In QFL, the primary challenge is the high communication
cost due to the transmission of quantum data. This is
exacerbated in vehicular networks where bandwidth is limited
and connectivity can be intermittent. Efficient communication
is essential to maintain model integrity while ensuring that the
system remains scalable and robust.

To address these challenges, we propose the Quantum
Sequential-Training-Program (Q-STP), which introduces two
operational modes for vehicles within the FL process. These
modes are designed to balance communication efficiency with
model integrity dynamically:
1. Streaming Mode: In this mode, a vehicle actively
participates in quantum streaming for FL. Quantum streaming
involves continuously transmitting quantum-encoded data
updates from the vehicle to the edge server in real time. This
mode is beneficial when the communication cost is low, and
the network conditions are favorable. By frequently sending
the latest quantum data to the edge server, the global model
can be updated more often, thereby maintaining high model
accuracy and ensuring that the system promptly incorporates
new information from the vehicles.
2. Calibration Mode: In this mode, a vehicle focuses on
stabilizing its local model using quantum techniques without
actively participating in quantum streaming. Stabilizing the
local model involves optimizing and refining the model’s
parameters locally using the vehicle’s data. This process
enhances the model’s performance and accuracy on the local
dataset. Calibration mode is useful when communication costs
are high or network conditions are poor. By allowing vehicles
to independently improve their local models, this mode reduces
the need for constant data transmission. Even though the local
models are not frequently synchronized with the global model,
they remain well-calibrated and effective due to ongoing local
optimization efforts.

The proposed Q-STP optimizes communication decisions
by dynamically adjusting these modes based on current
network conditions and vehicle states. This approach
provides several benefits: adaptive communication by reducing
unnecessary overhead when conditions are poor, efficient
resource utilization by allowing local model refinement
when communication is expensive, and a balanced trade-
off between model accuracy and communication costs by
maintaining high model integrity while optimizing efficiency.
The implementation of Q-STP in the QV-FEDCOM framework
ensures that vehicles refine their models and communicate
updates to the edge server based on the selected mode,
with scheduled synchronizations to align with the global
model for all vehicles. The optimization problem for
minimizing communication costs in Q-STP is formulated to
adjust the operational mode dynamically, ensuring efficient
communication and robust model performance.

A. Problem Formulation for CCi minimization

Next, we formulate the optimization problem, aiming to
minimize CCi, as:

(P1) : min
Mi,Ci,W

(t)
i ,U

(t)
i

N∑
i=1

CCi

s.t.(C.1) Mi ∈ {0, 1} ∀i ,
(C.2) CCi ≥ 0 ∀i
(C.3) Li(t) = U(Li(t− 1), Di(t)) if Mi = 1,∀i ,
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(C.4) Li(t) = S(Li(t− 1), Di(t)) if Mi = 0,∀i ,
(C.5) W

(t)
i , if Mi = 1, ∀i ,

(C.6) U
(t)
i , if Mi = 1 or Mi = 0, ∀i . (7)

Here, in constraint C.1, Mi serves as a binary indicator for the
quantum mode:

Mi =

{
1 if di > T and CCi ≤ Limitsi
0 otherwise

(8)

Here, di > T ascertains if the vehicle i is sufficiently distant
from the server, surpassing thresholdT, to engage the quantum
streaming mode. Concurrently, CCi ≤ Limitsi ensures
that vehicle i’s communication cost adheres to the limit,
Limitsi = m mbps per vehicle× vehicle to bandwidth ratio×
OHF, where OHF stands for the overhead factor. Both
conditions must concur for Mi to be 1, indicating the vehicle’s
operation in the quantum streaming mode. Conversely, Mi

defaults to 0, denoting calibration mode. Additionally, C.2
mandates non-negative communication costs. C.3 postulates
that quantum updates through operation U are applied to the
local model Li(t− 1) of vehicle i at round t using data Di(t)
solely when Mi = 1. Further, C.4 underscores that operation
S is triggered when Mi = 0 (representing the calibration
mode), C.5 and C.6 respectively elaborate on the nuances of
quantum transmissions W (t)

i and quantum update exchanges
U

(t)
i contingent on the quantum mode.

B. RL-based Quantum Sequential-Training-Program (Q-STP)

To enhance the decision-making process in Q-STP,
we integrate a decentralized reinforcement learning (RL)
approach, where each vehicle acts as its own RL agent. This
decentralized approach allows each vehicle to make real-time
mode-switching decisions (between streaming and calibration
modes) based on its unique communication conditions and
network state. Using Deep Q-Networks (DQN), each vehicle
learns the optimal mode-switching policy by minimizing
communication costs while maintaining model accuracy.

1) State: The state space includes features such as
communication cost, distance from the server, vehicle speed,
and the current operational mode.

2) Action: The action space comprises three actions:
switching to streaming mode, switching to calibration mode,
or staying in the current mode.

3) Reward: The reward function is designed to balance
communication costs and model accuracy, defined as:

rt = −norm(CCi) + norm(∆Acc) , (9)

where ∆Acc is the change in model accuracy and CCi is
the communication cost. Both terms are normalized to ensure
comparability.

This decentralized setup ensures that the computational load
remains minimal, as each vehicle processes its state-action
pairs. Additionally, the decentralized RL setup minimizes
communication overhead by allowing vehicles to make

Algorithm 1 Q-STP for Communication Cost Minimization

1: Initialize parameters and hyperparameters.
2: Initialize CCi ← 0 for each vehicle i.
3: Initialize mode indicators Mi ← 0 for each vehicle i.
4: Initialize agent with state, action, and reward function.
5: for each training round do
6: for each vehicle i do
7: Calculate the state : CCi, di, si, Mi.
8: si ← state features
9: end for

10: for each vehicle i do
11: Select ωi based on the policy derived for state si.
12: If action ωi is to switch mode:
13: if ωi = Streaming Mode then
14: Mi ← 1
15: else if ωi = Calibration Mode then
16: Mi ← 0
17: end if
18: end for
19: for each vehicle i do
20: if Mi = 1 then
21: Li(t)← U(Li(t− 1), Di(t)).
22: else
23: Li(t)← S(Li(t− 1), Di(t)).
24: end if
25: end for
26: Reward Calculation:
27: for each vehicle i do
28: Calculate change in accuracy ∆Acc.
29: Normalize CCi and ∆Acc using (??).
30: Calculate reward rt using (9).
31: end for
32: Policy Update:
33: for each vehicle i do
34: Update Q-values using (10).
35: end for
36: end for

localized decisions, thus avoiding the need for frequent
communication with the edge server. This mechanism
effectively reduces quantum data transmission, which is
particularly resource-intensive. The Q-values are updated using
the DQN update rule:

Q(st, at)← Q(st, at) + ν
(
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
)

(10)

where ν is the learning rate, and γ is the discount factor.
This method ensures that mode-switching decisions are made
efficiently while reducing unnecessary communication. The Q-
STP is detailed in Algorithm 1.

