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Abstract—The learning of fundamental quantum properties—
namely coherence, discord, and entanglement—benchmarks the
security, computational, and metrological capability of noisy
intermediate-scale quantum (NISQ) communication, computing,
and sensing networks. The current learning techniques vary
widely for these fundamental quantum properties, including stan-
dard tomographic procedures that involve exhaustive optimiza-
tion. Fortunately, the fundamentally distinct quantum properties
feature an intricate connection. In this paper, we put forth the
concept of universal quantum witness machines (UQWMs) to
develop a unified framework for quantum property learning
(QPL) of a quantum system. We first formulate the certification
and quantification of quantum properties based on quantum
witnesses. The witness-based certification method is experimen-
tally accessible and resource-efficient but lacks reliability and
generality. To universalize the scope and circumvent the unre-
liability, we transform the certification task into a classification
task by employing UQWMs with classical machine learning to
construct quantum property classifiers. This formalism offers
a unifying perspective on the certification, quantification, and
classification of these enigmatically linked fundamental quantum
properties. To demonstrate our UQWM approach, we provide
a comparative numerical analysis of quantum property quan-
tification with quantum witnesses and classification performance
analysis of quantum property classification with convolutional
neural networks, specifically for 4× 4 quantum systems.

Index Terms—NISQ networks, neural networks, quantum
property learning, quantum witness machines.

I. INTRODUCTION

EFFICIENT and reliable characterization of intrinsic quan-
tum properties of unknown quantum systems is a prelude

to the development of application-specific near-term quan-
tum networks, e.g., noisy intermediate-scale quantum (NISQ)
networks [1]–[3]. The accurate prediction of these proper-
ties involves resource-intensive learning procedures [4], [5].
Traditional methods include matrix product state tomography
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[6], neural network based tomography [7]–[9], and shadow
tomography [10]–[12]. First and foremost, among all quantum
properties, fundamental quantum properties, namely coher-
ence, discord, and entanglement, lie at the core of developing
quantum communication, computing, and sensing technologies
ranging from theoretical aspects to practical implementation of
their security-incorporated versions [13]–[18].

A. Motivations and Related Work
The transition from classical to quantum networks is at-

tributed to the characterization of quantum properties [19],
[20]. The detection criteria of fundamental quantum prop-
erties serve as quality metrics to asses and benchmark the
performance of quantum networks [21]. These metrics also
pose as key signatures of quantum advantage in numerous
quantum information processing tasks realizable over NISQ
networks [22]. For instance, in case of quantum metrology
tasks performed over quantum sensing networks, coherence
controls the quantum speed limit of unitary evolution for inter-
ferometric phase encoding [23], discord captures the minimal
prerequisites for nonzero precision of interferometric phase
estimation [24], and entanglement is crucial for surpassing the
classical shot-noise limited interferometric phase uncertainty
[25]. Similarly, in quantum cryptography tasks over quantum
communication networks, coherence operationally quantifies
the secret key rate of quantum key distribution protocols
[26], discord encapsulates the minimal cryptographic resource
requirements [27], and entanglement is critical in extending the
scope of quantum key distribution protocols across multipartite
systems (i.e., quantum conference key agreement) [28]. This
underlines the necessity of discerning resourceful quantum
states from resourceless (free) quantum states on account of
application-specific advantages.

The quantification of fundamental quantum properties for
mixed states is computationally intractable [29]–[31]. Alter-
nately, the trade-off between operational meaning and compu-
tational accessibility poses an additional challenge in quantifi-
cation tasks. In this respect, most noteworthy proposals include
quantification of entanglement and coherence by employing
their corresponding witnesses [32]–[37]. The witness-based
quantifiers establish a lower bound on the corresponding quan-
tum property. However, this research direction still requires
significant contributions toward discord quantification.

The fundamental quantum properties are interconvertible
and tradeable resources in various quantum information pro-
cessing experiments [38]. For example, in one-qubit determin-
istic quantum computation (DQC) experiments, coherence can



2 ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON COMMUNICATIONS

be transformed into either discord or entanglement, and vice
versa [39], [40]. Moreover, this intricate connection impels
operational equivalence and hierarchical relationship among
bonafide quantifiers of fundamental quantum properties [41],
[42]. This interplay among the enigmatically linked quantum
properties urges the necessity for relevant and accurate re-
source characterization.

Recently, quantum state classification has emerged as a
reliable method for detecting quantum properties by utilizing
either machine learning (ML) or quantum ML (QML) [43]–
[46]. Although the QML algorithms have the potential to
offer advantages over ML in certain tasks [47], the classical
ML methods are still relatively more mature, scalable, and
robust due to the current NISQ technological limitations [48].
Therefore, this research field aims to transform entangle-
ment witness inequalities into reliable classifiers for entangled
and separable states using (un)supervised and deep learning
techniques [7], [49]–[51]. However, this research avenue is
still nascent, with limited contributions regarding ML-based
coherence and discord detection.

A unified framework for quantum property learning (QPL)
provides a single solution that encompasses all of the afore-
mentioned desirable features [52]. Apart from desirable fea-
tures of application-specificity, resource relevance, computa-
tional efficiency, and scalability towards high dimensionality,
this state-of-the-art mechanism should simultaneously cater for
intricately linked quantum properties [42], [53]–[55]. Such a
unified mechanism outclasses typical QPL methods based on
full-state tomography in terms of resource efficiency, post-
processing complexity, and time consumption for quantum
resource certification and classification [43], [56]–[59]. The
benchmark happens as quantum witnesses employ a single
compact operator to detect intrinsic properties instead of
applying a series of measurements to fully reconstruct the
quantum state [60]. Once such witnesses are formulated for
quantum property detectors, the respective quantum property
quantifiers do not require extra experimental resources [61],
[62]. Subsequently, the witness operators in use can be further
factored into physical observables, leading to the experimental
feasibility [63].

B. Contributions

In this paper, we propose a unified framework to detect
fundamental quantum properties, namely coherence, discord,
and entanglement. Specifically, we introduce a universal quan-
tum witness machine (UQWM) that employs witness measure-
ments and machine intelligence. First, we formulate quantum
property witness (QPW) inequalities for certification. Then, a
finite collection of expectation values of fundamental property
witnesses are processed to estimate the fundamental quantum
properties. These results are corroborated by comparing these
numerically estimated quantifiers with preexisting bonafide
quantifiers for some families of test states in the presence of
systematic and statistical uncertainties. The proposed UQWM
approach is adaptable to incorporate ML and, in turn, serves
as a primitive for quantum state classification. To generalize
the scope of quantum property certification using the QPW

inequalities, we encode expectation values of witness measure-
ments into convolutional neural networks (CNNs) to construct
classifiers for general resourceful and resourceless quantum
states (density operators). We also demonstrate the prediction
performance of these trained classifiers for general quantum
states and toy resource states critical for classically nonexistent
tasks such as phase estimation beyond the standard quantum
limit, teleportation, and trace estimation of unitary operators
using one-qubit DQC.

