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Abstract—We consider the problem of estimating time-varying
quantum noise. Specifically, we focus on Pauli qubit noise with
time-variations and attempt to construct the most accurate
instantaneous channel description. To this end, we propose an
adaptive framework of simultaneous communication and param-
eter estimation (SCAPE) that efficiently and accurately estimates
the time-varying Pauli channel while communicating reliably over
the channel being estimated. This adaptive framework gives the
informed control of communication rate–parameter estimation
tradeoff to communicating parties. Interestingly, this adaptive
SCAPE requires post-processing entirely on the receiver’s end
and minimal feedback to the sender to increase, decrease, or
continue with the same code rate of employed error correcting
code. This procedure can be particularly useful in time-varying
quantum channels with natural periodic deviations in channel
conditions, e.g., in satellite communication channels.

Index Terms—Adaptive coding and modulation, diamond-
norm distance, Pauli channels, quantum noise, time-varying
noise.

I. INTRODUCTION

RECENT advances in quantum information technologies
has brought quantum devices that are larger than a few

qubits in size. Despite their intermediate size, noise in these
devices limit the size of circuits that can be executed reliably
[1]. This limitation can be circumvented by making progress
in quantum hardware design to obtain low noise qubits [2]–
[4] as well as by designing appropriate countermeasures such
as efficient quantum error correcting codes and quantum error
mitigation methods [5], [6]. Accurate identification and char-
acterization of noise is an important task to design appropriate
countermeasures that lead to efficient utilization of these noisy
intermediate-scale quantum (NISQ)-era systems [7]–[10].

Traditionally, system identification and utilization are con-
sidered fundamentally and operationally separate tasks. How-
ever, there have been recent efforts to utilize the available
system into the identification stage, bridging the gap between
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these two processes [11]–[14]. For example, [11] introduced a
method that leverages redundancies in quantum error correc-
tion codes to estimate bit flip and phase flip errors during quan-
tum information processing. In [12], authors utilized online
Gaussian process to estimate the error rates from syndrome
measurements [15]. Recently, authors of [13] derived a general
condition for the identifiability of the error rates. Under the
assumption of sufficiently small error rates, they proved the
identifiability for general stabilizer codes. In another related
work [14], it was shown that Pauli channel parameters can
be estimated from syndrome measurements in quantum error
correction. These aforementioned works completely/partially
estimate the noisy channel while the system is being utilized
for general quantum information processing. They do so by
exploiting the redundancy introduced by the quantum error
correction codes. A recent work by some of the authors pro-
posed simultaneous communication and parameter estimation
(SCAPE) of Pauli channels based on classical error correction
codes [16]. These proposals, and quantum process tomography
in general, assume quantum channels to be time-independent,
i.e., noise levels in quantum circuit or quantum communication
channel remain constant.

Indeed, if parameters of a quantum channel are constant or
do not vary significantly over time such that the employed
error correcting code (ECC) remains sufficient, SCAPE and
other protocols described above can be utilized for quantum
channel tracking over time. However, recent experiments have
shown that physical quantum noise in quantum computing
devices may exhibit significant time-variations due to fluctua-
tions in control circuitry or changing environmental conditions
[17]–[19]. Similar observations can be made about satellite
channels due to time-variations of background radiations
through different times of day and different seasons [20]. If
these variations in the channel are significant, these methods
of simultaneous identification and utilization of quantum chan-
nels will fail (resp. be inefficient) due to the failure (resp. low
code rates) of employed ECC. Efforts are already underway to
characterize these time-variations in quantum noise and devise
efficient techniques to mitigate the resulting errors [19], [21],
[22].

In this work, we consider the problem of estimating time-
varying Pauli channels. In this context, joint system identifi-
cation and utilization appears to be the most natural strategy
to keep up-to-date description of underlying channel at all
times. The main contribution of this work is the proposal of
adaptive SCAPE framework that avoids the silent failure of
the employed ECC. This framework is capable of dynamically
adjusting the code rate of employed error correcting codes
and the number of samples considered in channel estimation,
effectively tailoring these parameters to suit the prevailing
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TABLE I
A SUMMARY OF EIGENBASES OF PAULI QUBIT OPERATORS AND THEIR

EVOLUTION UNDER THE ACTION OF PAULI OPERATORS.