IV. HANDLING CONTEXTUAL DATA HETEROGENEITY

Although the Q-STP process helps reduce communication
costs, data heterogeneity in QFL remains a critical challenge,
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particularly in dynamic vehicular networks where vehicles
generate diverse data based on factors like speed, location,
and bandwidth. This diversity leads to inefficient learning
processes, as models trained on highly varied data might not
generalize well across the entire network [4]. To address this,
grouping vehicles with similar contextual data is essential. By
creating groups with more homogeneous data, the learning
process becomes more efficient, improving the quality of
the trained models and enhancing the performance of the
aggregated global model. This method effectively mitigates the
negative impact of data heterogeneity, ensuring better overall
learning outcomes.

A. Problem Formulation for Maximizing Data Similarity

The objective is to minimize data heterogeneity by optimally
grouping vehicles based on their contextual data similarity. We
define an optimization problem where the goal is to maximize
the intra-cluster similarity by focusing on training vehicles
based on data context similarity. Let us consider a binary
variable Ωij to indicate indicates whether vehicles i and j are
grouped. Then the optimization problem is given as

(P2) : max
Ωij

V∑
i=1

V∑
j=1
j ̸=i

similarity_score(i,j) · Ωij

s.t.(C.7) Ωij ∈ {0, 1} ∀i ̸= j,∀(i, j) ∈ {1, . . . ,K} ,
(C.8) Ωij = Ωji ∀(i, j) ∈ {1, . . . ,K} ,

(C.9)

K∑
j=1
j ̸=i

Ωij = 1,∀i ∈ {1, . . . ,K} ,

(C.10) Ωii = 0,∀i ∈ {1, . . . ,K} , (11)

where the contextual data ={x−coordinare, y−coordinate, di,
si, e, b}. Constraint C.7 ensures that Ωij is a binary variable.
C.8 enforces symmetry in the clustering. This means if vehicle
i is grouped with vehicle j (i.e., Ωij = 1), then vehicle j must
also be grouped with vehicle i (Ωji = 1). This is necessary
because the similarity relationship is mutual. C.9 guarantees
that each vehicle is assigned to exactly one cluster. This
constraint ensures that each vehicle is grouped with exactly one
set of other vehicles, making the clustering process exhaustive.
C.10 ensures that a vehicle is not grouped with itself. This
prevents trivial solutions where each vehicle is considered its
cluster.

B. Quantum Vehicular-Context-Grouping (Q-VCG)

To address vehicular data heterogeneity, Q-VCG optimizes
groupings of vehicles based on contextual data similarity.
These groupings allow for independent quantum training on
different edge servers, improving the efficiency and scalability
of the federated learning process. In the Q-VCG framework,
edge servers handle the computation of vehicle groupings.
Each edge server has access to the global contextual data
of vehicles within its region, such as coordinates, speed,

and bandwidth. This global view, combined with the server’s
computational resources, enables it to perform the complex
tasks of hierarchical clustering and simulated annealing. The
edge server calculates the cosine similarity between vehicles
using min-max normalized contextual data and then groups
vehicles accordingly. The Q-VCG utilizes edge servers to
compute the grouping instead of considering vehicles as agents
mainly because:

• Edge servers are equipped with greater computational
resources compared to vehicles, enabling them to
efficiently compute vehicle similarities and optimize
group formations.

• Vehicles only have access to their local data, while the
edge server has a complete view of all vehicles in its
region, allowing it to make informed decisions about
grouping.

After computing the optimal groups, the edge server distributes
lightweight control messages to the vehicles, containing their
group assignments for the next federated learning round. To
gauge data homogeneity between vehicles i and j, we use the
cosine similarity metric based on contextual data factors x-
y-coordinates, di, si, e, b [32], [33]. However, these factors
have different units and scales, which can skew the similarity
calculation if not properly addressed. To ensure that all features
contribute equally to the similarity measure, we apply min-max
normalization to scale these features to a common range [0, 1].
Min-max normalization is applied as:

Vn ←
Vn −min(Vn)

max(Vn)−min(Vn)
, (12)

where Vn is the value of the feature for a given vehicle, such
that x-y-coordinates, di, si, e, b∈ Vn, min(Vn) is the minimum
value of that feature across all vehicles, and max(Vn) is
the maximum value of that feature across all vehicles. This
transformation scales each feature such that the minimum value
maps to 0 and the maximum value maps to 1, thereby ensuring
that features with different units and scales contribute equally
to the similarity calculation. After normalization, we calculate
the importance of each feature using a random forest model.
This process is summarized in Algorithm 2.

Algorithm 2 Random Forest-based Feature Importance

1: Input: Normalized dataset X with features Vn.
2: Output: Feature importance weights wn.
3: Train a Random Forest model using X.
4: Extract feature importance scores from the trained model.
5: Normalize the feature importance scores to sum up to 1.
6: Assign these normalized scores as weights wn for each

feature Vn.

These weights adjust the similarity calculation to reflect each
feature’s importance. The weighted cosine similarity between
vehicle i and j is computed as:
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cos_sim(i,j) =

∑6
n=1 wnVi,n · Vj,n√∑6

n=1(wnVi,n)2 ·
√∑6

n=1(wnVj,n)2
,

(13)
where wn are the feature importance weights derived from
the Random Forest model, and Vi,n and Vj,n represent the
normalized n-th component of the feature vectors for vehicles i
and j, respectively. This weighted cosine similarity effectively
captures the similarity between the contextual data of two
vehicles, taking into account the relative importance of each
feature.

To ensure privacy, each vehicle computes a locally
transformed version of its feature vector using the secure
multi-party computation (SMC) protocol described in [34].
These transformed vectors are shared with a central aggregator,
which computes the similarity scores without accessing the raw
data. This approach ensures that the QV-FEDCOM framework
adheres to federated learning’s fundamental goal of data
privacy while effectively managing data heterogeneity and
optimizing the learning process.

