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Abstract—In the context of ultra-reliable low-latency commu-
nication (URLLC) in Internet-of-Things (IoT) networks, con-
ventional half-space coverage limits the flexibility of recon-
figurable intelligent surface (RIS) deployment. To overcome
these constraints, this paper makes use of active simultaneously
transmitting and reflecting RIS (STAR-RIS), which is seamlessly
integrated into digital twin (DT) and mobile edge computing
(MEC) frameworks. Our primary research objective is to achieve
full-space coverage by enabling simultaneous transmission and
reflection of the signals while improving uplink data transmission
from IoT URLLC user nodes (UNs) to the base station (BS)
with the assistance of active STAR-RIS, even in the presence
of imperfect channel state information (CSI). We formulate the
problem of minimizing total end-to-end (e2e) latency, computed
using the alternating optimization (AO) algorithm. Subsequently,
we have evaluated the performance of the AO algorithm against
the stochastic gradient descent (SGD) algorithm, which serves
as the benchmark solution. The simulation outcomes delineate
a performance evaluation under perfect and imperfect CSI
scenarios. The AO algorithm outperforms SGD with latency
reductions of 19.7% at N = 32 and 20.4% at N = 64.
Increasing N from 32 to 64 results in a 39.3% latency reduction
for AO, surpassing SGD’s 38.8%. However, the SGD algorithm
consistently exhibits lower computational complexity compared
to the AO algorithm. Additionally, the energy splitting mode
achieves the system’s total e2e latency reductions of 28.4% over
the mode switching mode and 11.04% over time switching mode.
Furthermore, active STAR-RIS optimal beamforming (ARO)
achieves ≈10% latency reduction over the predictive optimal
beamforming (PRO), which itself surpasses active STAR-RIS
with random beamforming (ARR) by ≈9%. This comparison
considers key factors such as the power budget, the number of
RIS elements, the caching capacity of the edge computing server
(ECS), the number of IoT UNs, the minimum transmission rate,
and maximum transmit power at BS of active STAR-RIS.

Index Terms—alternating optimization, digital twin, imperfect
CSI, mobile edge computing, simultaneously transmitting and
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reflecting, ultra-reliable low-latency communication.

I. INTRODUCTION

Ensuring connectivity for Internet-of-Things (IoT) is vital
for time-critical communication, where the integration of mo-
bile edge computing (MEC) serves to reduce overall network
latency [1]. This emergent technology will empower industrial
IoT applications that require ultra-reliable and low-latency
communications (URLLC), paving the way for a new gen-
eration of services and experiences [2], [3]. However, achiev-
ing efficient task offloading in edge computing environments
is challenged by many factors, such as joint computations,
heterogeneous architectures, and task integration. To address
these challenges and enhance task offloading effectiveness, the
integration of digital twin (DT) and Metaverse technologies
has emerged as a promising approach [4]. DT represents
a virtual replica of a physical object, system, or process,
enabling simulation, analysis, and optimization. On the other
hand, Metaverse refers to an immersive virtual environment
that allows physical objects (e.g., IoT user nodes (UNs))
to interact with the virtual/digital world [5]. The integration
of DT and MEC with real-time optimization theory enables
uninterrupted end-to-end (e2e) Metaverse services, enabling a
seamless blend of the physical and virtual worlds [6].

In next-generation wireless services, particularly URLLC,
the demand for massive IoT user connectivity and latency-
sensitive applications poses significant challenges [2], [7]. To
overcome these challenges, the integration of DT with URLLC
has gained attention [7], [8]. Integrating the capabilities of
DTs with URLLC empowers industries to attain reliable
and low-latency communication. This synergy is particularly
important for mission-critical applications such as autonomous
vehicles and industrial automation. This transformative po-
tential extends across multiple domains, including manufac-
turing, transportation, healthcare, and more, paving the way
for smart industries [7]. Previous works have proposed DT-
aided edge network approaches and optimization algorithms
to minimize computation latency and improve reliability [7],
[8]. Additionally, a few studies [9]–[11] have demonstrated the
potential of DT and Metaverse technologies in enhancing task
offloading efficiency and latency performance. However, most
prior research assumes a direct link to the MEC, which can be
impractical due to environmental obstacles that hinder direct
connectivity. The use of reconfigurable intelligent surfaces
(RISs) can offer alternative transmission paths, helping to
sustain wireless links which could otherwise be shadowed
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or blocked [10]–[13]. While passive RIS relies exclusively
on phase-shift control to manipulate signal reflection, active
RIS introduces individual power amplifiers within each RIS
element, enabling active signal amplification [14].

Recognizing that spatial confinement may not always be
achievable, it can impose substantial limitations on the ver-
satility and efficiency of RIS. Consequently, there has been
increasing interest in an emerging concept of simultaneously
transmitting and reflecting (STAR-RIS) [15] to achieve com-
prehensive coverage of the entire space. Active STAR-RIS,
in particular, introduces a new degree of freedom in manipu-
lating signal propagation, thereby enhancing the flexibility of
network design, faster data transmission, and reduced latency,
enabling signals to travel more efficiently through optimized
pathways. The synergy between the Metaverse, DT networks,
and active STAR-RIS is paving the way for communication
technology advancements that offer reliable communication
while ensuring minimal delays in mission critical IoT appli-
cations, such as industrial IoT automation and IoT-enabled
autonomous vehicles.

A. Related works

Earlier research predominantly concentrated on resource
allocation for secure URLLC, prioritizing communication as-
pects while neglecting computation considerations [16], [17].
Nevertheless, with the increasing need for devices in mission-
critical applications to perform computation-intensive tasks
within strict time constraints, MEC has emerged as a com-
pelling solution to facilitate swift and efficient computation
in URLLC systems [9], [18]. At the same time, DT technol-
ogy provides practical features that enable organizations to
meet the stringent requirements of high reliability and low
latency, ensuring continuous and dependable operation [7].
In the context of IoT networks, where seamless and reliable
connectivity is crucial, the incorporation of DT with URLLC
holds particular significance as it streamlines the optimization
of configurations to meet URLLC requirements [8]–[11].