Operator, Eigenbasis Operation on Pauli
Operators’ Eigenbasis

X (Hadamard basis)
BX = {|0X⟩ , |1X⟩}

|0X⟩ =
[
1/

√
2 1/

√
2
]⊤

|1X⟩ =
[
1/

√
2 −1/

√
2
]⊤

|0X⟩

|1X⟩
+1

−1

|0Y ⟩

|1Y ⟩

+
ι̇−

ι̇

|0Z⟩

|1Z⟩

+
1

+
1

Y
BY = {|0Y ⟩ , |1Y ⟩}

|0Y ⟩ =
[
1/

√
2 ι̇/

√
2
]⊤

|1Y ⟩ =
[
1/

√
2 −ι̇/

√
2
]⊤

|0X⟩

|1X⟩

−
ι̇+

ι̇
|0Y ⟩

|1Y ⟩
+1

−1

|0Z⟩

|1Z⟩

+
ι̇−

ι̇
Z (Computational basis)
BZ = {|0Z⟩ , |1Z⟩}
|0Z⟩ =

[
1 0

]⊤
|1Z⟩ =

[
0 1

]⊤
|0X⟩

|1X⟩

+
1

+
1

|0Y ⟩

|1Y ⟩

+
1

+
1

|0Z⟩

|1Z⟩
+1

−1

channel conditions. A summary of specific contributions of
this manuscript is as follows:

• We introduce the codeword reliability index (CRI) for
repetition codes that allows the receiver to independently
assess the reliability of received codewords. This CRI
serves the crucial role of assessing both communication
and estimation reliability of adaptive SCAPE. The feed-
back value of changing the code rates at the transmitter
end are based on the minimum CRI values encountered in
each Pauli basis over Pauli channel. A complete system
diagram of adaptive SCAPE is shown in Fig. 1.

• We demonstrate that increasing the number of samples in
estimation to achieve more accurate estimates is no longer
true in time-varying channels due to multiple factors.
Through numerical examples we show that the average
error in time-varying channels estimates is convex in
the number of samples. Despite being convex, it is
not possible to minimize it in practical settings due to
unavailability of ground-truth knowledge of channel. We
introduce average inter-estimate distance as a de facto
objective function that can be minimized to obtain the
value of near-optimal number of samples to minimize
the estimation error. The average inter-estimate distance
can be readily estimated from already obtained channel
estimates and does not require ground-truth description
of quantum channel.

• We present simulations results to showcase the validity
and effectiveness of proposed framework for estimating
time-varying Pauli channels. Through extensive numeri-
cal examples, we demonstrate the improved performance
of adaptive SCAPE over entanglement-free parameter
estimation (EFPE) and regular SCAPE introduced in
[16]. For communication, specific advantage over EFPE
is the utilization of all channel time for communication
without dedicating specific time-frames for estimation.
In comparison to regular SCAPE, communication im-

provements include i) clear indicators of failing ECC,
ii) adaptive code rates, and iii) consequently smaller bit
error rates. For estimation, the improvement over EFPE is
the availability of always up-to-date and precise channel
knowledge. In comparison to regular SCAPE, adaptive
SCAPE provides accurate channel estimates even in high-
noise regime with clear indicators if the obtained channel
estimates as well as the communicated message might be
unreliable.

The developments in this manuscript utilize the non-
adaptive SCAPE protocol of [16] as a core element while
developing necessary mathematical tools to adapt the coding
rate to the channel conditions. Without these developments,
the non-adaptive SCAPE protocol fails to perform if the noise
level in the channel varies significantly from the initially ex-
pected noise level. We discuss this point in detail in Section III
and Subsection IV-A.

The remainder of this paper is organized as follows. In
Section II, we introduce preliminaries, set some notation,
and describe the EFPE scheme of [23]. We briefly review
the SCAPE protocol of [16] in Section III. We develop the
adaptive SCAPE protocol in Section IV and provide numerical
examples. We finally conclude our discussion and provide
future outlook in Section V.

II. PRELIMINARIES

A. Notation

A quantum state is represented by a density operator ρ,
which is a Hermitian operator with unit trace on the Hilbert
space H . When the state ρ is pure, i.e., ρ = |ψ⟩ ⟨ψ|, where
|ψ⟩ ∈ H , we utilize the shorthand notation of denoting the
state by |ψ⟩.

We dedicate N to denote an arbitrary quantum channel,
possibly with a subscript if required. In this work, we focus
on the Pauli qubit channel, defined as

NPQ (ρ) = pIρ+ pXXρX
† + pY Y ρY

† + pZZρZ
†, (1)

where (·)† denotes the conjugate transpose of a matrix, ppp =
[pI , pX , pY , pZ ]

⊤ forms a probability vector, and

X =

[
0 1
1 0

]
, Y =

[
0 −ι
ι 0

]
, and Z =

[
1 0
0 −1

]
(2)

with ι =
√
−1 are the Pauli matrices. We denote, by BX ,BY ,

and BZ the eigenbases of Pauli X, Pauli Y, and Pauli Z
operators, respectively. A summary of these eigenbases and
their evolution under Pauli operators is shown in Table I.
Estimation of a Pauli channel means estimation of ppp for a
physically available but unknown Pauli channel. The estimator
of a quantity x is denoted by x̂.