Next, to achieve optimal clustering, we employ a two-
step approach combining hierarchical clustering with an
optimization step. This ensures the resulting clusters are as
homogeneous as possible, reducing data heterogeneity within
each cluster and improving the efficiency of the federated
learning process.

1) Step 1: Hierarchical Clustering: We begin by
normalizing the feature vectors and calculating the cosine
similarity between each vehicle pair. Hierarchical clustering
is then applied to create an initial set of clusters using Ward’s
method [35], which minimizes the variance within each
cluster during the clustering process.

Hierarchical clustering begins with each vehicle in its cluster
and iteratively merges the two clusters resulting in the smallest
increase in within-cluster variance. The process uses squared
Euclidean distance as the metric and continues until a specified
number of clusters or a distance threshold is reached. At each
step, the distance matrix is updated after merging the most
similar clusters. The objective function in Ward’s method is
given by:

D(A,B) =
|A||B|
|A|+ |B|

∥cA − cB∥2 (14)

where D(A,B) is the distance between clusters A and B,
|A| and |B| are the number of vehicles in clusters A and B
respectively, and cA and cB are the centroids of clusters A
and B.

2) Step 2: Optimization Step: After obtaining the initial
clusters through hierarchical clustering, an optimization step is
applied to refine these clusters. The goal is to maximize intra-
cluster similarity while ensuring the clusters meet predefined
constraints such as minimum cluster size and maximum
number of clusters.

We employ simulated annealing (SA) to perform this
optimization. SA is chosen for its ability to effectively search

large solution spaces and avoid local optima. SA algorithm
calculates the objective function as

OF =
∑

i,j∈same cluster
i ̸=j

cos sim(i,j) , (15)

such that, the difference/change in OF over different time
stamps is denoted as ∆E. Next, the acceptance probability
of the SA algorithm is calculated as

P (∆E) =

{
1 if ∆E > 0

exp
(
∆E
G

)
if ∆E ≤ 0

(16)

where G is a parameter analogous to temperature in traditional
simulated annealing, which controls the likelihood of accepting
worse solutions, such that Gt+1 = ζGt. Initial G starts as
value 1 and the final value is achieved upon completion of the
maximum iterations.

The optimization process involves the following steps:
1) The objective function to be maximized during

optimization is calculated as (15).
2) The initial solution for the optimization algorithm is the

set of clusters obtained from hierarchical clustering.
3) The SA algorithm iteratively modifies the cluster

assignments to improve the objective function. The
algorithm considers possible moves such as reassigning
vehicles to different clusters or swapping vehicles
between clusters. At each iteration, the algorithm
evaluates the new configuration based on the objective
function and decides whether to accept the new
configuration based on a probabilistic acceptance
criterion, which helps avoid local optima.

4) During the optimization process, constraints are enforced
to ensure that the resulting clusters are valid. These
constraints include:
• Each cluster must contain at least Kmin vehicles. If a

cluster falls below this size, the vehicles are reassigned.
• Each group should encompass at least Kmin vehicles for

efficient QFL training. If a vehicle i does not qualify to
be in any group with more than Kmin vehicles, vehicle
i will not take part in the training process.

• A vehicle can only belong to one cluster at a time.
• For all the vehicles, vehicle i and vehicle j can only

be in the same group if the value of cos_sim(i,j)

is greater than the similarity threshold (Sim_Thres).
This value is determined based on a specific percentile
(P) of all calculated cosine similarity values within
that round. This helps the system to be more resilient
against drastic changes in data distribution.

The Q-VCG algorithm is detailed in Algorithm 3.

V. QUANTUM-INSPIRED PRINCIPAL COMPONENT
ANALYSIS (Q-PCA)

The Q-STP and Q-VCG significantly optimize
communication efficiency and manage data heterogeneity.
However, a critical challenge that remains unaddressed is
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Algorithm 3 Q-VCG for Optimal Vehicular Grouping

1: Input: Normalized data matrix, similarity matrix, Kmin, β,
Sim_Thres

2: Output: Optimized clusters
3: Calculate cosine similarities using (13).
4: Perform hierarchical clustering using Ward’s method.
5: Obtain initial clusters when the clusters are most

homogeneous.
6: Initialize (15) as the sum of intra-cluster similarities.
7: Set the initial solution to the initial clusters.
8: Set initial parameters for the SA process.
9: while stopping criterion not met do

10: Generate a new set of clusters.
11: Evaluate the new set of clusters using (14).
12: Calculate the change in the objective function ∆E.
13: if ∆E > 0 then
14: Accept the new set of clusters.
15: else
16: Accept the new cluster-set with probability

proportional to ∆E.
17: end if
18: Ensure all clusters meet the constraints:
19: for each cluster do
20: if cluster size < Kmin then
21: Reassign vehicles to meet Kmin.
22: end if
23: end for
24: Ensure the total number of clusters G within limit.
25: Ensure each vehicle belongs to only one cluster.
26: Ensure vehicles in the same cluster have a cosine

similarity ≥ Sim_Thres.
27: end while
28: return Optimized clusters

the quantum memory footprint. Quantum states, even when
efficiently utilized, can quickly consume extensive memory
resources, as each additional qubit doubles the state space.
To sustain the scalability of the QV-FEDCOM framework
and ensure its practical deployment, it is crucial to reduce
quantum memory usage without compromising the integrity
of the quantum data [36]. To address this limitation, we find
inspiration in the classical computational method known as
principal component analysis (PCA) [37]. PCA is typically
used in classical computing to transform a set of possibly
correlated variables into a set of linearly uncorrelated variables
called “principal components.”

Emulating this approach in the quantum computing domain,
we conceptualize an analogous process for quantum datasets
and denote it as Q-PCA [38]–[40]. The integration of Q-PCA
occurs before the Q-STP and Q-VCG since it is designed to
optimize the quantum data representation. This ensures that
the data is already in an optimized form when it goes through
the sequential training and vehicle-context grouping processes,
thereby reducing the quantum memory load. Q-PCA technique

was introduced in [41] as an effective technique for reducing
the quantum memory footprint. Thus, the integration of Q-
PCA in our framework helps reduce the quantum memory
footprint, a critical factor for efficient QFL. By combining Q-
PCA with components like Q-STP and Q-VCG, we address
the challenges of data heterogeneity, communication costs, and
memory optimization within QFL. This cohesive framework,
QV-FEDCOM, showcases the innovative application of Q-
PCA in a new context, enhancing overall system efficiency
and scalability. We will ensure the manuscript is updated to
reflect this clarity and emphasis on the integrated framework’s
contributions.