In the continuously growing domain of IoT networks amid
bustling urban environments, the pursuit of improved connec-
tivity has sparked a surge of innovative research on RIS [19],
[20], [20]–[23]. Specifically, recent research demonstrates the
effectiveness of active RIS compared to passive RIS [23],
[24]. The preceding research has predominantly centered on
the functionality of active RIS, which primarily act as either
reflective or transmissive metasurfaces, as evidenced by studies
[22], [25]. In this context, active RIS requires the served IoT
UNs to be positioned on the same side as the RIS, resulting
in half-space coverage. This configuration, however, imposes
limitations on the flexibility of deploying active RIS, thus
prompting the need for further investigation into strategies that
enhance deployment flexibility and spatial coverage. Motivated
by the true potential of RIS technology, unquestionably, there
is a significant research scope in RIS-assisted URLLC services
to enhance the seamless experiences of delay-sensitive UN
[21], [26]–[28]. However, only a limited number of studies
have specifically explored the application of RIS in URLLC
scenarios [29]–[31]. The authors in [29] proposed a joint

optimization of phase shifts and beamforming variables of an
active RIS to allocate URLLC traffic, aiming to maximize the
URLLC sum rate in a multiple-input single-output (MISO)
system, where a group of BSs collaborates to serve URLLC
traffic. In [10], [11], [32], the authors proposed a RIS-assisted
DT-enabled URLLC service to enhance reliability and reduce
the transmission delay while offloading the task to the BS from
the UN. Table I offers an extensive investigation of the existing
works and highlights the contributions of our proposed work.

B. Motivations and Contributions of the Work

The motivation behind this research is multi-faceted. Firstly,
the limited spatial coverage constrains the flexibility of RIS
deployment, wherein served IoT UNs must be on the same
side as the RIS, necessitating the capability of active STAR-
RIS to extend coverage [15]. Secondly, a critical need exists
to push the technological frontier forward by leveraging the
capabilities of edge intelligence to unveil new potentials in
URLLC services within MEC-enabled DT networks [7], [8],
[36]. Meeting these requirements is essential to empower in-
dustries and applications relying on real-time, mission-critical
communication, and to stimulate the growth of IoT-enabled in-
novations. Our study stands at the intersection of this endeavor,
positioned to uncover the trade-offs and advantages of active
STAR-RIS architectures in DT-based MEC communication
frameworks, laying the groundwork for future research and
advancements in this emerging field.

As the IoT technology evolves, the integration of sophis-
ticated wireless technologies supported by industry leaders
like Microsoft, Google, Qualcomm, Amazon, and TSMC
becomes essential. These technologies, which include edge
computing and low-power RF tech tailored for URLLC, en-
hance infrastructure and enrich IoT functionalities to meet
the real-time, high-reliability demands of modern industrial
applications. This shift indicates a move towards more capable
and efficient IoT systems. Our research aligns with these
advancements, showing how the integration of advanced 5G
and edge computing is crucial for the next generation of
IoT frameworks. We contribute to this field by providing
insights into the deployment and benefits of advanced RIS
technologies, addressing the complex needs of IoT-enabled
industries. The contributions of our work are summarized as:

• Unlike [8]–[11], [37], we investigate an active STAR-
RIS-assisted DT-based MEC system to facilitate task
offloading and enhance IoT-URLLC services. Our main
objective is to minimize total end-to-end (e2e) latency in
the proposed system while considering various constraints
such as beamforming, edge caching, transmit power, task-
offloading policies, energy consumption, processing rates
of IoT UN and edge computing server (ECS), active
STAR-RIS phase shift matrices, and allocated bandwidth
at each IoT UN.

• We develop an efficient alternating optimization (AO)
algorithm to address the proposed non-convex problem by
dividing it into manageable subproblems: beamforming
design, caching policy optimization, offloading policy
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TABLE I: A Comparative overview of our work and the state-of-the-art.

Paper RIS MEC URLLC Algorithm DT Performance metric
[7] ✗ ✓ ✓ AO ✓ Worst-case latency minimization of e2e DT latency
[8] ✗ ✓ ✓ AO ✓ Total e2e latency minimization
[9] ✗ ✓ ✗ AO ✓ Latency minimization
[10] Passive RIS ✓ ✓ DRL ✓ Latency minimization
[11] Passive RIS ✓ ✓ DRL, AO ✓ Latency minimization
[14] Active RIS, Passive RIS ✓ ✗ BCD, SCA ✗ Minimize the maximum computational latency
[15] Active STAR-RIS ✗ ✗ AO ✗ Maximized communication sum rate
[16] ✗ ✗ ✓ AO ✗ Latency minimization
[17] ✗ ✗ ✓ SCA ✗ Minimization of the total transmit power
[19] Passive RIS ✗ ✗ AO ✓ Rate maximization
[21] Passive RIS ✗ ✗ Dinkelbach’s Method ✗ Energy efficiency maximization
[23] Active RIS, Passive RIS ✗ ✗ AO ✗ Sum rate maximization
[24] Active RIS, Passive RIS ✗ ✗ AO ✗ Rate maximization
[25] Passive STAR-RIS ✗ ✗ Search-based algorithm ✗ Rate maximization
[28] Passive RIS ✗ ✗ AO ✗ Minimize the total transmit power
[29] Passive RIS ✗ ✓ SCA ✗ Maximization of the weighted sum throughput
[32] Passive RIS ✗ ✓ SGD, MO-SAC ✗ Latency and the total service cost minimization
[33] Passive RIS ✗ ✓ AO ✗ Average decoding error probability and data rate
[34] ✗ ✓ ✓ DDN ✓ Energy consumption minimization
[35] ✗ ✓ ✗ PPO ✓ Energy consumption minimization

Our
work

Active STAR-RIS ✓ ✓ AO ✓ Total e2e latency minimization

optimization, joint optimization of communication and
computation, and active STAR-RIS beamforming opti-
mization. Moreover, we verify the convergence of the AO
algorithm. To further enhance the system’s performance,
we chose stochastic gradient descent (SGD) as our bench-
mark because it offers a robust and widely recognized
method for solving optimization problems, particularly in
complex environments like those involving active STAR-
RIS. We also provide the complexity analysis of both the
AO and SGD algorithms.

• Our simulation results confirm that our proposed active
STAR-RIS optimal beamforming (ARO) scheme consis-
tently outperforms benchmark schemes, including passive
STAR-RIS with optimal beamforming (PRO) and active
STAR-RIS with random beamforming (ARR), FD relay
in terms of latency when considering factors such as
power budget, number of RIS elements, number of IoT
UNs, minimum transmission rate, and STAR-RIS max-
imum transmit power at the base station and different
working modes of active STAR-RIS systems.

The remainder of this paper is organized as follows: Section
II explains the proposed system model. Section III presents
the proposed solutions for active STAR-RIS, while Section
IV provides extensive numerical analysis to demonstrate the
effectiveness of the considered network. Finally, in Section V,
our proposed work is concluded.

Notations: For the reader’s convenience and clarity of un-
derstanding, all essential symbols, along with their definition,
are comprehensively outlined in Table II.