B. Pauli Channels Simulating Binary Symmetric Channels

We make repeated use of the fact that a Pauli qubit channels
act as binary symmetric channels when the inputs to the
channel are eigenstates of one of the Pauli operators and the
output of the channel is measured in the eigenbasis of the same
Pauli operator [24]. This fact is a consequence of the simple
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êX

êY
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êY

CZ

êZ
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Fig. 1. Adaptive SCAPE protocol with feedback block. QX , QY , and QZ are bit-to-qubit encoding blocks in BX , BY , and BZ , respectively. Similarly,
MX , MY , and MZ are measurements in BX , BY , and BZ , respectively. In addition to obtaining m̂mm and p̂pp, the receiver calculates the CRI of every
codeword received in each basis. The overline · denotes the sgn (·) function, which returns +1, −1 and 0, for positive numbers, negative numbers and zero,
respectively. The feedback bX , bY , and bZ are calculated based on the lowest value of CRI encountered in each basis.

observation that Pauli operators act as NOT operator on the
eigenstates of other Pauli operators as shown in Table I.

Example 1: Let the input to a Pauli qubit channel be from
the set BX = {|0X⟩ , |1X⟩}. Then,

NPQ (|0X⟩ ⟨0X |) = (pI + pX) |0X⟩ ⟨0X |+
(pY + pZ) |1X⟩ ⟨1X | ,

(3)

and

NPQ (|1X⟩ ⟨1X |) = (pI + pX) |1X⟩ ⟨1X |+
(pY + pZ) |0X⟩ ⟨0X | .

(4)

This gives the crossover probability

P {|0X⟩ | |1X⟩} = tr (NPQ (|1X⟩ ⟨1X |) |0X⟩ ⟨0X |)
= tr (⟨0X | NPQ (|1X⟩ ⟨1X |) |0X⟩)
(a)
= pY + pZ ≡ ϵX ,

(5)

where (a) follows from substituting the expression of
NPQ (|1X⟩ ⟨1X |) from above and then utilizing the orthonor-
mality of eigenbasis of unitary operator X . It is simple to
verify that P {|1X⟩ | |0X⟩} = P {|0X⟩ | |1X⟩} = ϵX . The
probability of correct transmission can be similarly calculated
as

P {|0X⟩ | |0X⟩} = P {|1X⟩ | |1X⟩} = pI+pX = 1−ϵX , (6)

where the last equality follows since ppp is a probability vector.
These probabilities verify that the Pauli qubit channel indeed
acts as a binary symmetric channel with the crossover prob-
ability ϵX in this setting. We denote the simulated binary
symmetric channel in this setting as BSCX (ϵX).

C. Estimation of Pauli Channels

This subsection briefly explains the entanglement-free pa-
rameter estimation (EFPE) protocol for Pauli channels. Fol-
lowing the same procedure as Example 1, we can obtain two
more binary symmetric channels BSCY (ϵY ) and BSCZ (ϵZ)
with crossover probabilities ϵY = pX +pZ and ϵZ = pX +pY
by choosing the signal states (and measurements) from BY and
BZ , respectively. We can write the following matrix equality
that gives the relation between ppp that defines the Pauli qubit
channel and crossover probabilities

0 0 1 1
0 1 0 1
0 1 1 0
1 1 1 1



pI
pX
pY
pZ

 =


ϵX
ϵY
ϵZ
1

 , (7)

where the last row captures the fact that ppp is a probability
vector whose entries sum to unity. We simply write this
equality as AAAppp = ϵϵϵ. Considering this matrix equality, we can
make a simple protocol for Pauli channel estimation. Given
N accesses to an unknown Pauli channel, we can obtain p̂pp as
follows [23]. Input |0X⟩, |0Y ⟩, and |0Z⟩ to the Pauli channel
N/3 number of times each. By measuring the corresponding
channel outputs in BX , BY , and BZ , respectively, we can
obtain ϵ̂X , ϵ̂Y , and ϵ̂Z . Finally, p̂pp can be obtained by

p̂pp = AAA−1ϵ̂ϵϵ
p̂I
p̂X
p̂Y
p̂Z

 =


−1/2 −1/2 −1/2 1
−1/2 1/2 1/2 0
1/2 −1/2 1/2 0
1/2 1/2 −1/2 0



ϵ̂X
ϵ̂Y
ϵ̂Z
1

 . (8)

This is known as the EFPE protocol for Pauli channel estima-
tion introduced in [23] for d = 2, i.e., for qubits.
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Ek (m)
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Ek (m̂)

N (Ek (m))

Fig. 2. A visual representation of SCAPE protocol of [16]. Channel statistics
can be obtained reliably if the ECC is strong enough.

For numerical examples, we generate the parameters of
Pauli channels from the ordered eigenvalues of 4-dimensional
normalized correlation matrix [25]

ΦΦΦ (γ) =
1

4


1 γ γ2 γ3

γ 1 γ γ2

γ2 γ 1 γ
γ3 γ2 γ 1

 . (9)

By varying γ from 0 to 1, we obtain a smooth transition from
the maximally noisy (completely depolarizing) channel to the
noiseless one.