In the future, we aim to refine our approach to further reduce
the quantum memory footprint and enhance the QV-FEDCOM
framework in its next version with a more robust integration
and optimization of Q-PCA.

To compress quantum data, the primary goal of integrating
Q-PCA is to select a subset of principal quantum components
that maximize the cumulative quantum variance [41], [42].
The quantum covariance matrix ρ̂ is constructed from the
quantum states representing the data, such that for N number
of quantum states, the set of quantum states that encode
the data can be denoted as {|ψi⟩}Ni=1. Thus, this matrix is
constructed from the outer products of the quantum states |ψi⟩,
mathematically, given as

ρ̂ =
1

N

N∑
i=1

|ψi⟩⟨ψi| . (17)

This matrix captures the statistical properties of the quantum
states representing the data. Next, we find the eigenstates
|ϕq⟩, which are the principal components in Q-PCA. These
eigenstates are the key to reducing the dimensionality of
the quantum data, and they represent the most significant
components of the dataset in terms of quantum variance. For
each |ϕq⟩ of ρ̂, its quantum variance is calculated as

Var(|ϕq⟩) = ⟨ϕq|ρ̂2|ϕq⟩ − (⟨ϕq|ρ̂|ϕq⟩)2 . (18)

The process of estimating the variance involves applying ρ̂ and
ρ̂2 to each |ϕq⟩ and then measuring the expectation values.
Therefore, the optimization problem aims to maximize:

(P3) : max
{|ϕq⟩}

Q′∑
q=1

Var(|ϕq⟩)

s.t. (C.11) Q′ < Q,

(C.12) The eigenstates {|ϕq⟩} are orthogonal,
(C.13) F (ρ, σ) ≥ ξ,

where Q is the original number of qubits and Q′ represents the
number of principal components selected. This ensures that the
resulting quantum state is a compressed version of the original.
F (ρ, σ) is the fidelity between the original quantum state ρ and
the compressed quantum state σ. ξ is the predefined threshold
for fidelity. This constraint ensures that the fidelity between
the original and compressed states is not below this threshold,
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indicating that the compressed state retains a high degree of
similarity to the original state.

Thus, the Q-PCA algorithm is designed to optimize and
solve P3. The Q-PCA algorithm is described in detail in
Algorithm 4.

Algorithm 4 Q-PCA for Quantum Data Compression

1: Prepare quantum states {|ψi⟩} from classical data.
2: Initialize the quantum covariance matrix ρ̂.
3: for each quantum state |ψi⟩ do
4: Update ρ̂ by adding |ψi⟩⟨ψi|.
5: end for
6: Normalize ρ̂ by the number of states N .
7: Compute eigenstates {|ϕq⟩} of ρ̂.
8: for each eigenstate |ϕq⟩ do
9: Calculate Var(|ϕq⟩).

10: end for
11: Select a subset of eigenstates {|ϕq⟩} that maximize

cumulative variance.
12: Transform quantum data to the basis of selected principal

components.

VI. DECENTRALIZED QFL FOR VEHICULAR METAVERSE

We incorporate the Q-STP, Q-VCG, and Q-PCA algorithms
and design a quantum-based decentralized and heterogeneity-
aware FL framework for vehicular metaverse named QV-
FEDCOM framework. In this framework, the QV-FEDCOM
algorithm is designed to handle data heterogeneity in a cost-
efficient way while maintaining a robust quantum environment.

In the QV-FEDCOM framework, each vehicle i has a
local model (Li) initialized. This model is represented by
the parameterized quantum circuit Li(θi) = UQNN(θi) in
the context of QNN, where θi represents the set of trainable
parameters for vehicle i and UQNN denotes the parameterized
quantum unitary (circuit) for the QNN of vehicle i. Next,
updating the local model involves quantum circuits with
parameter shifts for gradient calculations given as

∆θi = −η∇Llocal(Li) , (19)
θinew = θi +∆θi , (20)

where ∇Llocal(Li) is the gradient of the local loss concerning
the parameters of the QNN, η is the learning rate and θinew
are the updated parameters after a given update step. Next, we
derive the local gradients by applying (24), which is derived
using Theorem 1 provided below:

Theorem 1 (Quantum Parameter Shift Rule): When dealing
with a quantum circuit that employs a loss function Llocal(θ),
we can approximate the gradient concerning the parameter θin
as:

∂Llocal

∂θin
≈
Llocal(θin + π

2 )− Llocal(θin − π
2 )

2
. (21)

Proof: Starting with the general concept of a derivative:

lim
h→0

f(x+ h)− f(x)
h

= f ′(x). (22)

Algorithm 5 QV-FEDCOM framework

1: Initialization:
2: Initialize global parameters and hyperparameters.
3: Initialize G empty lists for grouped vehicles.
4: Initialize global models MG for each group.
5: Initialize local models Li for each vehicle i.
6: Initialize CCi and mode indicators Mi for each vehicle i.
7: Perform Q-PCA to compress quantum data.
8: Main Loop:
9: for each round do

10: Calculate vehicle dynamics using Q-STP.
11: Form vehicle groups using Q-VCG.
12: for each group Gg do
13: Initialize the edge server for group Gg .
14: Sync the global model MGg

with the edge server.
15: for each time slot r do
16: for each vehicle i in group Gg do
17: Update the local model Li.
18: Calculate local gradients.
19: if Mi = 1 then
20: Send gradients to the edge server.
21: Update MGg with received gradients.
22: Send model update to the vehicle i.
23: end if
24: end for
25: if r mod Rsync = 0 then
26: for each vehicle i in group Gg do
27: if Mi = 0 then
28: Send gradients to the edge server.
29: Update global model MGg

.
30: Send model update to entire group.
31: end if
32: end for
33: end if
34: end for
35: end for
36: function CONVERGENCE(Gg , Lp, counter)
37: Calculate Lc for group Gg .
38: ∆L = (Lp − Lc)/Lp

39: if ∆L <W then
40: counter ← counter + 1
41: if counter ≥ Y then
42: return True
43: else
44: return False
45: end if
46: else
47: counter ← 0
48: return False
49: end if
50: end function
51: end for

From the central finite difference approximation:
∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
. (23)
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By applying (23) with h = π
2 , specifically valid for

parameterized quantum circuits due to their unitary nature [43]:

∂Llocal

∂θin
≈
Llocal(θin + π

2 )− Llocal(θin − π
2 )

2
. (24)

Next, the global model is aggregated using the gradient:

∆θGg
= −η∇Lglobal(MGg

) , (25)
θGgnew = θGg

+∆θGg
, (26)

where θGg
is the set of trainable parameters for the global

model of the group Gg . The step r mod Rsync = 0 ensures
that vehicles that do not send updates in every time slot can
still sync with the global model periodically, where Rsync is
the synchronization time.