II. SYSTEM MODEL

Our proposed system model employs an active STAR-RIS
to enhance a URLLC IoT network, as illustrated in Fig. 1.
We integrate a macro base station and small cells to address
coverage and interference challenges in dense IoT environ-
ments such as industrial settings. This architecture enhances

Fig. 1: An illustration of URLLC- active STAR-RIS DT system.

connectivity and robustness in scenarios where traditional
communication methods falter due to high interference and
latency issues. In Fig. 1, we also show its DT1, which is linked
to the physical network through a real-time connection. This
system model specifically addresses the needs of industrial IoT
applications such as automated manufacturing, where reliable,
real-time data transmission is critical for machine-to-machine

1 DTs operate in the cloud, not on devices, enhancing network management
and operational efficiency without increasing device load. They provide real-
time simulations for preemptive problem-solving and resource optimization,
crucial for the sustainability and effectiveness of these IoT systems.
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TABLE II: Table of notations.

Index Meaning

jr ∈ {1, 2, ..., Jr} (index of j-th UN in the reflection space)
jt ∈ {1, 2, ..., Jt} (index of j-th UN in the transmission space)
j ∈ {1, 2, ..., J} (index of all j-th UN)
n ∈ {1, 2, ..., N} (index of n-th RIS element)
Notation Meaning

hr,j ≜ the reflection channel gain IoT UNs jth to the active STAR-RIS
ht,j ≜ the transmission channel gain IoT UNs jth to the active STAR-RIS
H ≜ the channel gain from the active STAR-RIS to the BS
hek ≜ channel estimation error (CEE)
Ψr ≜ the reflection matrices for the active STAR-RIS
Ψt ≜ the transmission matrices for the active STAR-RIS
Ar ≜ the equivalent reflection amplitude matrix
At ≜ the equivalent transmission amplitude matrix
Br ≜ the reflection amplitude coefficients
Bt ≜ the transmission amplitude coefficients
Ã ≜ the amplification matrix of the active STAR-RIS
CN (m,σ2) ≜ Complex Gaussian distribution with mean m and variance σ2

γj ≜ SNR of the jth IoT UN
Rj ≜ rate of the jth IoT UN
pj ≜ the transmit power of the jth IoT UN
B ≜ the total bandwidth of the system
bj ≜ the allocated bandwidth coefficient of the jth IoT UN
Vj ≜ the channel dispersion
fun
j ≜ the estimated processing rate of the jth IoT UN

f̂un
j ≜ the error in the processing rate estimation

βj ≜ proportion of the tasks
wj ≜ the transmit beamforming vector
Jj ≜ the task at the jth IoT UN
Dj ≜ data size
Cj ≜ cycles for computation
δ ≜ the transmission time interval
T ≜ the cumulative latency
E ≜ energy consumption
ξ ≜ the energy conversion efficiency
σ2
0 ≜ variance of AWGN at active STAR-RIS

σ2
b ≜ variance of AWGN at BS

σ2
ek ≜ variance of AWGN at CEE

| · | ≜ absolute value
|| · || ≜ the norm of a value
Q(·) ≜ complementary cumulative distribution function (CCDF) of the standard normal distribution
Q−1(·) ≜ the inverse of CCDF
diag(·) ≜ diagonal element of a matrix
Tr(·) ≜ the trace of a square matrix in linear algebra

communications and process automation. The inclusion of
small cells ensures high-quality connections are maintained
throughout the facility, enhancing the efficacy of the DT
and active STAR-RIS in managing complex communication
dynamics and ensuring URLLC2.

There are J IoT UNs present in the real environment. The
IoT UNs situated in the reflection space and the transmis-
sion space are denoted by the set of Jr ≜ {1, 2, ..., Jr}

2By incorporating DT into our URLLC IoT system, we can create virtual
replicas of physical entities for real-time monitoring, analysis, and prediction
[7], [8], [38]. This integration enables informed decision-making, improves
resource management, and enhances operational efficiency. The system’s real-
time analytics and low-latency processing amplify scalability, flexibility, and
cost-efficiency. It also reduces network congestion, strengthens data privacy
and security, and enhances user experiences. Offline functionality ensures
continuity in limited connectivity environments, making DT with URLLC
IoT system a compelling solution for process optimization and innovation
[8], [39]. Overall, DT provides a scalable, immersive, and efficient platform
for the URLLC IoT system by enabling real-time interaction between users
and digital objects and reducing the reliance on central nodes [7]–[9], [34],
[38]–[42].

and Jt ≜ {1, 2, ..., Jt}, respectively, with Jr + Jt = J .
The single-antenna IoT UNs communicate with a M -antenna
macro BS during the finite block-length transmission for task
offloading. The active STAR-RIS has N elements. Hence,
the reflection and transmission matrices for the active STAR-
RIS are defined as Ψr ≜ BrÃΦr = diag (ψr) ∈ CN×N

and Ψt ≜ BtÃΦt = diag (ψt) ∈ CN×N , respectively,
where Φr ≜ diag (ϕr) = diag(

[
ejφr,1 , . . . , ejφr,N

]T
) ∈

CN×N denotes the reflection phase-shift matrix and Φt ≜
diag (ϕt) = diag(

[
ejφt,1 , . . . , ejφt,N

]T
) ∈ CN×N denotes the

transmission phase-shift matrix [15]. Here, Br ≜ diag (βr) =
diag([βr

1 , . . . , β
r
N ]

T
) ∈ CN×N and Bt ≜ diag (βt) =

diag([βt
1, . . . , β

t
N ]

T
) ∈ CN×N denote the reflection and

transmission amplitude coefficients, respectively, while Ã ≜
diag(ã) = diag([ã1, . . . , ãN ]

T
) ∈ CN×N is the amplification

matrix of the active STAR-RIS.
We define Ar ≜ BrÃ ∈ CN×N and At ≜ BtÃ ∈ CN×N

as the equivalent reflection and transmission amplitude
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Fig. 2: Illustration of time-frame.

matrix, respectively. Thus, we have Ar ≜ diag (ar) =
diag([ar,1, . . . , ar,N ]

T
) = diag([ã1β

r
1 , . . . , ãNβ

r
N ]

T
),

At ≜ diag (at) = diag([at,1, . . . , at,N ]
T
) =

diag([ã1β
t
1, . . . , ãNβ

r
N ]

T
) and their corresponding

reflection and transmission vectors can be written
as ψr = diag([ar,1ϕr,1, . . . , ar,Nϕr,N ]

T
) and

ψt = diag([at,1ϕt,1, . . . , at,Nϕt,N ]
T
), respectively. We

define H ∈ CM×N , hr,j ∈ CN×1 as the reflection channel
gain from the active STAR-RIS to the BS and IoT UNs jth

to the active STAR-RIS, and ht,j ∈ CN×1 as the transmission
channel gain from the active STAR-RIS to the BS and IoT
UNs jth to the active STAR-RIS, respectively.