We quantify the performance of the parameter estimation
by the diamond norm distance between the actual and the
estimated channel [26], [27]. The diamond norm distance
between two different Pauli channels NPQ (ρ) = pIρ +
pXXρX

† + pY Y ρY
† + pZZρZ

† and MPQ (ρ) = qIρ +
qXXρX

† + qY Y ρY
† + qZZρZ

† is given by the sum of the
absolute difference between the channel parameters [28], [29],
i.e.,

∥NPQ −MPQ∥⋄ =
∑

i∈{I,X,Y,Z}

|pi − qi| . (10)

The estimation performance can be benchmarked by comput-
ing the diamond norm distance between the estimated channel
N̂PQ and the actual channel NPQ, i.e.,∥∥∥NPQ − N̂PQ

∥∥∥
⋄
=

∑
i∈{I,X,Y,Z}

|pi − p̂i| . (11)
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Fig. 3. A comparison of SCAPE (with k = 13) and EFPE for different noise
strengths. The performance of SCAPE differs significantly from EFPE when
the ECC fails due to high channel noise. The plotted curves are the average
of M = 103 simulations with N = 105 channel uses each.

The communication performance is characterized by the com-
munication rate (bits/channel use), which is simply 1/k for
the repetition codes. Second performance metric for the com-
munication is the bit error rate of the message.

III. SIMULTANEOUS COMMUNICATION AND PARAMETER
ESTIMATION OF PAULI CHANNELS

In the estimation scheme of Pauli channels, the knowledge
of channel input is crucial for estimation. For this reason,
the input to BSCX (ϵX) is fixed to |0X⟩. Without fixing the
input to a single state, or to a predetermined sequence agreed
between the transmitter and the receiver, it is not possible for
the receiver to estimate the number of bit flips and hence ϵX .
It was shown in [16] that it is possible to utilize classical ECC
to achieve SCAPE of Pauli channels.

The basic idea of [16] is that it is possible to identify
channel errors if the employed ECC is able to sufficiently
protect the message from channel errors. More concretely,
let m be the message to be transmitted and let Ek (·) and
Dk (·) be the encoder and decoder operations for some ECC
Ck, with some identifier k.1 The decoded message at the
receiver end is m̂ = Dk (N (Ek (m))). The comparison
of received encoded message N (Ek (m)) and the encoded
received message Ek (m̂) reveals the channel errors, if m ≈ m̂.
We term this as decode-and-encode strategy. Thus, if the
ECC is strong enough, the receiver can reliably receive the
transmitted message as well as generate an estimate of the
number of channel errors. Applying this idea for BSCX (·),
BSCY (·), and BSCZ (·), remote parties can simultaneously
communicate and estimate the parameters of Pauli channel by
employing (8). Specific steps of this protocol are visually
illustrated in Fig. 2 and detailed below.

1We will utilize k-repetition codes.
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Protocol 1: Simultaneous communication and parameter estima-
tion (SCAPE) Protocol [16]

Communicating Parties: Alice: transmitter, Bob: receiver.

Variables: – k ≥ 3: number of symbol repetitions, agreed between
Alice and Bob.

– N : Total number of channel uses allowed. Assumed
to be divisible by 3k for simplicity.

– m: message to be sent. Assumed to be of length N/k
for simplicity. Divided into equal portions mX , mY ,
and mZ .

Protocol steps are as follows:
1. for j ∈ {X,Y, Z}, Alice and Bob repeat the following steps:

a. Alice picks mj as the message to be transmitted.
b. Alice computes the k-repetition encoded message

Ek
j = Ek (mj).

c. Alice modulates classical bits Ek
j onto qubits using the

following mapping

0 → |0j⟩ , 1 → |1j⟩ .

Let |ψj⟩ denote the resulting string of N/3 qubits.
d. Alice sends |ψj⟩ to Bob through N/3 uses of quantum

channel N .
e. Bob receives ρj = N (|ψj⟩ ⟨ψj |).
f. Bob measures ρj in Pauli j basis to obtain classical

estimate Êk
j of Ek

j .
g. Bob decodes Êk

j by majority vote decoding to obtain the

estimate m̂j = Dk

(
Êk

j

)
of transmitted message mj .

This completes the message transmission part.
h. Bob re-encodes m̂j by k-repetition code to obtain

Ěk
j = Ek (m̂j)

i. Bob estimates the channel error rate by

ϵ̂j =
3

N

N/3∑
ℓ=1

I
(
Ěk

j (ℓ) , Êk
j (ℓ)

)
,

where Êk
j (ℓ) is the ℓth bit of Êk

j and I (a, b) is the
indicator function that is equal to one if a ̸= b and zero
otherwise.

2. Bob uses (8) with the estimated channel error rates ϵ̂X , ϵ̂Y , and
ϵ̂Z to obtain p̂I , p̂X , p̂Y , and p̂Z , which completes the Pauli
channel estimation.

In the case of ECC not being strong enough, this decode-
and-encode strategy will underestimate the channel noise. To
see this, imagine a two-bit error in the codeword of 3-repetition
code. The decode-and-encode strategy will miscorrect it to
the complementary codeword and will estimate there to be
only a single error. Even worse, the receiver cannot identify
such events and thus is unable to assess the performance
of simultaneous communication and parameter estimation of
quantum channels. In such cases, not only the communicated
message has high error rate but also the performance of param-
eter estimation part is affected. Fig. 3 shows the performance
comparison of SCAPE with k = 13 and EFPE.