For this study, we define the loss function as quantum
trajectory loss (QTL) to enhance the prediction accuracy of
vehicle trajectories. The QTL comprises two components: the
Huber loss [44] and the angular deviation penalty. The Huber
loss is defined as:

LHub =

{
1
2 (yi − ŷi)

2 for |yi − ŷi| ≤ δ
δ
(
|yi − ŷi| − δ

2

)
otherwise ,

(27)

where δ is a hyperparameter that determines the threshold at
which the loss transitions from a quadratic function to a linear
function. xi and yi are the actual coordinates of the vehicle i,
while x̂i and ŷi are the predicted coordinates at the same time.

To address the directionality aspect of vehicle trajectories,
we introduce the angular deviation penalty. Similar techniques
to minimize angular deviations have been explored in fields
like robotics [45] and autonomous driving systems [46], [47],
where trajectory alignment is crucial. In our framework this
term penalizes deviations in the predicted trajectory’s direction,
ensuring the predicted trajectory aligns not only with the
position but also the direction of the actual trajectory. This
penalty is especially important in vehicular applications where
directional accuracy is critical for tasks like navigation and
collision avoidance. Mathematically, the angular deviation
penalty is expressed as:

LAng =

T∑
t=1

θ(t) , (28)

where angular deviation θ(t) represents the difference in
trajectory direction between the predicted and true paths, as:

θ(t) =

∣∣∣∣tan−1

(
ŷi − yi
x̂i − xi

)
− tan−1

(
yi+1 − yi
xi+1 − xi

)∣∣∣∣ . (29)

The combination of Huber loss and angular deviation penalty
is key in optimizing both positional accuracy and trajectory
directionality. Finally, the QTL is estimated as:

LQTL = LHub + LAng . (30)

In Algorithm 5, the QV-FEDCOM algorithm determines
convergence dynamically through the reduction rate of the
loss value. Let Lp and Lc represent the previous and current

loss values, respectively, calculated from (30). The percentage
decrease, ∆L, is defined as ∆L =

Lp−Lc

Lp
. Convergence is

deemed achieved when ∆L falls below a set threshold W for
Y consecutive rounds, employing a counter mechanism for
tracking.

VII. EXPERIMENT

This section outlines our experimental setup.

A. Problem Description

To evaluate the effectiveness of our QV-FEDCOM
framework, we focus on a vehicular trajectory prediction
problem, which is fundamentally a regression task. The goal
is to predict continuous-valued outputs, specifically the future
x and y coordinates of each vehicle. These predictions are real
numbers, distinguishing this problem from classification tasks
that predict discrete categories. The prediction is modeled as:

(x̂(t), ŷ(t)) = f(contextual data), (31)

where x̂(t) and ŷ(t) are the predicted coordinates at time
t, and f(·) represents the learned model that maps the
vehicle’s contextual data—including x and y coordinates,
speed, distance traveled, transmission rate, and available
bandwidth—into the predicted trajectory. The continuous
nature of these predictions, which smoothly vary over time,
aligns the task with regression rather than classification.

The model learns a mapping from the contextual features to
the continuous output space of vehicle positions, generating
predictions over a continuous domain. This process of
predicting real-valued coordinates is inherently incompatible
with classification approaches, further establishing that the
task falls under the category of regression. For evaluating
the performance of the quantum-based regression model, we
adopt a tolerance-based accuracy metric, which assesses how
close the predicted x and y coordinates are to the true values
within a predefined error margin. This metric is suitable
for continuous predictions, as it measures the proportion of
predictions that fall within an acceptable tolerance range of the
actual coordinates. Let the predicted position of the vehicle at
time t be (x̂(t), ŷ(t)), and the true position be (x(t), y(t)). The
error between the predicted and true coordinates is computed
using the Euclidean distance:

e(t) =
√
(x̂(t)− x(t))2 + (ŷ(t)− y(t))2. (32)

We define a tolerance threshold ϵ to determine how much
deviation is acceptable. For instance, ϵ = 0.10 (10% tolerance)
defines the range of acceptable prediction errors. A prediction
is considered accurate if the error e(t) is within the tolerance
threshold e(t) ≤ ϵ. If this condition is satisfied, the prediction
is counted as accurate. The accuracy is then calculated as the
proportion of predictions that meet the accuracy condition over
the training rounds:

Accuracy =

∑N
i=1 1(ei(t) ≤ ϵ)

N
, (33)
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where 1(·) is an indicator function that equals 1 if ei(t) ≤ ϵ,
and 0 otherwise, and N is the total number of predictions made
during a given training round.

B. Dataset Preparation

For our experiments, we utilize the Didi Chuxing GAIA
Initiative Dataset1, which provides comprehensive and high-
quality vehicular trajectory data. This dataset includes
information on vehicle coordinates, speed, and timestamps,
making it suitable for our trajectory prediction task. The
dataset contains ride-hailing orders of Didi Chuxing in Haikou,
China, from May 1st to October 31st, with a total number
of 12, 185, 427 orders [48]–[50]. To enhance our dataset
for the QV-FEDCOM framework, we simulate additional
vehicular attributes such as transmission rate and available
bandwidth. We use the OpenAI Gym library [51] to simulate
these attributes, ensuring realistic and varied data for our
experiments:

• Transmission Rate: Simulated based on typical vehicular
communication scenarios, assuming a normal distribution
with a mean of 10 Mbps and a standard deviation of 2
Mbps.

• Available Bandwidth: Simulated using common
bandwidth availability patterns in vehicular networks,
assuming a normal distribution with a mean of 50 Mbps
and a standard deviation of 10 Mbps.