The aforementioned mechanism is designed to integrate
seamlessly and operate continuously within the quantum net-
work, where various quantum nodes constantly interact and ex-
change quantum information. This makes it essential to contin-
ually monitor and characterize the quantum properties of these
nodes to ensure optimal network performance. For instance,
UQWMs can be utilized during the metrological operations
of the quantum sensing networks, thereby providing insights
into the coherence, discord, and entanglement of the quantum
sensing probe preparations prior to their distribution across
the network. Furthermore, in these preparations, the ideal
pure quantum states are often degraded by noise typical of
NISQ devices and networks, leading to mixed quantum states.
However, the mechanism is designed to handle these noisy,
mixed states effectively, ensuring accurate characterization of
fundamental quantum properties within NISQ networks.

We note in passing that our UQWM results highlight the
intricate connection among fundamental quantum properties
concerning certification and quantification, as well as establish
a fruitful analogy between quantum information engineering
and data-driven learning. In addition, the UQWM learning is
more relevant than standard full-state estimation in practical
scenarios in which (i) mere detection of fundamental quantum
properties is a primary objective to certify the near-ideal
preparation of known target states, (ii) accurate quantification
of fundamental quantum properties is required in experiments
with the help of partial knowledge about unknown quantum
states, and (iii) reliable prediction regarding resourcefulness of
unknown quantum states is desired with limited data at hand,
prior to any task regarding quantum communication, quantum
computation, and quantum metrology.

II. QUANTUM PROPERTY LEARNING

To unify detection methods of fundamental quantum prop-
erties, we introduce the notion of UQWMs, as demonstrated
in Fig. 1. The UQWM formalism utilizes a map-and-measure
framework to formulate QPW inequalities for coherence, dis-
cord, and entanglement.

A. Map-and-Measure Framework

We can represent a d × d density operator ρ using the
generalized Gell–Mann matrix (GGM) basis as follows [64]:

ρ =
1

d
I +

∑
1≤i<j≤d

(bs,ijΛs,ij + ba,ijΛa,ij) +

d−1∑
ℓ=1

bd,ℓΛd,ℓ

(1)
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Fig. 1. A diagrammatic illustration for the UQWM formalism. A d × d
density matrix (test quantum state) ρ undergoes a trace-preserving map Φp

and a witness operator W p in the generalized Gell–Mann matrix basis {Λk}
for witness measurements to obtain a linear combination of expectation values
⟨Λk⟩p for instantiating the corresponding QPW inequalities. The detection
rules established for these inequalities determine whether the test state is
resourceful (e.g., coherent, discordant, and entangled) or not. On the one hand,
the expectation values ⟨Λk⟩p are processed to quantify the corresponding
quantum property. On the other hand, these values are fed into CNNs to build
quantum property classifiers for resourceful and resourceless states.

with d2 − 1 GGMs
Λs,ij = |i⟩⟨j|+ |j⟩⟨i|
Λa,ij = −ι |i⟩⟨j|+ ι |j⟩⟨i|

Λd,ℓ =
√

2
ℓ(ℓ+1)

(
ℓ∑

i=1

|i⟩⟨i| − ℓ |ℓ+ 1⟩⟨ℓ+ 1|
) (2)

where ι =
√
−1; I is the identity operator; d (d− 1) /2

symmetric Λs,ij , d (d− 1) /2 antisymmetric Λa,ij , and d− 1
diagonal Λd,ℓ form a basis for the space of d × d traceless
Hermitian matrices; d2 − 1 components bs,ij = tr (Λs,ijρ),
ba,ij = tr (Λa,ijρ), and bd,ℓ = tr (Λd,ℓρ) form a generalized
(d2 − 1 dimensional) Bloch vector

b =
(
bs,12, . . . ,bs,(d−1)d, ba,12, . . . ,

ba,(d−1)d, bd,1, . . . , bd,d−1

)
(3)

in a hypersphere of radius

∥b∥ ≤ δd =

√
d− 1

2d
(4)

and tr (·) is the trace operator. With the same order in (3),
the GGM basis {Λs,ij ,Λa,ij ,Λd,ℓ} is denoted by {Λk},
k = 1, 2, . . . , d2 − 1 for notational simplicity. The test state ρ
undergoes a quantum operation described as a trace-preserving
map Φp and is then subject to an experimentally measurable
witness operator W p where the subscript p ∈ {c,d, e} denotes
the relevant quantum property (i.e., coherence, discord, and
entanglement) under witness consideration. The optimal con-
struction of witness operators requires optimization routines

for fine-tuning involved parameters [30], [32], [54]. Without
the loss of generality [33], [56], we employ d× d Hermitian
observables in the weighted GGM basis as witness operators

W p =

d2−1∑
k=0

wp,kΛk (5)

ushering random rotations of basis observables with regards to
global measurements [65], [66], where Λ0 = I by definition
and the witness vector wp =

(
wp,0, wp,1, . . . , wp,d2−1

)
has

the weighting components for the GGM basis with wk ∈
[−δd, δd]. This global measurement projects the mapped test
state Φp (ρ) to yield the expectation value

⟨W p⟩ = tr [Φp (ρ)W p] , (6)

which is a weighted sum of

⟨Λk⟩p = tr [Φp (ρ)Λk] . (7)

In most situations, only d values of ⟨Λk⟩p are sufficient,
instead of all ⟨Λ1⟩p, ⟨Λ2⟩p, . . . ⟨Λd2−1⟩p, to evaluate many
properties of unknown quantum states up to certain precision
[67]. Hence, these fundamental properties are evaluated as
functions of the expectation values ⟨Λk⟩p associated with a set
of observables {Λk} for the mapped test state Φp (ρ). These
functions produce real values that depend on the presence
of relevant quantum properties in the test state, enabling
the construction of the corresponding QPW inequalities. The
detection rules obtained from these inequalities certify inherent
quantum property.