A. Channel estimation
Fig. 2 illustrates the time-frame model used in our study.

The diagram labels “CE” and “TO” represent the time frames
allocated for channel estimation and task offloading, respec-
tively. Each independent time-frame, denoted as Tz where
Z = {1, . . . , Z}, is divided into two sub-time-frames: Tz

CE

for channel estimation and Tz
TO for task offloading. In this

work, we do not consider the channel estimation process in
the problem formulation, as it represents a different aspect
of research that is not our concern for the present work. We
simply assume that channel estimation is completed immedi-
ately before task offloading in each timeframe. Relevant nodes
estimate channel using standard techniques, as detailed in [43].
This work in [43] provides a thorough overview and various
methods for estimating channels in RIS systems. While our
primary focus is on the task offloading scheme, utilizing prior
channel estimation knowledge, it is important to note that the
CSI may contain errors. Therefore, we model the imperfec-
tions in CSI as discussed in the preceding subsection.

1) Imperfect CSI modeling: Considering an imperfect CSI3

scenario, the actual reflection and transmission channels can
be represented in terms of their estimates as follows:

hj,r = ĥj,r + he,r, where ĥj,r = HΨhr,j , (1)

hj,t = ĥj,t + he,t, where ĥj,t = HΨht,j . (2)

Here, hj,r ∈ CM×1, and hj,t ∈ CM×1 represent the ac-
tual reflection and transmission channels, respectively. The

3The channel estimation for active Simultaneous Transmit and Reflect Re-
configurable Intelligent Surface (STAR-RIS) requires tailored approaches due
to its signal amplification capabilities and additional noise [44]. Aggregated
channel estimation methods can reduce overhead by leveraging aggregated
channels for data processing. Two-timescale designs, such as iterative methods
based on the proximal gradient amplification method (PGAM), update opti-
mization parameters simultaneously per iteration, accommodating the active
components of STAR-RIS [45]. Hybrid channel estimation combines active
and passive techniques, where active sensors estimate separate links and
passive patterns estimate cascade links. Statistical CSI may be used for passive
beamforming design, particularly in spatially-correlated channel scenarios.
These methods are adapted to the unique characteristics of active STAR-RIS,
ensuring effective CSI acquisition for optimal network performance [44].

terms ĥj,r and ĥj,t are the estimated CSI for the reflection
and transmission channels, respectively. he,r ∈ CM×1 and
he,t ∈ CM×1 denotes the estimation error in the reflection
and transmission channel, respectively.

The terms he,t(z) ∈ CM×1 in (1) and he,r(z) ∈ CM×1 in
(2) are the CSI estimation errors. It is characterized by the set
as follows [46]:

Tϵ =
{

he,t ∈ CM×1 : ∥he,t∥ ≤ τe,t, e, t = 1, . . . ,M
}
, (3)

Tϵ =
{

he,r ∈ CM×1 : ∥he,r∥ ≤ τe,r, e, r = 1, . . . ,M
}
, (4)

where ∥ · ∥ denotes the norm. Within the set, entries of he,t

and he,r are independent and identically distributed (i.i.d)
and assumed to have zero mean with variance σ2

e,t and σ2
e,r,

respectively. For the present work, we consider uniformly dis-
tributed bounded CSI uncertainty σ2

e,t = σ2
e,r = {0.05, 0.10},

as discussed in [46], [47].

B. Signal model

The received signal at the BS from the IoT UNs in the
reflection space is given as

yj = wj(hj,rxj + HΨrz0 + nb), j ∈ Jr, (5)

where wj is the active receive beamformer at the BS, xj is the
data symbol sent by the kth IoT UN, z0 ∼ CN (0, σ2

0IN ) and
nb ∼ CN (0, σ2

b IM ) represent the dynamic noise at the active
STAR-RIS and the additive white Gaussian noise (AWGN)
added at the BS, respectively. The SNR of the jth IoT UN in
the reflection space is given by

γj =
|wH

j ĥj,r|2pj
||wH

j HΨr||2σ2
0 + ||wH

j ||2BbjN0
, j ∈ Jr, (6)

where pj is the transmit power of the jth IoT UN, B is the
total bandwidth of the system, and N0 represents the effective
noise, which is a combination of the noise added at the BS
and CEE, given by N0 = σ2

b + σ2
ek. Similarly, the received

signal at the BS from the IoT UNs within the transmission
space can be calculated as

yj = (ĥj,t + hek)xj + HΨtz0 + nb, j ∈ Jt. (7)

The SNR of the jth IoT UN in the transmission space can be
expressed as

γj =
|wH

j ĥj,t|2pj
||wH

j HΨt||2σ2
0 + ||wH

j ||2BbjN0
, j ∈ Jt. (8)

C. DT-assisted active STAR-RIS communication model

As there is no direct path available due to the obstacles in
the path between the IoT UNs and the BS, all the IoT UNs
transmit their signal to the BS with the aid of active STAR-
RIS. The uplink rate expression for the jth IoT UN is given
as [34], [48]

Rj =
B

ln 2

[
bj ln (1 + γj)−

√
bjVj
δB

Q−1(εj)

]
, (9)

where bj is the allocated bandwidth coefficient of the jth IoT
UN, δ is the transmission time interval, Vj = 1 − [1 + γj ]

−2
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is the channel dispersion and Q−1 (.) is the inverse function,

Q(εj) =
1√
2π

∫∞
εj
e

(
−t2

2

)
dt. The uplink transmission latency

is given as T co
j =

Dj

Rj
, where Dj is data size (bits).

D. DT-assisted active STAR-RIS computation model

The jth IoT UN locally executes βj proportion of the tasks
and offloads the (1 − βj) proportion of tasks to the ECS.
A tuple Jj = (Dj , Cj , T

max
j ) represents the task at the jth

IoT UN, where Cj and Tmax
j are the required cycles for

computation and the maximum task latency, respectively.
We model the DT service for local processing as DTun

j =

(funj , f̂unj ), where funj denotes the estimated processing rate
of the jth IoT UNs and f̂unj represents the error in the
processing rate estimation.

The processing latency of node P is expressed as

TP
j = T̃P

j + TP
ek = ζjCj/f

P
ek, (10)

where P ∈ {un, ecs}, ζj = βj for P = un and ζj = 1− βj
for P = ecs. Here, T̃P

j = ζjCj/f
P
j is the estimated processing

latency, TP
ek =

ζjCj f̂
P
j

[fP
j (fP

ek)]
is the latency error and fPek = fPj −

f̂Pj is the processing rate error.