IV. SCAPE FOR TIME-VARYING PAULI CHANNELS

In this section, we discuss the application of SCAPE proto-
col for time-varying Pauli channels. As discussed earlier, direct
application of SCAPE for time-varying channels may lead to
the poor communication and estimation performance if the
channel becomes too noisy to be handled by the employed
ECC.

One possible solution to avoid this failure of SCAPE is to
assume the pessimistic values of noise and use very small code
rates. However, this approach will make SCAPE inefficient in
term of communication. Further, in an event of degradation
of channel beyond anticipated worst-case will lead to the fail-
ure of both communication and estimation modules, without
the knowledge of communicating parties. Another possible
approach is to estimate the channel in one time-step using
EFPE and use this channel knowledge for communication in
the next time-step. This approach leads to a high overhead
since it leads to the wastage of at least half of the available
time from communications perspective.

In the upcoming text, we numerically demonstrate these
points. In order to simulate a time-varying Pauli channel,
we vary the correlation coefficient γ in (9) according to the
following sinusoid

γ (t) = b+ a sin (2πft+ ϕ) , (12)

where a is the amplitude of variation, b is the bias, f is the
frequency of channel variation, and t is the time. We generate
the channel

NPQ (ρ, t) = λ0 (t) ρ+ λ1 (t)XρX
†+

λ2 (t)Y ρY
† + λ3 (t)ZρZ

†,
(13)

where λi (t) are time-varying eigenvalues of (9) in descending
order (λ0 (t) ≥ λ1 (t) ≥ λ2 (t) ≥ λ3 (t)). The signal-
ing/sampling rate is assumed to be fS , i.e., fS states can be
input and measured at the output of the channel in a second
to collect fS samples. Each estimation step is based on N
independent, but not identically distributed, samples collected
from the channel.

Fig. 4 illustrates the performance of Pauli channel esti-
mation with SCAPE (k = 5) and EFPE. We observe that
EFPE with alternative steps of estimation and communication
performs better than SCAPE with k = 5. However, this
better estimation performance comes at the cost of fewer
communicated bits. Nevertheless, the performance of both
SCAPE and EFPE on time-varying channels is worse than
the performance of EFPE on time-invariant channels. There
are two sources of errors in this poor performance. In the
following, we discuss these sources of errors and strategies to
mitigate these errors.

A. Failure of ECC

The first source of error has been highlighted earlier and
is unique to SCAPE, i.e., the failure of employed ECC that
leads to underestimating the noise strength. This can be seen
in high-noise regime of Fig. 4(b), i.e., during 0.3 ≤ t ≤ 0.7
and 1.3 ≤ t ≤ 1.7 where pI values are estimated to be higher
than the actual values.

In order to circumvent this, we propose the following strat-
egy to adapt the coding rate to the channel condition inferred
by the measurement statistics. In a k-repetition code, the
receiver performs the majority vote decoding. The codeword is
decoded to bit 0 if the number of zeros N0 is greater than the
number of ones N1. Otherwise it is decoded as bit 1. Thus, a
codeword is decoded correctly iff the number of corrupted bits
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Fig. 4. Performance of Pauli channel estimation of time-varying channels. We plot the time-varying channel parameters in (a). Estimation performance are
plotted with (b) SCAPE with k = 5, (c) EFPE with communication and estimation in alternative time steps. The diamond norm distance is plotted in (d). For
comparison, the diamond norm distance of EFPE on a channel that remains fixed during estimation (time-invariant) is also plotted in (d). Variations in the
performance of EFPE (time-invariant) at different instances stem from the different learnability of distinct distributions. Simulation parameters are N = 103,
M = 103, a = 0.3, b = 0.7, fS = 104, f = 100, and ϕ = π/2. See the main text for descriptions of simulation parameters.
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Fig. 5. Decoding error probability (17) of a k-repetition codeword as a
function of measured CRI after a channel with the bit-flip probability p = 1/4.

is less than or equal to k−1
2 . We define the following quantity

as the CRI for repetition codes

C = |N0 −N1| −
k − 1

2
, (14)

where |·| denotes the absolute value. The CRI is the exact
number of bits in a received codeword that can be flipped
without changing the decoded bit. Intuitively, higher the value
of the CRI lower the chance of incorrect decoding. To see this,
consider a noisy channel with the bit-flip probability p < 1/2.
Then, the probability of decoding error such that the CRI is

at least s is

P {Decoding Error | C ≥ s} (15)

= P

{
nf ≥ k + 1

2
+ s

}
(16)

=

k∑
i= k+1

2 +s

(
k
i

)
pi (1− p)

k−i
, (17)

where nf is the number of bits flipped in a codeword and(
k
i

)
=

k!

i! (k − i)!
(18)

are the binomial coefficients. The decoding error probability
decreases for higher values of observed CRI as it removes
terms from summation (17). Fig. 5 shows the sharp decreases
in the probability of decoding error with increasing values of
observed CRI.