Standard approaches for witnessing fundamental quantum
properties mainly depend on their chosen witness measure-
ment settings [54], [55], [68]. Moreover, quantifying these
properties experimentally with repetitive witness measure-
ments on multiple preparations of a known target state is
resource-intensive for several reasons: i) witness measure-
ments often require multiple operations and measurements
for accurate property determination; ii) preparing target states
repeatedly is challenging and time-consuming; and iii) accu-
rate quantification requires a large number of state prepara-
tions. All these put demands on high precision and quality
for both the measurement apparatus and target states, lead-
ing to the requirement of significant resources. To tackle
these challenges, the map-and-measure framework aims to
design witness measurements and trace-preserving maps to
form a lower bound on the observable fundamental quantum
properties. This resource-efficient approach enables quantum
property certification for specific classes of test states without
extensive device modifications. The detection criteria are then
generalized to arbitrary test states by transforming witness
inequalities into a classifier with supervised learning.

However, witness-based formalism is susceptible to system-
atic misalignment errors caused by the imperfect alignment of
measurement bases due to the limited device controllability
[44], [69], [70]. To demonstrate the error robustness of the
map-and-measure framework, we also consider misaligned
measurement bases. Note that this framework is compatible
with NISQ circuit-level experiments, facilitated by changing
the GGM basis to the local Pauli (computational) basis and
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decomposing trace-preverving maps in the form of local Pauli
basis [64], [71], [72]. In the following, we formulate the certi-
fication and quantification of fundamental quantum properties
in conjunction with their corresponding witness inequalities.

B. Coherence Witness

Quantum coherence—a key element of fundamental quan-
tum properties—exists even in single-partite systems [52].
Coherence refers to the property of a quantum system wherein
a quantum state can exist in a superposition of multiple states
simultaneously. The superposition is an elementary feature of
quantum mechanics, distinguishing it from classical mechanics
and its detection plays a crucial role in quantum biology,
quantum thermodynamics, and quantum algorithms [14].

1) Coherence Certification: To detect coherence in an
unknown state, the first step involves identifying the corre-
sponding witness operators. For test states, coherence witness
operators are traceless Hermitian operators as a linear combi-
nation of symmetric and antisymmetric GGMs, given by [73]

W c =

d(d−1)∑
k=1

wc,kΛk (8)

where the vector wc =
(
0, wc,1, wc,2, . . . , wc,d(d−1), 0, . . . , 0

)
satisfies the normalization condition ∥wc∥ = δd; and the first
component for the identity operator and the last d− 1 witness
components for the diagonal GGMs are set to zero, i.e.,

wc,0 = wc,d(d−1)+1 = · · · = wc,d2−1 = 0. (9)

Herein, Φc denotes an incoherent unitary completely positive
trace-preserving (CPTP) map. Using a set of Kraus operators
{Ki}, the map Φc can be written in the operator-sum rep-
resentation as Φc (ρ) =

∑
i KiρK

†
i , where the superscript †

denotes the transpose conjugate and
∑

i K
†
iKi = I . Note that

if ρ is an incoherent state, then KiρK
†
i is again incoherent,

i.e., KiρK
†
i/ tr

(
KiρK

†
i

)
∈ I for all ρ ∈ I where I is the

set of all incoherent states. The coherence detection criterion
is presented using the quantum coherence witness inequality

⟨W c⟩ = tr [Φc (ρ)W c] ̸= 0 (10)

for coherent states where equality is attained only for incoher-
ent states.

Any nonzero expectation ⟨Λk⟩c = tr [Φc (ρ)Λk] manifests
coherence. Therefore, at least one measurement is necessary to
detect coherence; however, detection accuracy can be further
enhanced by incorporating all d (d− 1) expectation values
⟨Λk⟩c. Hence, the arbitrary selection of witness coefficients
offers a partial solution to the coherence certification problem.
This approach outclasses standard tomography where all d2

observables are critical for detecting coherence in an unknown
state after reconstructing the d× d density matrix.

2) Coherence Quantification: To quantify coherence, we
define a measure of coherence in the test state ρ as follows:

C (ρ) = min
Φc

sup
W c

tr [Φc (ρ)W c] . (11)

This measure is suitable for experimental scenarios with no
prior knowledge about test states [55] and also forms a lower

bound on the observable coherence since C (ρ) ≤ |tr (ρW c)|.
In ideal scenarios, the maximum value of C (ρ) is achieved
for maximally coherent states with their optimal solutions to
the witness operator W ⋆

c (or equivalently w⋆
c ) and the CPTP

map Φ⋆
c . However, misaligned bases (wc ̸= w⋆

c ) change the
chosen witness map (Φc ̸= Φ⋆

c ) and induce systematic errors in
coherence quantification. From resource theory of coherence,
the measure C (ρ) is a bonafide quantifier of coherence: (i)
C (ρ) ≥ 0 with equality if and only if ρ ∈ I; and (ii) C (ρ) ≥
C (N (ρ)), i.e., nonincreasing under any noisy channel N .

3) Numerical Examples: To illustrate the map-and-measure
framework for witness estimation of quantum properties, we
evaluate general d× d Haar random density matrices (RDMs)
of arbitrary rank r and maximally resourceful mixed states for
numerical examples. We specifically investigate the proposed
method in terms of resourceful state characterization, frame-
work validity, and inherent errors in estimating fundamental
quantum properties.

Purity is also an elementary property of quantum systems
as a measure of the degree to which a quantum state is pure
or mixed in quantum information processing [74]. The purity
of the d× d density matrix ρ is defined as

P (ρ) = tr
(
ρ2
)
, (12)

which ranges from 1/d (maximally mixed) to 1 (pure). Geo-
metrically, it is hierarchically related to fundamental quantum
properties with the inequality as follows [75]:

P (ρ) ≥ C (ρ) ≥ D (ρ) ≥ E (ρ) (13)

where D (ρ) and E (ρ) are discord and entanglement mea-
sures given in (18) and (25), respectively. The purity P (ρ)
also accounts for channel effects that cause the decay of
resourceful properties, leading to a figure of merit for char-
acterizing properties in test states. We further verify the
developed witness by comparing the estimated values of the
formulated measures with preexisting bonafide measures of
fundamental quantum properties.

To deal with systematic errors, we incorporate miscalibra-
tion in the intended measurement bases by rotating witness
bases using exp (−ιϵΛ1), while preserving the orthogonality.
The rotated GGM basis introduces errors that lead to falsely
detecting resource-free states as resourceful or vice versa.
It has been observed that quantum states exhibiting greater
violations of witness inequalities are more susceptible to
statistical errors, while quantum states close to the detection
boundary are more likely to be affected by systematic errors
[69], [76]. Therefore, we evaluate these errors for a family
of test states that exhibit maximal witness violations and
transitions from resource-free to resourceful regions.