The preprocessing steps involve the following steps:
1) Normalization: All features are normalized to ensure

they are on a comparable scale. This is crucial for
calculating similarity scores accurately.

2) Quantum Encoding: The normalized data is encoded
into quantum states using a sequence of Ry rotation
gates. Each vehicular attribute undergoes encoding into
a quantum state via a rotation angle, θ, set relative to the
attribute value.

C. Experimental Setup

We set up a quantum environment using Quantum
Toolbox [52], TFQ, and an FL setup using TensorFlow
Federated (TFF) in Python, utilizing the GPU runtime on
Google Colab Pro [19], [30]. Given the complexity of quantum
computations, we use a modest dataset of 100 vehicles with
6 features, encoded into 100 quantum circuits, each operating
on 6 qubits.

Each vehicular attribute is represented by a qubit, and
Ry rotation gates are used to encode the normalized feature
values into quantum states. Specifically, the state for each
vehicle is initialized to |0⟩⊗6 and transformed using Ry

gates: |ψ⟩ =
⊗6

i=1Ry(θi)|0⟩ where θi = κ × FeatureValuei
and κ is a normalization constant. κ is used to scale the
vehicular attributes when encoding them into quantum states
and is determined by the maximum value among all vehicular
attributes, such that the largest feature value corresponds to a

1https://gaia.didichuxing.com/

TABLE I: Simulation Parameters.

Param. Value Param. Value

T 0.75 km t 50

H 5 r 20

S Epochs 5 Rsync 10

ν 0.01 W 0.1

γ 0.99 η 0.01

δ 1 P 80

C Epoch 2 α 0.25

β 0.2 Y 5

Kmin 5 κ [0, 1]

OHF 1.2 Q 6

υlocal 100Mbps ba 100bits

K 100 m 0.5

N 100 ξ 0.95

di [50− 90]m b [20− 50]Mbps

bq 64bits bp 64bits

Clocal 0.05 Cserver 0.10

G 1 ζ 0.95

rotation angle of π. This is calculated as: κ = π
max value where

max value is the maximum value of the vehicular attributes
across all vehicles. CNOT gates are used to entangle qubits and
capture correlations between features, and measurement gates
are applied to extract classical information from the quantum
states.

Given that our experiments occur in a simulated environment
on a conventional computer, and the computational complexity
can rise exponentially, we opt to train a compact QNN
architecture. For each vehicle, the QNN architecture consists
of an input layer of 6 qubits, two hidden layers with 3 qubits
each, and an output layer designed to provide continuous
values corresponding to the predicted future coordinates of
the vehicle. This setup ensures that our quantum computations
are feasible within the constraints of the Google Colab
Pro environment while providing sufficient complexity to
accurately model the vehicular trajectory prediction task. The
other parameters used in this study are given in Table I.

D. Benchmark Comparisons

1) QFL: In benchmark comparisons, QFL represents
a fundamental QFL model that operates with a single
central server. Unlike the QV-FEDCOM framework, it lacks
enhancements such as Q-STP, Q-VCG, and Q-PCA, and does
not utilize a composite loss function, making it a baseline
model for assessing the advanced features and benefits of the
QV-FEDCOM framework.

2) QV-FEDCOM (without QTL): This benchmark variant
of QV-FEDCOM excludes the QTL function and utilizes only
Huber loss instead. It serves to demonstrate the impact of the
QTL on the performance and accuracy of trajectory predictions
within the framework.
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3) QV-FEDCOM (without Q-VCG): This version of
QV-FEDCOM operates without the Q-VCG mechanism,
highlighting the role of Q-VCG in managing data heterogeneity
and optimizing the federated learning process.

4) QV-FEDCOM (without Q-STP): In this configuration,
the QV-FEDCOM framework is tested without the Q-STP.
This benchmark helps to evaluate the significance of Q-STP
in improving communication efficiency and overall training
performance.

5) QV-MetaFL: QV-MetaFL is a previous version of
QV-FEDCOM that also incorporates Q-STP and Q-VCG
described in [53]. However, in QV-MetaFL, the Q-STP
employs a heuristic approach for mode-switching rather than
reinforcement learning, relying on predefined rules to manage
the training sequence. Similarly, the Q-VCG in QV-MetaFL
uses a heuristic hierarchical clustering approach to group
vehicles, as opposed to the more advanced methods used in
QV-FEDCOM. This comparison showcases the advancements
and optimality of each component in the QV-FEDCOM
framework.

6) Data heterogeneity levels: For our experimentation, we
manually curated three subsets from the main dataset of 100
vehicles, as detailed in Section VII-B. These subsets are
designed to represent three distinct levels of data heterogeneity.
heterogeneity level 1 is composed of data with largely
similar vehicle properties, providing a more homogeneous
dataset. In contrast, heterogeneity level 2 includes a broader
diversity of vehicle characteristics, and heterogeneity level
3 encompasses a very diverse range of vehicle properties,
representing the highest degree of heterogeneity. Unless
specifically mentioned, most of our experiments default to
using the dataset corresponding to heterogeneity level 2.

VIII. SIMULATION RESULTS

This section presents the results of the performance
evaluation of the proposed framework-

A. Training Accuracy
Fig. 2 illustrates the training accuracy of various frameworks

across multiple training rounds. The QV-FEDCOM framework,
which integrates DQN-based Q-STP, simulated annealing-
based Q-VCG, Q-PCA, and QTL, demonstrates the highest
training accuracy throughout the rounds. This performance
underscores the effectiveness of these integrated components
in addressing data heterogeneity and optimizing training
processes. Initially, the QV-FEDCOM (without QTL) shows a
comparable performance to the full QV-FEDCOM. However,
as the training progresses, the gap widens, with the QV-
FEDCOM maintaining a higher accuracy, emphasizing the role
of the angular deviation penalty in the QTL loss function
in refining the learning process and handling diverse data
more robustly. The QV-FEDCOM (without Q-VCG) exhibits a
slower start and lower overall accuracy, particularly in the early
rounds. This can be attributed to the lack of vehicle-context
grouping, which is crucial for reducing data heterogeneity
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Fig. 3: Testing accuracy vs. rounds.

and ensuring homogeneous training groups. This version’s
performance, although improved over time, remains below the
full QV-FEDCOM. The QV-MetaFL, which employs heuristic
methods for Q-STP and Q-VCG, starts moderately but quickly
falls behind the dynamic and optimized QV-FEDCOM. This
highlights the limitations of heuristic approaches compared
to the more sophisticated and adaptive methods used in
QV-FEDCOM. The baseline QFL model consistently shows
the lowest accuracy, reflecting the absence of advanced
mechanisms like DQN-based dynamic mode switching and
context-aware clustering.