After receiving a channel corrupted codeword, receiver
decodes the encoded bit by majority voting and also calculates
the CRI of the received codeword. If the CRI C of the
received codeword is smaller than a predefined threshold smin,
the receiver considers the decoded bit as unreliable. If this
event occurs frequently, the receiver considers the strength
of the employed code insufficient and sends a feedback to
the sender to lower the code rate, i.e., to increase k. If the
CRI is frequently greater than another predetermined threshold
smax, the receiver considers the current code rate to be lower
than what is required and sends the feedback to the sender
to increase the code rate. Finally, if smin ≤ C ≤ smax, the
receiver continues with the currently employed code rate.
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Fig. 6. Estimation performance of SCAPE with adaptive coding rate based
on CRI. The tracking of Pauli parameters is plotted in (a). The comparison
of obtained performance (diamond norm distance) with different strategies is
plotted in (b). Shaded regions show one standard deviation. Adaptive SCAPE
performs as good as EFPE while utilizing all channel uses for communication.
Here, we have used smin = 1 and smax = 3. Other simulation parameters
are N = 103, M = 103, a = 0.3, b = 0.7, fS = 104, f = 100, and
ϕ = π/2.

Increasing k improves the probability that the measured
value C of CRI is at least smin. For large values of k, this
probability approaches unity as shown below.

P {C ≥ smin} (19)

= 1− P
{
k + 1

2
− smin ≤ nf ≤ k + 1

2
+ smin − 1

}
(20)

= 1−

k+1
2 +smin−1∑

j= k+1
2 −smin

(
k
j

)
pj (1− p)

k−j
. (21)

Note that the number of terms in summation in (21) is
constant to 2smin. We can equally write the index variable
j = k+1

2 − smin + ℓ for 0 ≤ ℓ ≤ 2smin − 1 and change the
summation variable to ℓ. Continuing only with the summation
term in (21)

k+1
2 +smin−1∑

j= k+1
2 −smin

(
k
j

)
pj (1− p)

k−j (22)

=

2smin−1∑
ℓ=0

(
k

k+1
2 − smin + ℓ

)
p

k+1
2 −smin+ℓ (1− p)

k−1
2 +smin−ℓ

(23)

=

2smin−1∑
ℓ=0

k!p
k+1
2 −smin+ℓ (1− p)

k−1
2 +smin−ℓ(

k+1
2 − smin + ℓ

)
!
(
k−1
2 + smin − ℓ

)
!
. (24)
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Fig. 7. Communication performance of SCAPE with adaptive coding rate
based on CRI. Average bit error rates observed in the message are plotted in
(a). The adaptive choices of repetition codes for BSCX , BSCY , and BSCZ

are plotted in (b) denoted as kX , kY , and kZ , respectively. The CRI for
BSCX , BSCY , and BSCZ are plotted in (c). Shaded regions show one
standard deviation. Here, we have used smin = 1 and smax = 3. Other
simulation parameters are N = 103, M = 103, a = 0.3, b = 0.7, fS =
104, f = 100, and ϕ = π/2.

Assuming large k, i.e., k ≫ |smin−ℓ|, we can write

(24)
large k−−−−→ (2smin − 1)

k!pk/2 (1− p)
k/2

((k/2)!)
2 (25)

(a)
≈ (2smin − 1) (p (1− p))

k/2

√
2πk (k/e)

k(√
πk (k/2e)

k/2
)2

(26)

= (2smin − 1) (p (1− p))
k/2 2k+

1
2

√
πk

(27)

(b)
<

√
2

πk
(2smin − 1) , (28)

which approaches 0 as k → ∞. Here, approximation (a) is due
to the Stirling’s approximation of factorial k! ≈

√
2πk (k/e)

k

and inequality (b) is obtained since p (1− p) < 1/4 for p <
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1/2. Thus, (21) approaches unity for large k. Decreasing the
coding rate by increasing k eventually leads to obtaining the
CRI above the fixed threshold smin.

Fig. 6 show the estimation performance of this CRI-based
adaptive strategy with smin = 1 and smax = 3. The coding
rate is changed if a single instance of s ̸∈ [smin, smax] in a
single estimation step is observed. In Fig. 6(b) we see that
this strategy performs as good as EFPE that used separate
time intervals for estimation and communication. In Fig. 6(a),
we still observe a slight underestimation of channel noise
around t ≈ 0.5 ∼ 0.6 and t ≈ 1.5 ∼ 1.6 seconds. This
indicates that adaptive choice of k is still not high enough. This
observation is complemented by looking at the communication
performance of SCAPE.