For coherence estimation, we consider the witness map

Φc (ρ) = UρU † (14)

where U =
∑

j e
ιϕj |j⟩⟨j| is an incoherent unitary operator

with parameters ϕj ∈ [0, π]. To optimize the coherence witness
map Φc and operator W c in (11), we choose at random 100
incoherent unitary operators U and 1000 witness operators
W c for each U using uniformly distributed incoherent param-
eters ϕj and normally distributed witness vectors wc. Hence,
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Fig. 2. Coherence witness estimation Ĉ (ρ) for RDMs of rank r = 1, 2, 3, 4 and MCMSs with full rank (r = 4) when d = 4. (a) Coherence characterization
where coherence estimates Ĉ (ρ) for test states ρ are compared with their purity P (ρ). The left and right regions of the dashed line indicate the absence
and presence of multilevel coherence. (b) Coherence witness validation where coherence estimates Ĉ (ρ) for RDMs ρ are compared with their ROC R (ρ).
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|Ĉ (ρ)− Ĉ (ρ)ǫ=10◦ |2

]

Fig. 3. Statistical and misalignment coherence estimation errors for MCMSs
with full rank when d = 4 where the variance and 10◦-misalignment MSE of
coherence estimates Ĉ (ρ) are depicted as a function of q, which are obtained
by averaging over 1000 trials.

we use 105 quantum operations to estimate the coherence
measure C (ρ) for each test state ρ. Herein, each test state
ρ refers to a 4 × 4 quantum system. However, the number
of required quantum operations increases significantly with
increasing complexity, i.e., the number of subsystems as well
as the dimensions of underlying subsystems for noisy quantum
systems. As the complexity of such test states grows, the
state space expands exponentially, requiring more samples to
accurately characterize and optimize the coherence witness.
Additionally, quantum noise introduces errors that demand
more operations to distinguish coherent from incoherent states
and ensure reliable results. Thus, for larger and noisier sys-

tems, the required computational and operational resources
will increase, potentially making the optimization process
more demanding and time-consuming. In such scenarios, al-
ternative optimization approaches besides randomly selecting
parameters can be employed. One such approach is gradient-
free optimization, where the outputs of the coherence witness
function with respect to the parameters are computed to
guide the optimization process more efficiently toward the
optimal parameters. Evolutionary algorithms, which iteratively
improve a population of solutions, can also be used to optimize
the coherence witness map and operator more effectively.
These methods, by providing more directed and potentially
faster convergence to optimal solutions, can offer significant
improvements over the currently employed random parameter
selection approach.

Note that the coherence measure vanishes only for inco-
herent states ρ =

∑
j λj |j⟩⟨j| where

∑
j λj = 1, while

maximally coherent mixed states (MCMSs) form an upper
bound on the observable coherence values for test states. For
coherence estimation, we also consider a family of MCMSs
with full rank decohered under global depolarizing noise with
strength q ∈ [0, 1] as follows [77]:

ρ = q |ψ⟩⟨ψ|+ 1− q

d
I, (15)

which is incoherent for q = 0, where |ψ⟩ = 1√
d

∑
j |j⟩ is the

maximally coherent pure state.
Fig. 2 shows coherence witness estimation Ĉ (ρ) for RDMs

of rank r = 1, 2, 3, 4 and MCMSs of full rank (r = 4)
when d = 4 with its comparison to the purity and an existing
bonafide measure of coherence—namely, the robustness of co-
herence (ROC) [54]. Fig. 2(a) depicts the coherence estimates
Ĉ (ρ) and the purity values for test states. We can observe
the quantitative relations P (ρ) ≥ C (ρ) and P (ρ) ≥ 1/r
from this test. A higher purity value implies a higher degree
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of coherence, while a lower purity value indicates a more
mixed state with less coherence. Moreover, the purity also
signatures the presence of multilevel coherence for states
satisfying P (ρ) > 1/ (d− 1) [33]. To validate the nullity,
Fig. 2(b) compares coherence estimates Ĉ (ρ) with the ROC,
ensuring that there is no anomaly in the measure and the
witness-based detection method is functioning correctly. It is
important to note that Ĉ (ρ) does not directly estimate the
ROC, as both measures are inherently distinct. Instead, this
comparison serves to verify that the employed method aligns
with established measures in specific cases without directly
quantifying them, thereby ensuring the reliability and accuracy
of witness-based detection. To ascertain the effect of basis
misalignment errors, Fig. 3 shows the coherence estimation
imprecision for error-prone quantum measurement devices
where the variance Var[Ĉ (ρ)] and 10◦-misalignment mean
squared error (MSE) E[|Ĉ (ρ) − Ĉ (ρ)ϵ=10◦ |2] of coherence
estimates Ĉ (ρ) for MCMS ρ in (15) are depicted as a function
of q. We can observe the limited imprecision in the coherence
estimation from these statistical and misalignment error scales.

C. Discord Witness

Quantum discord—the most general form of fundamental
quantum properties—operationally coincides with basis-free
coherence for separable states at a minimum and entanglement
for pure entangled states at a maximum [42]. Discord refers to
the non-classical correlations present between subsystems of a
quantum system, thereby capturing a broader range of quantum
correlations that can exist even in separable states. It highlights
the presence of quantum effects that cannot be fully explained
by classical information theory. Unfortunately, it is infeasible
to detect quantum discord in separable states with linear
witness operators despite its detection being closely related to
phenomena such as remote state preparation, quantum phase
transitions, and quantum channel discrimination [15].

1) Discord Certification: Despite some useful relations
between coherence and discord in some cases, coherence is a
basis-dependent quantity, in contrast to discord. However, by
leveraging the equivalence between basis-free coherence and
discord in multipartite states, we provide a feasible detection
criterion for witnessing symmetric discord of unknown states.
Therefore, in the UQWM formalism, coherence and discord
are treated independently, as the witness operators are designed
to certify their respective quantum properties. For test states,
discord witness operators are traceless Hermitian operators
again as a linear combination of symmetric and antisymmetric
GGMs:

W d =

d(d−1)∑
k=1

wd,kΛk (16)

where wd =
(
0, wd,1, wd,2, . . . , wd,d(d−1), 0, . . . , 0

)
satisfies

∥wd∥ ≤ δd. Herein, Φd is a local incoherent unitary transfor-
mation map. Therefore, the detection criterion for symmetric
discord is formulated using the discord witness inequality

⟨W d⟩ = tr [Φd (ρ)W d] ̸= 0 (17)

for discordant states, whereas equality is obtained only for
completely nondiscordant states.