B. Testing Accuracy
Fig. 3 shows the testing accuracy of various frameworks over

multiple rounds. QV-FEDCOM achieves the highest accuracy
quickly, demonstrating its robustness. QV-FEDCOM (without
QTL) has slower improvement and lower final accuracy,
highlighting the impact of the QTL loss function. QV-
FEDCOM (without Q-VCG) starts with lower accuracy and
remains below the full version, emphasizing the importance
of vehicle-context grouping. QV-MetaFL, using heuristic
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methods, performs moderately but falls behind QV-FEDCOM
in later rounds. The baseline QFL model lags throughout,
showing significant improvements from Q-STP, Q-VCG, and
QTL in QV-FEDCOM. This comparative analysis reinforces
the superior performance and effectiveness of QV-FEDCOM
in handling real-world vehicular data for federated learning,
particularly in achieving high accuracy more quickly and
maintaining robust performance across rounds.

C. Loss
Fig. 4 presents the loss values of different loss functions

(QTL, Huber, and MSE) over multiple training rounds. The
QTL, which combines the Huber loss with an angular deviation
penalty, shows a steep decline in loss values early on and
maintains the lowest loss throughout the training rounds. This
behavior indicates that the QTL effectively handles both small
and large errors while penalizing angular deviations, leading to
more accurate trajectory predictions. The rapid convergence to
lower loss values demonstrates the robustness and efficiency of
the QTL in optimizing the model’s performance. In contrast,
the Huber loss function, while performing better than MSE,
does not achieve the same level of loss reduction as QTL.
The Huber loss is designed to handle outliers more effectively
than MSE, resulting in a more stable decrease in loss values.
However, without the angular deviation penalty, it cannot
match the precision offered by QTL for trajectory predictions,
as evident from its higher final loss values compared to
QTL. The MSE loss function exhibits the highest loss values
throughout the training rounds. MSE is highly sensitive to
outliers, which can lead to significant errors in trajectory
predictions. This sensitivity results in slower convergence and
higher overall loss, making it less effective for the complex
task of trajectory prediction in the vehicular metaverse. The
comparative analysis demonstrates the superior performance
of the QTL in minimizing loss values and improving model
accuracy. The integration of angular deviation penalty within
the QTL framework significantly enhances its ability to handle
diverse data, leading to better overall performance.
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It is essential to mention that the presented testing accuracy
and loss metrics are relatively conservative. Such results stem
from our experimental constraints, where a confined part of the
dataset was employed alongside a limited number of rounds.
These constraints arose since our conventional processors face
challenges in managing the extensive computations tied to
quantum procedures. Despite these limitations, the main goal
was to gauge the comparative efficiency of our model. The
primary QV-FEDCOM model’s standout performance, even
within these confines, affirms its promise and establishes its
proficiency in quantum-centric learning scenarios.

D. Communication Cost

Fig. 5 illustrates the communication cost over multiple
rounds for different approaches: QV-FEDCOM (with Q-STP),
QV-FEDCOM (without Q-STP), and QV-MetaFL (heuristic Q-
STP). The QV-FEDCOM framework with Q-STP demonstrates
the lowest and most stable communication cost across all
training rounds. This outcome highlights the effectiveness
of the RL-based dynamic mode switching mechanism in
optimizing data transmission. By selecting operational modes
intelligently, Q-STP minimizes unnecessary transmissions,
ensuring efficient use of network resources. In contrast, QV-
FEDCOM (without Q-STP) shows significantly higher and
more fluctuating communication costs. Without the dynamic
mode switching provided by Q-STP, this approach fails to
adapt to varying network conditions, leading to inefficiencies
and increased communication overhead. The fluctuation in
costs underscores the importance of Q-STP for maintaining
low and consistent communication expenses. QV-MetaFL,
which uses a heuristic approach for Q-STP, performs better
than QV-FEDCOM (without Q-STP) but still incurs higher
costs than the RL-based Q-STP. The heuristic method,
while providing some optimization, lacks the adaptability and
precision of the RL-based dynamic mode switching, resulting
in less efficient communication cost management.
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Fig. 6: Impact of different data heterogeneity levels on the accuracy.

E. Data Heterogeneity
Fig. 6 illustrates the testing accuracy of the QV-FEDCOM

framework across three distinct levels of data heterogeneity,
compared to the basic QFL model with the least heterogeneous
data (“largely similar” data). These levels represent varying
degrees of diversity in the vehicles’ contextual data, which are
quantified using the normalized variance of the feature sets:

• Largely Similar Data: This dataset represents the least
heterogeneous data, where vehicles have very similar
contextual features. The normalized variance across all
features is low (variance ≤ 0.1), indicating minimal
diversity in vehicle speed, position, and other factors. In
this case, the dataset is more homogeneous, leading to
higher testing accuracy as the model can generalize more
effectively to the vehicles’ similar data points.

• Broader Diversity Data: This dataset presents moderate
heterogeneity, with a higher degree of variation in
contextual features among vehicles. The normalized
variance is in the range of 0.1 < variance ≤ 0.3. This
increased variation makes learning more complex, but the
QV-FEDCOM framework still maintains relatively high
accuracy due to the Q-VCG mechanism’s ability to form
effective vehicle groups.

• Very Diverse Data: This dataset represents the most
diverse and heterogeneous data, where vehicle data is
highly varied with a normalized variance greater than 0.3.
The contextual features show significant variation, making
the learning process more challenging. While the accuracy
decreases due to this increased complexity, QV-FEDCOM
still outperforms the baseline models, demonstrating its
robustness even in highly dynamic environments.

As heterogeneity increases from “largely similar” to
“very diverse” data, a decline in testing accuracy is
observed for the QV-FEDCOM model. This trend reflects
the increased complexity and challenges of learning from
a more heterogeneous dataset. Despite this, QV-FEDCOM
maintains relatively high accuracy across all heterogeneity
levels, showcasing its robustness in handling data diversity.
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Fig. 7: Impact of number of vehicles on accuracy.