In Fig. 7, we show the communication performance of
SCAPE by plotting the observed error rates, adaptive choices
of k, and measured CRI for BSCX , BSCY , and BSCZ . The
communication error rates are plotted in Fig. 7(a), which attain
the maximum value of EZ ≈ 0.25. These high error rates
are the cause of underestimated noise in Fig. 6. From coding
rate perspective, these error rates are not surprising since i)
we are employing repetition codes, which are known to be
inefficient, ii) the highest noise in BSCZ is ϵZ = 0.4271,
which is extremely noisy and corresponds to the channel
capacity of 0.0154. On the other hand, the highest value of
kZ = 37 as observed in Fig. 7(b) corresponds to a code
rate 1/k = 0.0270, almost twice the channel capacity. In
terms of our adaptive SCAPE protocol, this means that k
has not incremented sufficiently such as to ensure reliable
communication. Nevertheless, the receiver is not oblivious to
these high error rates and will be alerted due to CRI going to
zero as shown in Fig. 7(c). The receiver can reduce the error
margin, i.e., increase smin and smax to force the higher values
of k and reduced error rates.

Thus, CRI-based adaptive strategy is more efficient in terms
of channel utilization for communication while still providing
accurate estimates of current channel conditions. However,
there is still a large performance gap between the channel
estimation performance of time-invariant channel and time-
varying channel. This gap is due to the second source of error
that we discuss below.

B. Sampling Delay

The second source of error in the estimation performance
of time-varying channels is the sampling delay. Traditionally,
estimation theory deals with an unknown but fixed parameter
that needs to be estimated. In fixed parameter estimation,
the estimation error decreases by increasing the number of
samples. However, for time-varying channels the underlying
distribution is continuously changing with time.

Considering a non-zero sampling time (1/fS) per sample,
collecting N samples has time delay of N/fS . The underlying
distribution can change considerably by the time a large num-
ber of samples is collected from the channel. An estimate re-
sulting from these samples will already have a large difference
with the current channel condition. We call this type of error
the sampling delay error. Furthermore, initial samples might
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Fig. 8. Visualizing the errors originating by suboptimal N . We plot∥∥∥N − N̂N

∥∥∥
⋄

(left y-axis, blue plots) and
∥∥∥N̂ (t)

N − N̂ (t−1)
N

∥∥∥
⋄

(right y-axis,
red plots) as a function of N for different values of f with adaptive SCAPE.
For slowly varying channels, i.e., lower frequencies, it is possible to choose
higher values of N to minimize the estimation error or to minimize the inter-
estimate fluctuations. Here, we have used smin = 1 and smax = 3. Other
simulation parameters are M = 102, a = 0.3, b = 0.7, fS = 104, and
ϕ = π/2.

be originating from an entirely different distribution than the
distribution of final samples. An estimate from these samples
might not reflect true distribution of any of the collected
samples. We call this type of error the distribution varying
errors. Note that both sampling delay error and the distribution
varying errors can be reduced by decreasing the number of
samples N in each estimation step. However, reducing the
number of samples can introduce significant statistical errors.

Based on these conflicting types of errors in time-varying
quantum channels, we empirically expect the total error∥∥∥N − N̂N

∥∥∥
⋄

to be a convex function of N achieving its

minimum value at some optimal N = Nopt, where N̂N is the
channel estimated over N samples. Sampling delay error and
distribution varying errors become dominant for N > Nopt.
For N < Nopt, statistical error is the dominant type of error.

In experimental or simulation situations where the exact
channel information is available, it is possible to numerically
obtain

Nopt = argmin
N

∥∥∥N − N̂N

∥∥∥
⋄

(29)

by gradient descent. However, N is not known in practical
scenarios (hence the need of channel tomography) and it
is not possible to obtain Nopt as described above. Another
closely related quantity that essentially captures the same
notion of sampling delay errors and statistical errors is the
relative change between two consecutive channel estimates,
i.e.,

∥∥∥N̂ (t)
N − N̂ (t−1)

N

∥∥∥
⋄
, where N̂ (t)

N is the channel estimate
over N samples at time t. This relative change can readily
be estimated from already available channel estimates. A high
relative change can originate either from N being too large
so that the underlying channel has changed significantly or
from N being too small introducing significant statistical error
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Fig. 9. Estimation performance of adaptive SCAPE with the coding rate based
on CRI for (a) N = 350 and (b) N = 500. The corresponding diamond norm
distances are plotted in (c) for N = 350 and (d) for N = 500. Here, we have
used smin = 2 and smax = 4. Other simulation parameters are M = 103,
a = 0.3, b = 0.7, f = 100, fS = 104, and ϕ = π/2.

appearing in the form of fluctuations in the channel estimates.
We empirically expect this quantity to be convex as well based
on above arguments.

We plot both of these quantities in Fig. 8 as a function of N
for different frequencies f of channel variations. The resulting
plots are in agreement with the empirical expectations, i.e.,
both of these quantities are convex in N and the minimums

lie close to each other. As opposed to the update of code
rate—which is done after every estimate of the channel—the
choice of N can be updated on longer periods. In an estimation
scenario with transmitter and receiver, the adaptive SCAPE
protocol can be initiated with a large N that sufficiently
minimizes the statistical errors. After collecting Nest estimates
average of

∥∥∥N̂ (t)
N − N̂ (t−1)

N

∥∥∥
⋄

can be calculated over all Nest

samples. The next Nest estimates are obtained over N −∆N
measurements. This reduction in the number of measurements
is continued until the minimum of

∥∥∥N̂ (t)
N − N̂ (t−1)

N

∥∥∥
⋄

is
obtained.