Any nonzero significant value in ⟨Λk⟩d = tr [Φd (ρ)Λk]
exhibits the presence of discord. The detection confidence is
increased by employing all nonzero values from total d (d− 1)
expectation values ⟨Λk⟩d. Therefore, this witnessing method is
more computationally efficient than standard tomography. The
discord witness inequality (17) implies minimum detectable
nonclassical properties, which have direct operational inter-
pretation for quantum information processing tasks undergoing
without entanglement.

2) Discord Quantification: In general, discord computation
is NP-complete, but we can invoke a discord estimate using

D (ρ) = min
Φd

sup
W d

tr [Φd (ρ)W d] . (18)

Optimistically, the optimal witness vector w⋆
d and CPTP map

Φ⋆
d are aligned such that maximum values of D (ρ) are found

for maximally discordant test states and the minimum values
for nondiscordant test states. However, angular deviations of
reference basis change the chosen optimal map Φ⋆

c and induce
systematic errors in discord quantification. With reference to
resource theory of discord, the measure D (ρ) is a bonafide
discord quantifier owing to the properties: (i) D (ρ) ≥ 0, left
discord DL (ρAB) ≥ 0, and right discord DR (ρAB) ≥ 0, i.e.,
nonnegative for all states and nonzero for almost all quantum
states; (ii) D (ρ) ≥ D (N (ρ)), i.e., nonincreasing under any
noisy channel N ; and (iii) DL (ρAB) ̸= DR (ρAB) ≥ 0 in
general, i.e., asymmetric in left and right discord.

3) Numerical Examples: For discord estimation, we con-
sider the witness map Φd for a bipartite system as follows:

Φd (ρ) = (UA ⊗UB)ρ (UA ⊗UB)
† (19)

where UA and UB are local unitary operators; and ⊗ denotes
the tensor product. Note that the discord measure D (ρ) for
this bipartite system acts as an estimate for symmetric discord
that is the average of left and right discord values—DL (ρ) and
DR (ρ)—and vanishes only for left- and right-nondiscordant
states ρ =

∑
j λj |j⟩⟨j|⊗|j⟩⟨j| where

∑
j λj = 1. For discord

estimation, we also consider a family of MDMSs for d = 4:

ρ = q |bell⟩⟨bell|+ (1− q) (µ |01⟩⟨01|+ (1− µ) |10⟩⟨10|)
(20)

where q, µ ∈ [0, 1] and |bell⟩ = (|00⟩+ |11⟩) /
√
2 is the Bell

state [78]. This MDMS exhibits rank 2 for µ = 0, 1 and rank
3 otherwise. For MDMSs with full rank (r = 4), we consider

ρ = q |bell⟩⟨bell|+ 1− q

d
I. (21)

Fig. 4 shows discord witness estimation for d = 4. Fig. 4(a)
depicts the discord estimates D̂ (ρ) and the purity values
for RDMs of rank r = 1, 2, 3, 4 and MDMSs of full rank
(r = 4). The discord is typically an observer-dependent
quantity, i.e., it has its left and right variants based on the
measurement side. For completely nondiscordant (classical)
states, this discord witnessing is evident. However, its true
advantage is revealed when test states possess only one-sided
(either left or right) discord. By fixing UA = I or UB = I ,
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Fig. 4. Discord witness estimation for d = 4. (a) Discord characterization where discord estimates D̂ (ρ) for RDMs of rank r = 1, 2, 3, 4 and MDMSs of
full rank (r = 4) are compared with their purity P (ρ). The left and right regions of the dashed line indicate the absence and presence of entanglement. (b)
Discord witness validation where left discord estimates D̂L (ρ) are compared with right discord estimates D̂R (ρ) for LD states, RD states, and RDMs of
arbitrary rank r to verify the nullity and asymmetry in these one-sided discord values for special families of discordant states.
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Fig. 5. Statistical and misalignment discord estimation errors for MDMSs
with full rank (r = 4) where the variance and 10◦-misalignment MSE of
discord estimates D̂ (ρ) are depicted as a function of q by averaging over
1000 trials.

we can estimate the left D̂L (ρ) or right discord D̂R (ρ)
of test states ρ using the proposed discord quantification.
Hence, the left and right discord estimates vanish for right-
discordant (RD) states

∑
j λj |j⟩⟨j|⊗ρB,j and left-discordant

(LD) states
∑

j λjρA,j ⊗ |j⟩⟨j|, respectively. For validation,
Fig. 4(b) depicts one-sided discord estimates D̂L (ρ) and
D̂R (ρ) for LD states, RD states, and RDMs of arbitrary rank
r. This example validates the nullity condition as well as the
asymmetric property of the discord measure by comparing left
and right discord estimates for these two special classes of
discordant states. Fig. 5 shows the discord estimation impre-

cision where the variance Var[D̂ (ρ)] and 10◦-misalignment
MSE E[|D̂ (ρ) − D̂ (ρ)ϵ=10◦ |2] of discord estimates D̂ (ρ)
for full-rank MDMSs (r = 4) are depicted as a function of q
to ascertain the effect of basis misalignment errors in discord
estimation.

D. Entanglement Witness

Quantum entanglement—an exclusive property of quantum
systems—is vital for establishing the computational advantage
of quantum information processors over their classical coun-
terparts [13]. Entanglement refers to the quantum correlations
between subsystems of a quantum system, where the state
of one subsystem cannot be described independently of the
state of other interconnected subsystems. This means that a
measurement on one subsystem instantly influences the state
of the other subsystems, regardless of their spatial separation.

1) Entanglement Certification: Entanglement witness is the
most efficient way to certify entanglement in a quantum state.
For test states, entanglement witness operators are given by

W e =

d2−1∑
k=0

we,kΛk (22)

where the witness vector we =
(
1/d, we,1, we,2, . . . , we,d2−1

)
satisfies ∥we∥ ≤

√
δ2d + 1/d2 corresponding to tr (W e) = 1.

The entanglement witness map Φe is trace-preserving but not
completely positive. One way to describe such a map is the
operator-sum-difference representation

Φe (ρ) = Φ+
e (ρ)− Φ−

e (ρ)

=
∑
λi>0

λiKiρK
†
i +

∑
λi<0

λiKiρK
†
i (23)
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Fig. 6. Entanglement witness estimation for d = 4. (a) Entanglement characterization where the optimal entanglement witness expectation ⟨W ⋆
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e denotes the optimal entanglement witness

operator chosen for entanglement estimation Ê (ρ). The upper and lower regions of the dashed line indicate the absence and presence of entanglement. (b)
Entanglement witness validation where entanglement estimates Ê (ρ) for RDMs ρ are compared with their negativity values.
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where Φ±
e are CPTP maps. For entanglement detection, the

entanglement witness inequality is constructed as

⟨W e⟩ = tr [Φe (ρ)W e] < 0 (24)

where inequality is violated only by separable states. The
minimum value in ⟨W e⟩ is obtained for the projector Pmin

corresponding to the minimum eigenvalue λmin in pure de-
composition Φe (ρ) =

∑
j λjP j such that Φe (ρ)Pmin =

λminPmin.