E. Energy and Latency computation

The expressions for energy consumption of the jth IoT UN
are given as follows

Ecp
j = βjθCj

(
funj − f̂unj

)2
/2, (11)

Ecm
j = (1− βj) pjDj/Rj , (12)

Etot
j = (1− µj)

[
Ecp

j + Ecm
j

]
, (13)

where Ecp
j , Ecm

j , Etot
j and θ are the energy for computation,

the energy for communication, the total energy consumption
and its power parameter, respectively. Here, µ ≜ {µj} |µj ∈
{0, 1} ,∀j, which represents the IoT UNs affiliation with the
ECS, i.e., when µj = 1, there exists a connection between IoT
UNs and ECS and thereby the task Jj is cached at the ECS
which is offloaded from the IoT UNs, and when µj = 0, there
exists no connection between IoT UNs and ECS.

The cumulative latency considering MEC is expressed as

T tot
j =

µjCj

fecsek

+ (1− µj)×
[
Tun
j + T co

j + T ecs
j

]
. (14)

F. Optimization Problem formulation

In our system, a crucial small CPU at the BS aggregates
and processes information from IoT nodes, MEC-enabled BS,
and active STAR-RIS. This CPU, integral to the BS, uses a
control channel to gather data for decision-making, as detailed
in equation (15). After processing, it executes an optimization
algorithm to minimize total task offloading latency, accounting
for channel condition variations with imperfect CSI. This
architecture ensures practical, efficient real-world application
management.

Our objective is to minimize the total latency of IoT
UNs by dealing with the optimization of the reflection and

transmission beamforming matrices at the active STAR-RIS,
allocated bandwidth, offloading proportions, transmit power,
estimated processing rates at IoT UNs and ECS, the energy
consumption of IoT UNs and MEC capacity at ECS. Thus,
the optimization problem can be formulated as follows

min
wj ,βj ,µj ,bj ,pj ,Ψr,Ψt,f

un
j ,f ecs

j

J∑
j=1

T tot
j (15a)

s.t. T tot
j ≤ Tmax

j ,∀j, (15b)
J∑

j=1

[
µjf

ecs
j + (1− µj) (1− βj) f ecsj

]
≤ F ecs

max, (15c)

Etot
j ≤ Emax

j ,∀j, (15d)

Rj ≥ Rmin,∀j, (15e)
J∑

j=1

bj ≤ 1,∀j, (15f)

J∑
j=1

µjDj ≤ Secs
max, (15g)

p ∈P,β ∈ B, f ∈ F , (15h)
∥wj∥ = 1,∀j, (15i)∥∥wH

j HΨt

∥∥2 σ2
0

+
∥∥wH

j HΨr

∥∥2 σ2
0 ≤ PRIS

max , (15j)

ar,n ≥ 0, at,n ≥ 0,∀n, (15k)
|ϕr,n| = 1, |ϕt,n| = 1,∀n, (15l)

where P ≜
{
pj ,∀j | 0 ≤ pj ≤ Pmax

j ,∀j
}
,

B ≜ {βj ,∀j | 0 ≤ βj ≤ 1,∀j}, F ≜{
f =

{
f un
j , f

ecs
j

}
,∀j|0 ≤ f un

j ≤ F un
max,∀j; 0 ≤ f ecs

j ≤ F ecs
max∀j

}
are the constraints associated with the UL power, offloading
decisions, and processing rates, respectively. The constraints
related to the upper limit of the latency, computation capacity,
and energy of the IoT UNs are given by (15b), (15c),
and (15d), respectively. Moreover, (15e), (15f), (15g), and
(15i) define the constraints corresponding to the minimum
transmission rate, bandwidth allocation of IoT UNs, the
caching capacity of the ECS, and the transmit beamforming,
respectively. The constraints related to the maximum power,
the amplitude coefficient and the unit modulus phase at
the active STAR-RIS are given by (15j), (15k) and (15l),
respectively. Here, (15) represents a non-convex optimization
problem due to its intricate objective function (15a), which
includes logarithmic and fractional terms, as well as the
interdependencies between variables in both the objective
function and constraints. Hence, to tackle this challenge, we
propose an efficient AO algorithm.

III. PROPOSED SOLUTION

The optimization challenge presented in (15) is charac-
terized by a non-convex objective function and a complex
interplay between continuous and integer variables, making it
a highly intricate problem to solve directly. To address this, we
introduce an AO algorithm that simplifies the problem by iso-
lating and sequentially optimizing individual variables, keep-
ing all others fixed. This methodical approach decomposes the
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original problem into five manageable subproblems, namely,
beamforming design, caching policy optimization, offloading
policy optimization, joint computation and communication,
and active STAR-RIS beamforming optimization. The more
detailed analysis of each subproblem is provided as follows

A. Beamforming Design

In this subsection, we focus on optimising beamforming
vectors, denoted as wj , which are crucial for directing the
signal power toward intended IoT UNs while minimizing
interference. The objective is to minimize the total transmis-
sion power, T tot

j , subject to a set of constraints that ensure
reliable communication. The optimization subproblem for the
beamforming design can be formulated as:

min
wj |µ(i),β(i),f (i),b(i),p(i),Ψr

(i),Ψt
(i)

J∑
j=1

T tot
j (wj) (16a)

s.t. (15b), (15e), (15i), (15j), (16b)

where µ ∈ µj , f ∈ {funj , fecsj }, β ∈ βj , b ∈ bj , and p ∈
pj ,∀j.

To achieve the maximum SNR for each IoT UN, we employ
the linear minimum mean square error (MMSE) receiver,
which is recognized for its efficiency in balancing signal
enhancement and interference suppression. The MMSE-based
equalizer for IoT UNs is given by [49]

w∗
j =

(
hjhH

j pj+HΨΨHHHσ2
0+σ

2
b IM

)−1

hj
√
pj∥∥∥∥(hjhH

j pj+HΨΨHHHσ2
0+σ

2
b IM

)−1

hj
√
pj

∥∥∥∥ . (17)

B. Caching Policy Optimization

To determine the optimal content to be cached at the edge
nodes, this subsection aims to optimize the caching policy by
determining the next iteration point for the caching variables,
µ(i+1), while keeping all other system constraints constant.
The optimization subproblem for the caching variables is
formulated as follows:

min
µj |,w(i+1)

j ,β(i),f (i),b(i),p(i),Ψr
(i),Ψt

(i)

J∑
j=1

T tot
j (µj) (18a)

s.t. (15b), (15c), (15d), (15g). (18b)

Given that µj are integer variables, the problem is inherently
non-convex. To tackle this challenge, we define a new variable
tsj = Tun

j + T co
j + T ecs

j for each task j, which represents the
total time saved by caching task j. We then sort these values
in descending order and prioritize caching the tasks with
the greatest time savings. This heuristic approach continues
until adding another task would violate the system’s capacity
constraint. By employing this method, we can efficiently
approximate the optimal caching policy µ at each iteration
with a reduced number of constraint checks, which is less than
the total number of tasks J , thus simplifying the optimization
process.