In Fig. 9, we plot the estimation performance of SCAPE
with adaptive coding rate based on CRI and the number of
samples in each estimate as inferred by Fig. 8. We observe
that the performance of both N = 5.0 × 102 (as obtained by
minimizing

∥∥∥N − N̂N

∥∥∥
⋄
) and N = 3.5×102 (by minimizing∥∥∥N̂ (t)

N − N̂ (t−1)
N

∥∥∥
⋄
) is similar. The major difference between

the two is between t ≈ 0.4 ∼ 0.6 and t ≈ 1.4 ∼ 1.6, which is
actually caused by the sampling delay. During these periods,
the channel starts to become less noisy after being maximally
noisy. The estimated channel falls between the two points,
which coincidently is closer to the instantaneous channel con-
ditions for N = 500. The estimation performance in Fig. 9 is
not only improved as compared to what we observed in Fig. 6
but also the performance gap between the adaptive SCAPE and
EFPE of time-invariant channel is also significantly reduced.
Furthermore, the performance of N = 350, i.e., Fig. 9(a)
is slightly worse that that of N = 500, i.e., Fig. 9(b). This
was expected since the latter is obtained by minimizing the
quantity that we are plotting in Fig. 9. However, in a real-
world scenario where the channel knowledge is unavailable,
we can achieve suboptimal but still comparable performance
of Fig. 9(a) by minimizing an observable convex quantity over
several channel uses.

In Fig. 10, we plot the communication performance of adap-
tive SCAPE for N = 350. We have also changed smin = 2
and smax = 4 to improve the communication performance.
In Fig. 10(b) and (c), we see higher values of k and CRIs
for all three channels. Consequently, we observe in Fig. 10(a)
that obtained error rates are lower than what we observed in
Fig. 7(a). This results in almost no underestimation of noise
observed in Fig. 9(a) and (b). We do not plot these metrics
for N = 500 because they result in almost exactly the same
trends and values, except for CRIZ which goes as high as 15
at its peak.

V. SUMMARY & CONCLUSIONS

We have studied the problem of estimating time-varying
Pauli noise. Time-variations in quantum channels introduce
additional complexity to an already challenging problem of
quantum process tomography. First, if the estimation is per-
formed once at the beginning of a channel utilization round,
the obtained estimate might become inaccurate during the
channel utilization round since the physical channel would
have changed from its initial description. Consequently, the
employed ECCs may become inefficient or insufficient to
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Fig. 10. Communication performance of adaptive SCAPE with the coding
rate based on CRI for N = 350. We plot the BER on BSCX , BSCY , and
BSCZ in (a), repetition rate k in (b) and obtained CRI values in (c). Here,
we have used smin = 2 and smax = 4. Other simulation parameters are
M = 103, a = 0.3, b = 0.7, f = 100, fS = 104, and ϕ = π/2.

correct encountered channel errors later in the utilization. This
necessitates several rounds of channel estimation throughout
the channel utilization for up-to-date instantaneous channel
estimates. Second, in contrast to the general estimation theory,
increasing the number of samples for estimation may have
an ill effect of reducing the accuracy of obtained estimates
instead of improving it due to sampling delays and change
of underlying distribution during the sampling process. This
introduces a hard limit on the achievable estimation accuracy
and requires non-conventional approaches for choosing opti-
mal number of samples in each estimate. Finally, due to time-
variations, the receiver might need to constantly transmit the
up-to-date channel description to the transmitter after every
estimation round so that the transmitter can decide optimal
ECCs. This incurs large amounts of feedback information from
receiver to the transmitter.

Adaptive SCAPE appears as a natural candidate for ad-

dressing these complex challenges associated with the es-
timation of time-varying quantum noise. Specially because
the communication and channel estimation is performed in
the same step. Importantly, the transmitter does not need to
know the complete description of the channel. After each
step, receiver sends a ternary feedback to the transmitter
whether to increase, decrease, or continue with the same
rate of ECC. The estimation of optimal number of samples
in each estimation round can also be made independently
at the receiver’s side by computing the relative change of
channel estimates, averaged over several round. Interestingly,
the inclusion of communication in the estimation does not
incur any reduction in the estimation performance as compared
to the estimation-only protocols. Finally, the application of
adaptive SCAPE goes beyond Pauli noise since arbitrary noise
models can be mapped to Pauli noise [10], [26], [30]–[34].
These properties make adaptive SCAPE a natural choice for
estimating time-varying quantum noise. Future works may
include prediction of channel conditions with machine learning
or series forecasting techniques. One particularly interest-
ing experimental direction is the implementation of adaptive
SCAPE in practical environments where noise might behave
unexpectedly. Implementation of adaptive SCAPE for some
more efficient and complex error correcting codes can be an
interesting theoretical future work.
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