2) Entanglement Quantification: Interestingly, we can also
estimate entanglement content in test states using

E (ρ) = max

{
0, sup

W e

(− tr [Φe (ρ)W e])

}
. (25)

This is in effect an experimentally measurable bonafide quanti-
fier of entanglement due to the fact that: (i) E (ρ) = 0 only for
separable states; (ii) E (ρ) ≥

∑
i piE (ρi), i.e., monotonically

nonincreasing under local operations and classical communi-
cation (LOCC) where pi = tr

(
KiρK

†
i

)
and ρi =

1
pi
KiρK

†
i

with Kraus operators Ki; and (iii) E
(
UρU †) = E (ρ), i.e,

invariant under local unitary transformation U = UA ⊗UB.
It follows from Choi-Jamiołkowski isomorphism that the

witness observable W e is also a quantum state in the closest
proximity to the test state [79]. This implies that an entangled
state may serve as a witness for detecting entanglement. The
mean proximity in terms of the mean squared Hilbert-Schmidt
distance between the test state ρ and randomly drawn witness
operators W e is upper bounded by P (ρ) [80]. In other words,
the problem of constructing an optimal entanglement witness
using standard optimization techniques transforms into finding
a state largely overlapping with the test state in a bounded
search space that maximizes E (ρ). It in turn confirms the
fact that some information about the test state is required in
advance to construct a fine optimal witness [63], [68]. This
approach appears to be better than fidelity-based entanglement
witness methods requiring full knowledge about target states
in the sense that it provides a reliable way to optimally
measure the entanglement of unknown random states. If little
information about test states is available, the entanglement
measure E (ρ) establishes a lower bound on its intrinsic
entanglement. However, misalignment in the GGM basis again
causes errors in entanglement estimation.
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Fig. 8. Coherence classification where (a) training and (b) validation accuracy and loss values are plotted as a function of epochs for the step-decay and
constant learning rates.
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Fig. 9. Toy coherence detection where the prediction results with the trained
toy CNN model are depicted as a function of parameters (p, θ) for a toy
example of (27) on coherent and incoherent regions. The blue and red data
points represent predictions as coherent and incoherent, respectively. The
yellow-shaded region depicts the actual incoherent region.

3) Numerical Examples: For entanglement estimation, we
consider the reduction witness map Φe for a bipartite quantum
system as follows:

Φe (ρ) = ρA ⊗ I − ρAB. (26)

The entanglement witness ⟨W e⟩ is nonnegative for a separable
RDM ρ =

∑
j λjρA,j ⊗ ρB,j where

∑
j λj = 1, while this

expectation exhibits negative values for entangled RDMs. For
test states, we also consider a family of maximally entangled
mixed states (MEMSs) with full rank in (21) for d = 4 where
the Bell state |bell⟩ is a maximally entangled pure state.

Fig. 6 shows entanglement witness estimation for d = 4.
Fig. 6(a) depicts the optimal entanglement witness expectation

⟨W ⋆
e⟩ and the purity values for RDMs of rank r = 1, 2, 3, 4

and MEMSs with full rank (r = 4), where W ⋆
e denotes the

optimal entanglement witness operator chosen for entangle-
ment estimation Ê (ρ). To ensure the method is functioning
correctly, Fig. 6(b) compares the entanglement estimates Ê (ρ)
with the existing bonafide measure of entanglement—namely,
negativity [13]—thereby validating the nullity. Fig. 7 shows
the entanglement estimation imprecision where the variance
and 10◦-misalignment MSE of entanglement estimates Ê (ρ)
for MEMSs with full rank are depicted as a function of
q. We can observe highly reliable entanglement estimation
against systematic imprecision and robustness under statistical
uncertainty even for MEMSs with a maximal violation of
entanglement witness inequality.

III. NEURAL NETWORKS FOR QPL
Efficient and reliable classification of quantum states is vital

for quantum information processing, despite being computa-
tionally burdensome [45], [81]. To this end, we employ (10),
(17), and (24) to implement a reliable classifier that categorizes
quantum states as either coherent or incoherent, discordant
or nondiscordant, and entangled or separable. Moreover, this
approach effectively minimizes unreliable detection, predom-
inantly found in witness-based detection methods [46]. In
essence, it universalizes the witness-based detection criteria
by delimiting its scope from specific test states to arbitrary
test states. While witnesses can somewhat accurately estimate
coherence, discord, and entanglement for predefined specific
state families with some prior knowledge about the underlying
test states, ML models can generalize these criteria to classify
an arbitrary set of unknown quantum states without requiring
tailored witnesses for each specific family. Herein, specific
test state families refer to quantum states for which the
witnesses are explicitly designed and calibrated, optimizing
performance based on known properties and behaviors within
this limited set. In contrast, arbitrary test states encompass
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Fig. 10. Discord classification where (a) training and (b) validation accuracy and loss values are plotted as a function of epochs for the step-decay and
constant learning rates.
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Fig. 11. Toy discord detection where the prediction results with the trained
toy CNN model are depicted as a function of parameters (p, θ) for a toy
example of (28) on discordant and nondiscordant regions. The blue and red
data points represent predictions as discordant and nondiscordant, respectively.
The yellow-shaded region depicts the actual nondiscordant region.

a broader range of quantum states that may not fit into
these categories, potentially exhibiting unexpected complex
behaviors that specific witnesses might not accurately detect.
Therefore, the universal approach enhances the flexibility and
applicability of the witness-based detection method, making
it robust against variations in the test quantum states. Such
binary classifiers can be realized with sufficient measurement
data by employing conventional ML techniques. The CNN
architecture containing convolutional, pooling, and fully con-
nected layers transforms linear quantum witness inequalities
to nonlinear binary quantum state classifiers. The input vector
contains expectation values ⟨Λk⟩p for a set of observables
associated with the mapped test states. In the supervised

TABLE I
CLASSIFICATION REPORTS FOR THE 1D-CNN LENET-5 MODEL WITH THE

STEP-DECAY LEARNING RATE.