C. Offloading Policy Optimization

This subsection is dedicated to developing the most effective
strategy for offloading computational tasks from IoT UNs to
the ECS. The focus is on optimizing the offloading policy
by determining the optimal offloading decisions, β(i+1), for
the next iteration. The optimization problem is structured to
minimize the total time spent on task execution across all tasks,
denoted by T tot

j (βj), subject to a set of system constraints.
The optimization subproblem is formulated as:

min
βj |w(i+1)

j ,µ
(i+1)

,f (i),b(i),p(i),Ψr
(i),Ψt

(i)

J∑
j=1

T tot
j (βj) (19a)

s.t. (15b), (15c), (15d), (15h). (19b)

Since the constraints of this problem are linear, the problem
is convex. Hence, it can be solved efficiently using standard
convex optimization techniques. One such technique is using
the CVX toolbox, which is designed for solving convex
optimization problems [8].

D. Joint Communication and Computation Optimization

In this subsection, our objective is to determine the sub-
sequent iteration points f (i+1),b(i+1),p(i+1) by fixing the
values of µ(i+1) and β(i+1). Utilizing the approximation Vj ≈
1 under the assumption of high received SNR [8], Rj is given
as

Rj ≈
B

ln 2

[
bj ln (1 + γj)−

√
bj
δB

Q−1(εj)

]
≜

B

ln 2
[Gj − Bj ] , (20)

where Gj = bj ln(1 + γ) and Bj =
√
bj

Q−1(εj)√
δB

. After
considering Taylor’s approximation, we reformulate Gj as

G(i)
j = z ln

(
1 +

x̂

ŷ

)
+ x
( ẑ

x̂+ ŷ

)
− y
( x̂ẑ

ŷ(x̂+ ŷ)

)
. (21)

Moreover, by using the inequality
√
z ≤

√
ẑ
2 + z

2
√
ẑ

, we can

approximate B(i)
j as Bj ≤ Q−1(εj)√

δB
(
√
ẑ
2 + z

2
√
ẑ
) ≜ B(i)

j , where
z = bj , x = |wH

j ĥj |2pj , y = ||wH
j HΨ||2σ2

0+||wH
j ||2BbjN0,

ẑ = b̂j , x̂ = |wH
j ĥj |2p̂j , and ŷ = ||wH

j HΨ||2σ2
0 +

||wH
j ||2Bb̂jN0. Thus, the rate expression is given by a lower

bound as Rj ≥ R
(i)
j ≜ B

ln 2

[
G(i)

j − B(i)
j

]
. Now, the approxi-

mate expression of constraint (15f) is R(i)
j ≥ Rmin,∀j. Now,

we introduce a new variable τj ≜ {τj} ,∀j to transform the
non-convex rate constraint (i.e., (15e)) into a convex one as
follows. Consider 1/Rj ≤ τj ,∀j and thus, we can reformulate
the constraint (15e) as

1
/
R

(i)
j ≤ τj , (22)

(1− µ(i+1)
j )

[
θ

2
β
(i+1)
j Cj(f

un
ek )2

+(1− β(i+1)
j )pjτj

]
≤ Emax

j ,∀j. (23)
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Now, constraint (22) is convex. However, we observe that
(23) is still non-convex. Hence, we approximate the constraint
using the inequality given in [8] as follows(

1− µ(i+1)
j

)[θβ(i+1)
j Cj(f

un
ek )2

2

+

(
1− µ(i+1)

j

)
2

(
τ
(i)
j

p
(i)
j

p2j +
p
(i)
j

τ
(i)
j

τ2j

) ≤ Emax
j ,∀j. (24)

Then, the non-convex objective function (15a) can be approx-
imately represented as follows

T tot
j ≤(1− µ(i+1)

j )

[
β
(i+1)
j Cj

funek

+Djτj +
(1− µ(i+1)

j )Cj

fecsek

]

+
µ
(i+1)
j Cj

fecsek

≜ T́ tot
j . (25)

Finally, we can reformulate subproblem (19) as [8]

min
b,p,f |w(i+1)

j ,µ(i+1),β(i+1),Ψr
(i),Ψt

(i)

J∑
j=1

T́ tot
j ,∀j (26a)

s.t. T́ tot
j ≤ Tmax

j , (26b)

(15c), (15e), (15f), (15h), (22), (24). (26c)

This subproblem is solved using the AO problem as described
in step 6 of Algorithm 1.

E. Active STAR-RIS Beamforming Optimization
This section focuses on optimising the Ψr and Ψt for the

active STAR-RIS. To address this challenge, we consider the
rate expression as provided below:

max
Ψr,Ψt|b(i+1),p(i+1),f (i+1)

w
(i+1)
j ,µ(i+1),β(i+1)

Rj , ∀j (27a)

s.t. (15j), (15k), (15l), (27b)

To convert the objective function (27a) into a more tractable
form, we suggest a fractional programming (FP) algorithm.
Following this, by introducing an auxiliary variable and ap-
plying the Lagrangian dual transform γ = [γ1, ..., γJ ]

T , we
can reframe the initial objective function (27) as

R̃j =

J∑
j=1

(1 + γj)−
J∑

j=1

γj

+
∑
j∈Jr

(1 + γj)
∣∣∣wH

j ĥj,r

∣∣∣2∥∥wH
j HΨr

∥∥2 σ2
0 +

∥∥wH
j

∥∥2BbjN0

+
∑
j∈Jt

(1 + γj)
∣∣∣wH

j ĥj,t

∣∣∣2∥∥wH
j HΨt

∥∥2 σ2
0 +

∥∥wH
j

∥∥2BbjN0

. (28)

Subsequently, we proceed by applying the quadratic trans-
form to the remaining two fractional terms in (29) by introduc-
ing another auxiliary variable ρ = [ρ1, ..., ρJ ]

T . This allows
us to further reconfigure (28) into the form presented as

f(γ,Ψr,Ψt, ρ) =
∑
j∈Jr

(2
√
1 + γjℜ

{
ρ∗jw

H
j ĥj,r

}

− |ρj |2 (
∥∥wH

j HΨr

∥∥2 σ2
0 +

∥∥wH
j

∥∥2BbjN0))

+
∑
j∈Jr

(2
√
1 + γjℜ

{
ρ∗jw

H
j ĥj,t

}
− |ρj |2 (

∥∥wH
j HΨt

∥∥2 σ2
0 +

∥∥wH
j

∥∥2BbjN0)). (29)