The QV-FEDCOM with the least data heterogeneity
(“largely similar”) achieves the highest testing accuracy,
followed by “broader diversity” and then “very diverse” data.
Interestingly, there is a tradeoff between QV-FEDCOM with
”very diverse” data and QFL with “largely similar” data, where
QFL initially achieves high accuracy but fails to make further
improvements, eventually being surpassed by QV-FEDCOM. It
is to be noted that QV-FEDCOM even with the most complex
data which is “very diverge” data outperforms the traditional
QFL’s accuracy with the simplest (“largely similar”) data. This
highlights the ability of QV-FEDCOM to manage diverse data
contexts, even in highly dynamic vehicular networks.

F. Impact of the Number of Vehicles on Accuracy
Fig. 7 demonstrates the training accuracy of the QV-

FEDCOM learning system with varying numbers of
participating vehicles, denoted by K. The vehicles are
engaged in a distributed learning process, and the graph shows
that as K increases from 60 to 100, there is a corresponding
improvement in accuracy. This pattern can be attributed to
the greater variety and larger quantity of data provided by
an expanded pool of vehicles. It implies that the model can
generalize better when it has access to more varied and
extensive data.

The enhanced performance with larger K values suggests
that the QV-FEDCOM framework is particularly well-suited
to environments with high vehicle density. In such settings,
the framework can leverage extensive data to improve learning
outcomes, indicating that it is optimized for large-scale
deployments rather than smaller ones. This could be due to
the framework’s ability to handle increased complexity and
variability in the data. This is more likely as the number of
vehicles, along with the different kinds and amount of data
they contribute, increases.

G. Impact of Vehicle Cluster Constraints on QV-FEDCOM
Fig. 8 presents the testing performance of the QV-

FEDCOM framework, specifically analyzing the impact of
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Fig. 8: Impact of Q-VCG’s constraints on QV-FEDCOM.

group formation constraints within the Q-VCG component on
the overall system. The graph compares three scenarios: (i) the
standard Q-VCG with both the maximum number of groups,
i.e., G and the minimum number of vehicles per group required
to participate in the learning process, i.e., Kmin, (ii) Q-VCG
without limiting the maximum number of group formation,
and (iii) Q-VCG without setting the Kmin constraint. The
results indicate that without the maximum group constraint,
there is a propensity to form a larger number of small and
potentially inefficient groups. This can lead to fragmented
learning efforts where individual or very small groups of
vehicles perform independent learning, which may not be
effective due to the limited and possibly less diverse data. Such
small group sizes do not capture enough context variability,
leading to a learning process that may not generalize well,
as evidenced by the lower accuracy in this scenario. On the
other hand, imposing a Kmin constraint ensures that only
groups with a sufficient number of vehicles participate in the
learning process. This minimizes resource wastage and avoids
the participation of groups with negligible similarity context
in the learning process. As shown in the graph, the version
of Q-VCG that enforces both constraints achieves higher
accuracy, demonstrating the importance of these constraints
in maintaining meaningful group formations and ensuring
effective FL across the network.

H. Memory Usage
Table II lists the memory usage of Google Colab Pro in

gigabytes (GB) for various setups of the federated learning
framework. Configurations without Q-PCA generally consume
more memory, while those with Q-PCA show reduced memory
usage. The specific configurations compared are QV-FEDCOM
(without and with Q-PCA), QV-MetaFL (without and with Q-
PCA), and QFL.

IX. COMPLEXITY ANALYSIS

To assess the computational efficiency of the QV-FEDCOM
framework, we analyze the complexity of each component and

TABLE II: Memory Consumption for Different Configurations.

Configuration Memory Consumption (GB)

QV-FEDCOM (without Q-PCA) 15.93

QV-FEDCOM (with Q-PCA) 13.04

QV-MetaFL (without Q-PCA) 14.64

QV-MetaFL (with Q-PCA) 12.32

QFL 13.67

their interactions as follows:
1) Q-STP complexity: For the Q-STP, the complexity of

mode decision and switching, along with counter updates for
each vehicle in every round, is constant, being denoted by
O(1). Across all vehicles and rounds, this complexity becomes
O(K · T ), where K represents the number of vehicles and T
denotes the total number of rounds.

2) Q-VCG complexity: The Q-VCG involves computing
similarity scores between pairs of vehicles, which has a
constant complexity of O(1). Considering all unique pairs, the
complexity is O(V (V − 1)/2), which simplifies to O(V 2).
The group formation process per round is approximated by
O(V · G), where G is the number of groups and V denotes the
number of vehicles for similarity score computation.

3) Q-PCA complexity: The complexity of covariance matrix
construction in Q-PCA is O(K ·Q2). Next, the complexity of
eigen decomposition can be calculated as O(Q3). Assuming
that the eigen decomposition is done once, the total complexity
of Q-PCA can be given as O(K ·Q2 +Q3).

4) FL Complexity: In the learning process, the parameter
update complexity per vehicle per round is O(P ), where P
is the number of model parameters in each vehicle’s local
model. The complexity of aggregating per round (assuming
linear complexity in the number of vehicles) is O(K · P ).
Thus total for all rounds can be given as O(R ·K · P ).

5) Communication overhead: The complexity of
communication cost per vehicle per synchronization is O(1).
Hence the complexity for all vehicles and all synchronizations
can be given as O(K·T

S ).
Therefore, combining these complexities the total

computational complexity of the QV-FEDCOM framework
can be given by O(K ·T )+O(V 2)+O(V · G)+O(K ·Q2+
Q3) +O(R ·K · P ) +O(K·T

S ).

X. CONCLUSION

In this study, we introduced the QV-FEDCOM algorithm,
representing an integration of quantum computing and
FL tailored for the vehicular metaverse. The framework,
strengthened by the Q-STP, Q-VCG, and Q-PCA mechanisms,
innovates a decentralized, efficient QFL approach, streamlining
model training, optimizing communication, managing vehicle
operations, intelligently addressing data heterogeneity,
and optimizing memory consumption. Our QTL function,
specifically designed for trajectory prediction tasks, combines
the Huber loss with an angular deviation penalty to robustly
handle errors and penalize large deviations in the predicted
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trajectory angle. Through comprehensive simulations, the
QV-FEDCOM framework demonstrated its superiority by
outperforming its various adaptations and benchmark QFL
approaches in terms of accuracy and efficiency. Although our
experiments were constrained by the limitations of classical
simulations, the results provide insightful benchmarks and
underscore the framework’s potential within the vehicular
metaverse ecosystem.
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