Class Precision Recall F1-Score Support

Incoherent 0.98 0.99 0.98 1288
Coherent 1.00 1.00 1.00 4712
Accuracy N/A N/A 0.99 6000
Macro Avg 0.99 0.99 0.99 6000

Nondiscordant 0.96 0.97 0.96 5314
Discordant 0.98 0.98 0.98 10686
Accuracy N/A N/A 0.98 16000
Macro Avg 0.97 0.97 0.97 16000

Separable 1.00 1.00 1.00 12554
Entangled 1.00 1.00 1.00 17446
Accuracy N/A N/A 1.00 30000
Macro Avg 1.00 1.00 1.00 30000

learning process, these experimentally extracted measurement
data are binary labeled using the reliable detection method of
a relevant quantum property. The dataset generated for a large
but finite number of test states is fed to a classification model
for training and validation. At the testing phase, the test set
is subject to making predictions over the validated model to
evaluate the classification performance of the model. Finally,
this fine-tuned classifier predicts unknown quantum states in
view of their application-specific resourcefulness.

A. Architecture and Learning Models

The model architecture is the one-dimensional (1D)-CNN
LeNet-5 which is an effective choice for the 4× 4 test states,
where the expectation values ⟨Λk⟩p are fed to the input layer.
This model has two convolutional layers with each followed
by a max-pooling layer, a dropout layer, a flattening layer,
and three fully connected layers. All layers are activated using
the nonlinear yet faster-to-compute ReLU function, except the
output layer, which is activated using the Softmax function.
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The output layer is fixed at two neurons for binary classifiers.
The output at each neuron corresponds to the probability that
a quantum state is either coherent or incoherent, discordant or
nondiscordant, and entangled or unentangled. The architecture
is implemented using Sequential API in Keras on Tensorflow
V2.12.0 while the remaining settings and parameters are kept
at default. The simple architecture effectively captures local
dependencies and hierarchical structures in the expectation
value data in accordance with symmetric, antisymmetric, and
diagonal GGM components. The underlying convolutional lay-
ers extract relevant features from the input measurement values
of mapped quantum states, making the classification process
more efficient and accurate by reducing data dimensionality
while preserving essential information. While this architecture
is well-suited for the specific task of classifying 4×4 quantum
states, the optimal ML architecture can vary depending on
the specific properties of the quantum systems. For example,
artificial neural networks (ANNs) are effective in estimating
quantum state fidelity, while two-dimensional (2D)-CNNs are
well-suited for multi-class classification of various types of
optical quantum states from their corresponding Wigner func-
tions image data [7]. Now, we implement the transformation
of linear quantum witnesses of coherence, discord, and entan-
glement to their binary classifiers and analyze its classification
performance for general 4 × 4 dimensional quantum systems
on account of reliability and generality. The quality, diversity,
and size of the corresponding master datasets are the main
factors in the effective training, validation, and testing of the
model’s generalization performance. The quality of datasets
is maintained through noise-free witness measurements and
correct labeling. However, in realistic experimental settings,
noisy witness measurements can decrease accuracy, affect
robustness, and increase bias and variance in the model,
significantly impacting the performance of ML models trained
on such noisy data. Fortunately, CNNs can somewhat handle
variations and noise in the input data, given the intrinsic
noisy quantum systems and misaligned witness measurements.
Moreover, the pooling layers in CNNs further enhance this
capability by providing translational invariance, ensuring that
slight variations in the input expectation value data do not sig-
nificantly affect the classification performance. The binary data
labeling for coherence, discord, and entanglement is achieved
using their bonafide quantifiers such as ROC, local quantum
uncertainty, and negativity, respectively [13], [54], [82]. The
cost of accurate data labeling is eliminated in unsupervised
learning cases, but at the expense of classification accuracy and
increased size of datasets [50]. To avoid bias, master datasets
are generated with approximately equal ratios of coherent and
incoherent, discordant and nondiscordant, as well as entangled
and separable states. The datasets are formed from a wide
variety of underlying resourceful-resourceless quantum states.
Such data diversity is faithfully reflected in the ability of
classifiers to generalize well to new unseen quantum states.
We investigate the CNN performance for QPL in non-toy
environments—where the CNN model is trained over master
datasets—as well as toy environments—where the CNN model
is trained over datasets of only toy samples. As toy examples,
we evaluate some notable quantum states central to practical

quantum information processing scenarios. The labeled master
datasets are divided into training, validation, and testing sets
in the ratio 6.4 : 1.6 : 2. The accuracy and loss are employed
to evaluate the classification performance of data-driven QPL
models during the training, validation, and testing phases. The
batch size is set to 128. During model compilation, sparse
categorical cross-entropy is employed as the loss function
and Adam as the optimizer with default hyperparameters but
varying the learning rate Lp. We utilize callbacks with early
stopping patience set to 10 for monitoring and identifying the
best model. In addition, we also incorporate the step-decay
learning rate scheduling for fast convergence and a dropout
regularization layer (with a fraction of 0.25) before flattening
the layer to prevent overfitting to the training data.

B. Coherence Classification

1) Dataset Formulation: The master dataset for coherence
is comprised of total 30, 000 instances. This dataset contains
10, 000 samples of RDMs with arbitrary rank r, 10, 000
samples of pure RDMs (r = 1) decohered under global
depolarizing noise, and 10, 000 samples of RDMs with full
rank (r = 4) strongly decohered under global depolarizing
noise with noise parameter values q < 0.1. All these density
matrices are generated, mapped, measured, and labeled using
functions available in the QETLAB package, a MATLAB
toolbox for exploring quantum entanglement theory.

2) Numerical Results: Fig. 8(a) shows the trainability of
the CNN model in quantum coherence learning where the
training accuracy and loss rapidly converge to 99.401% and
1.466% for the step-decay learning rate (initialized at 0.0002)
and 99.381% and 1.299% for the constant learning rate of
Lc = 0.0001. Fig. 8(b) validates the trained model where
the validation accuracy and loss are 99.395% (99.166%) and
1.355% (1.336%) for the step-decay (constant) learning rate
for new and unseen coherent or incoherent data instances. For
this trained model, the testing accuracy and loss are 99.283%
and 1.525% for the step-decay learning rate and 99.279%
and 1.628% for the constant learning rate. The classification
reports for the trained LeNet-5 model with the step-decay
learning rate are detailed in Table I.