Now, we obtain optimal auxiliary variables γ and ρ by letting
∂R̃j/∂γj and ∂f/∂ρk to 0,

γoptj =


|wH

j ĥj,r|2
∥wH

j HΨr∥2σ2
0+∥wH

j ∥2BbjN0

, j ∈ Jr,

|wH
j ĥj,r|2

∥wH
j HΨt∥2σ2

0+∥wH
j ∥2BbjN0

, j ∈ Jt,
(30)

ρoptj =


√

1+γjw
H
j ĥj,t

∥wH
j HΨr∥2σ2

0+∥wH
j ∥2BbjN0

, j ∈ Jr,
√

1+γjw
H
j ĥj,t

∥wH
j HΨt∥2σ2

0+∥wH
j ∥2BbjN0

, j ∈ Jt.
(31)

The active STAR-RIS beamforming is solved under un-
equal energy division (UED) mode. Each component of
the active STAR-RIS possesses the ability to transmit
and reflect incoming signals simultaneously, with differ-
ent amplitudes and phases. For ease of notation, we de-
note wH

j ĥj ≜ hr,j diag(w
H
j H)ψ, j ∈ Jr and wH

j ĥj ≜
ht,j diag(w

H
j H)ψ, j ∈ Jt. Similarly, we define

mr ≜
∑
j∈Jr

diag(hr,j)(2
√
1 + γjρ

∗wH
j H), (32a)

Mr ≜
∑
j∈Jr

|ρj |2 σ2
0 diag(w

H
j H⊙ (wH

j H)∗), (32b)

mt ≜
∑
j∈Jt

diag(ht,j)(2
√

1 + γjρ
∗wH

j H), (32c)

Mt ≜
∑
j∈Jt

|ρj |2 σ2
0 diag(w

H
j H⊙ (wH

j H)∗), (32d)

O = diag(wH
j H⊙ (wH

j H)∗). (32e)

Now, we reformulate the subproblem (27) with respect to ψr

and ψt as

max
ψr,ψt

ψH
r Mrψr −ℜ

{
ψH

r mr

}
+ψtHMtψt −ℜ

{
ψH

t mt

}
(33a)

s.t. ψH
r Oψr +ψ

H
t Oψt ≥ PR

max. (33b)

Here, (33) is a QCQP problem that can be addressed with
the standard convex optimization algorithm. By considering
the constraints (15k) and (15l), the amplification factor vector
aopt
r ∈ CN×N ,aopt

t ∈ CN×N and the associated phase-shift
matrix Φopt

r ∈ CN×N ,Φopt
t ∈ CN×N are given by

aopt
r = diag(e(−j arg(ψopt

r )))ψopt
r , (34a)

aopt
t = diag(e(−j arg(ψopt

t )))ψopt
t , (34b)

Φopt
r = diag(e(j arg(ψ

opt
r ))), (34c)

Φopt
t = diag(e(j arg(ψ

opt
t ))). (34d)

We can obtain the optimal Ψr and Ψt, respectively. Finally,
we summarize the above procedures in Algorithm 1.

Algorithm 1 illustrates the proposed AO framework that
enables the joint optimization of all variables considered. This
framework integrates the joint optimization solutions of the
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Algorithm 1 AO-based algorithm for solving (15)

1: Initialize:
- Set i = 0 and Imax = 50;
- Set randomly choose initial feasible points
w(0), µ(0), β(0), b(0), p(0), f (0),Ψ(0)

r , and
Ψ

(0)
t ;

- Set the tolerance ϵk = 10−3;
2: repeat
3: Solve (16) for given µ(i), β(i),f (i),b(i),p(i),

Ψ(i)
r and Ψ

(i)
t by following subsection III-A to find

the best solution of w⋆ and then update w(i+1) = w⋆;
4: Solve (18) for given w(i), β(i),f (i),b(i),p(i),Ψ(i)

r , and
Ψ(i)

r ; by following subsection III-B to find the best
solution of µ⋆ and then update µ(i+1) = µ⋆;

5: Solve (19) using w(i), µ(i), f (i),b(i),p(i), Ψ(i)
r , and

Ψ
(i)
t to find the best solution of β⋆ and then update

β(i+1) = β⋆;
6: Solve (26) using w(i), µ(i), β(i), Ψ(i)

r , and Ψ
(i)
t to

find the solution (f⋆,b⋆,p⋆) and then update
(f (i+1),b(i+1),p(i+1)) = (f⋆,b⋆,p⋆);

7: Solve (27) using w(i), µ(i), β(i),b(i),p(i), and f (i) to
find the best solution of (Ψ⋆

r ,Ψ
⋆
t ) and then update

(Ψ(i+1)
r ,Ψ

(i+1)
t ) = (Ψ⋆

r ,Ψ
⋆
t );

8: Set i := i+ 1;
9: until Convergence or i > Imax.

aforementioned sub-problems. The solution output from each
algorithm in the current iteration is used as input for the other
algorithm in an alternating manner. This process is repeated
until either a stationary point is reached or the maximum
number of iterations Imax is reached.

F. Verification of AO convergence:

The sequence {X (j)} generated by the AO algorithm, with

X (j) = (w(j),µ(j),β(j),b(j),p(j),Φ(j), f un (j), f ecs(j)),

converges to a stationary point of the optimization problem,
assuming that each subproblem is convex and the objective
function f(X ) is continuously differentiable within a compact
feasible set. The convergence analysis leverages fixed-point
iteration, where each iteration updates a subset of variables,
and the mapping T : The minimization process of f(X ) is
guided by X (j) 7→ X (j+1). If T is a mapping that has the
contraction property, Banach’s fixed-point theorem [50] guar-
antees that {X (j)} converges to a unique fixed point X ∗ and
f(X ) has its stationary solution at this point. Besides that, the
convexity of every subproblem also guarantees a monotonic
reduction in the objective function, which can be given in
terms of f(X (j+1)) ≤ f(X (j)). By the compactness of the
feasible set and Weierstrass extreme value theorem [51], bound
and limit points, {X (j)} are assured. Furthermore, the fact
that f(X ) is continuously differentiable on its entire domain,
along with the boundedness of its subgradient, shows that any
limit point X ∗ will be a stationary point, meaning it satisfies
first-order necessary conditions for optimality, ∇f(X ∗) = 0.
This analysis verifies that the AO algorithm converges to a

Algorithm 2 SGD-based Algorithm for Solving (15)

1: Initialize: Set iteration i = 0, maximum iterations Imax =
1000, learning rate η.

2: Randomly initialize parameters w(0), µ(0), β(0), b(0),
p(0), f (0), Ψ(0)

r , Ψ(0)
t .