3) Toy Coherence Detection: For a toy example, we evalu-
ate a coherence detector for the following coherent mixed state
marking the quantum advantage in a phase discrimination task:

ρ = p |toyc⟩⟨toyc|+
(1− p) I

d
(27)

where |toyc⟩ = cos (θ/2) |0⟩ + eιϕ sin (θ/2) |3⟩ with parame-
ters θ, ϕ ∈ [0, 2π] [33]. The accuracy of 93.660% is attainable
by testing samples of this state over the non-toy model with
the step-decay learning rate. In contrast, the testing accuracy
of 98.000% is achieved for the toy model trained over 1, 000
toy samples of (27). Fig. 9 depicts the coherence prediction
results for this toy detector.

C. Discord Classification

1) Dataset Formulation: The master dataset for discord
includes a total of 80, 000 samples. This dataset comprises
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Fig. 12. Entanglement classification where (a) training and (b) validation accuracy and loss values are plotted as a function of epochs for the step-decay and
constant learning rates.
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Fig. 13. Toy entanglement detection where the prediction results with the
trained toy CNN model are depicted as a function of parameters (p, θ) for a
toy example of (29) on entangled and unentangled regions. The blue and red
data points represent predictions as entangled and unentangled, respectively.
The yellow-shaded region depicts the actual unentangled region.

20, 000 samples of RDMs with arbitrary rank r, 20, 000
samples of globally depolarized RDMs with arbitrary rank (r)
and noise parameter (q) values, 20, 000 samples of product
RDMs (ρA ⊗ ρB), and 20, 000 samples of MDMSs.

2) Numerical Results: Fig. 10(a) shows the training results
of the CNN model in quantum discord learning where the
training accuracy quickly converges to 97.732% for the step-
decay learning rate (initialized at 0.0001) and more slowly
to 97.402% for the constant learning rate of Ld = 0.0001.
Similarly, the training loss converges to 6.363% for the step-
decay learning rate and 7.570% for the constant learning rate.
Fig. 10(b) validates the trained model where the validation ac-
curacy and loss are 97.625% (96.654%) and 6.690% (9.609%)

for the step-decay (constant) learning rate for new and unseen
discordant or nondiscordant data instances. For this trained
model, the testing accuracy and loss are 97.468% and 7.358%
for the step-decay learning rate and 97.218% and 8.012%
for the constant learning rate. Table I shows the classification
reports for the trained LeNet-5 model.

3) Toy Discord Detection: The achievable quantum speed
up for one-qubit DQC is signified by discord detection in the
following state

ρ =
1

4

(
IA ⊗ IB + pσx ⊗

UB +U †
B

2
+ pσy ⊗

UB −U †
B

2ι

)
(28)

where σx is the Pauli-x operator, σy is the Pauli-y operator,
and UB = eιθU [83]. This state is discordant if U is Haar
random unitary, while it is nondiscordant when U is Hermitian
random unitary [84]. The non-toy discord detector exhibits
the testing accuracy up to 82.666%, whereas the toy discord
detector outperforms with 91% accuracy for the toy model
trained over 5, 000 toy samples. Fig. 11 depicts the discord
prediction results for this toy one-qubit DQC detectors. Herein,
Haar random unitary operators are chosen for p > 0.5, while
Hermitian random unitary operators are employed for p < 0.5.

D. Entanglement Classification

1) Dataset Formulation: The master dataset for entangle-
ment includes 150, 000 total instances. This dataset comprises
of 20, 000 samples for RDMs of each rank, 20, 000 samples of
product RDMs, 20, 000 samples of globally depolarized pure
RDMs (r = 1), and 10, 000 samples of depolarized RDMs for
each r = 2, 3, and 4 with arbitrary noise parameter values q.

2) Numerical Results: Fig. 12(a) shows the training curves
of the CNN model in quantum entanglement learning where
the training accuracy and loss rapidly converge to 99.952%
and 0.166%, respectively, using the step-decay learning rate
(initialized at 0.001). On the other hand, with the constant
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learning rate of Le = 0.001, the training accuracy and
loss converge more slowly, reaching 99.710% and 0.735%,
respectively. Fig. 12(b) validates the trained model where the
validation accuracy and loss reach 99.825% (99.604%) and
0.512% (0.968%) for the step-decay (constant) learning rate,
respectively. For this trained model, the testing accuracy and
loss are 99.596% and 1.006% for the constant learning rate
and 99.790% and 0.519% for the step-decay learning rate (see
Table I for the classification reports).

3) Toy Entanglement Detection: For noisy teleportation,
entanglement detection becomes relevant in Werner-like states:

ρ = p |toye⟩⟨toye|+
(1− p) I

d
(29)

where |toye⟩ = cos (θ/2) |01⟩ + eιϕ sin (θ/2) |10⟩ [85]. For
predicting entanglement on the non-toy environment of the
master dataset, the accuracy of 89.999% is achieved for the
step-decay learning rate. However, using the toy dataset with
4, 000 training samples of (29), the model’s accuracy improves
to 99.333%. Fig. 13 depicts the entanglement prediction results
for this toy detector.

IV. CONCLUSION

To devise a unified mechanism for fundamental QPL,
we have put forth the UQWM framework, which employs
experiment-friendly quantum witness measurements and data-
driven ML to certify, quantify, and classify enigmatically
linked fundamental quantum properties. Significantly low sys-
tematic and statistical errors in the numerical quantification of
quantum properties indicate the mathematical rigorousness and
noise robustness of this witness-based method. We have also
established the relationship between supervised learning and
quantum information engineering by utilizing CNNs to discern
resourceful states from resourceless states. High accuracy and
low loss levels indicate that the power of CNNs is unleashed in
the reliable and unified detection of relevant quantum-resource
states that signify their key role in the quantum information
processing tasks. To sum up, this work not only motivates
simultaneous characterization of fundamental quantum prop-
erties but also ushers efficient quantum state classification
in cases where typical benchmarking techniques become in-
efficacious in quantum metrology, quantum communication,
and quantum computation. In conclusion, there is significant
potential for advancements in quantum state classification
by integrating quantum information engineering and classi-
cal data-driven learning. One promising direction involves
extending the UQWM framework to multipartite, multilevel
quantum systems and device-independent scenarios for NISQ
networking. Another promising approach is to utilize optimal
Pauli basis descriptions and unsupervised learning techniques
for more efficient classification of high-dimensional quantum
systems. In addition, the witness-based QPL measures can be
compared with established bonafide measures in the context
of quantum state ordering and characterization within resource
theories of fundamental quantum properties. Moreover, the
development of multiclass classifiers for multilevel coherence,
multipartite entanglement, and observer-dependent discord can

further enhance the versatility of the UQWM framework,
opening up new avenues for interdisciplinary research.
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