3: repeat
4: Calculate the optimization function L =

∑J
j=1 T

tot
j .

5: Compute the gradient of L w.r.t each parameter:

∇wL =
∂L

∂w
,∇µL =

∂L

∂µ
,∇βL =

∂L

∂β
,∇bL =

∂L

∂b
,

∇pL =
∂L

∂p
,∇fL =

∂L

∂f
,∇ΨrL =

∂L

∂Ψr
,∇ΨtL =

∂L

∂Ψt
.

6: Update each parameter using the computed gradient:

w(i+1) = w(i) − η∇wL,µ(i+1) = µ(i) − η∇µL,

β(i+1) = β(i) − η∇βL,b
(i+1) = b(i) − η∇bL,

p(i+1) = p(i) − η∇pL, f
(i+1) = f (i) − η∇fL,

Ψ
(i+1)
r = Ψ

(i)
r − η∇ΨrL,Ψ

(i+1)
t = Ψ

(i)
t − η∇ΨtL.

7: i← i+ 1
8: until i > Imax or convergence

stationary value under these given conditions, thus eliminating
worries about sensitivity to initial values.

G. Benchmark Solution

We have also integrated a stochastic gradient descent (SGD)
algorithm as a benchmark solution specifically designed for
online implementation. The SGD approach is well-suited for
environments requiring continuous and real-time adaptation,
making it highly appropriate for the dynamic nature of IoT
networks. This method not only accommodates the limited
computational resources of small cells and IoT devices but
also maintains the solution’s practicality in live scenarios.

Algorithm 2 describes an SGD-based approach for opti-
mizing system parameters by iteratively calculating gradients
of an optimization function and updating parameters using a
specified learning rate. This process is repeated until either the
maximum number of iterations is reached or convergence is
achieved, aiming to optimize the total e2e latency across tasks
in the system.

H. Computational Complexity Analysis

We have conducted a detailed computational complexity
analysis for both AO and SGD. This analysis provides a critical
comparison of the computational demands and efficiency of
each optimization technique, thereby illuminating their practi-
cal applicability in various scenarios. The more details of the
computational complexity analysis are provided as follows:

TABLE III: Computational complexities of subproblems in AO.

Variable Computational Complexity
w O

(
J2

√
4J

)
µ O

(
J2

√
2J + 2

)
β O

(
J2

√
3J + 1

)
b,p, f O

(
16J2

√
7J + 2

)
Ψr,Ψt O

(
4N2

√
2N + 1

)
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TABLE IV: Simulation parameters.

Parameter Value Parameter Value Parameter Value
M,N 4, 64 F ecs

max 30 GHz Rmin 0.3 bit/s
Jr, Jt 15, 15 Tmax

j 10 ms Emax
j 3 mJ

PRIS
max 9 dBW B 5 MHz εj 10−8

1) Computational Complexity analysis of AO algorithm:
The overall computational complexity for the alternating opti-
mization process is attributed to the updates of the variables w,
µ, β, b, p, f , Ψr, and Ψt. The computational complexity of
the optimization subproblem is given by O

(
V 2
n

√
Cn

)
, where

Vn and Cn denote the number of scalar variables and the
number of linear or quadratic constraints. The overall compu-
tational complexity of the AO algorithm can be approximated
as O(J2

√
4J + J2

√
2J + 2+ J2

√
3J + 1+16J2

√
7J + 2+

4N2
√
2N + 1).

2) Computational Complexity Analysis of the SGD Algo-
rithm: The computational complexity of the SGD algorithm,
as outlined in Algorithm 2, is analyzed based on its iterative
process, where each iteration involves computing the gradient
of a loss function and updating several parameters. Each
iteration begins with the computation of gradients for eight
parameters: w, µ, β, b, p, f , Ψr, and Ψt. Assuming the
average dimensionality of each parameter is d. Each partial
derivative calculation has a complexity of O(d), the gradient
computation for all parameters collectively within a single
iteration sums up to O(

∑
v=1∈V η ·dv ·dc), where v represents

the number of terms in the loss function and η is the learn-
ing rate. Following gradient computation, parameter updates
involve simple arithmetic operations i.e., multiplication by a
learning rate and subtraction, each with a complexity of O(dv)
per parameter, thus O(

∑
v=1∈V dv) for all parameters. The

overall per-iteration complexity is dominated by the gradient
computation, hence estimated at O(η · (J(4J) + J(2J + 2)+
J(3J + 1) + 4J(7J + 2) + 2N(2N + 1))).

IV. NUMERICAL RESULTS AND ANALYSIS

The proposed system model is investigated under rigorous
evaluation through extensive simulations. To ensure the reli-
ability and validity of the simulations, a well-defined set of
parameters from [8], [49] is utilized, as listed in Table IV.

Fig. 3 illustrates the convergence of the active STAR-
RIS-assisted and FD relay-assisted DT-based URLLC system
with varying values of N under perfect and imperfect CSI
conditions. Both systems show a sharp decline in latency
during the initial iterations, attributed to the rapid learning
phase as they adapt to propagation conditions. The initial
steep gradient indicates significant benefits from adjustments
in reflective elements or relay amplification. After this drop,
some configurations plateau, suggesting equilibrium where
further iterations yield minimal latency improvements, likely
due to optimization algorithm limits and system constraints.
Non-monotonic behavior is observed, with small rises in
latency at certain iterations reflecting the complexity of the
optimization process, where specific adjustments temporarily
degrade performance before converging optimally. Increased
latency under imperfect CSI highlights challenges from less
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Fig. 3: Convergence of benchmark schemes.

2 4 6 8 10

10

15

20

25

19.7%

20.4%

38.8%

39.3%

Fig. 4: Convergence of AO and SGD.

accurate channel information, affecting decision-making and
preventing optimal latency. Results show that increasing N
(from 32 to 64) decreases latency in both scenarios, attributed
to enhanced signal control from more reflective elements,
which effectively shape signals, mitigate interference, and op-
timize quality, leading to minimized delays and lower latency.

Fig 4 compares the convergence of the AO and SGD
algorithms for varying RIS elements ( N ). The AO algorithm
consistently outperforms SGD, achieving latency reductions
of 19.7% for N = 32 and 20.4% for N = 64. This perfor-
mance is due to AO’s ability to leverage problem structure
and optimize parameters iteratively, leading to more effective
convergence. Unlike SGD, which updates parameters based
on random samples, AO refines solutions by sequentially op-
timizing components, thereby better exploiting the problem’s
inherent structure and avoiding suboptimal convergence points.
The superiority of AO is highlighted by its latency reduction of
39.3% when transitioning from N = 32 to N = 64, compared
to 38.8% for SGD. This difference, while marginal, is signif-
icant in large-scale systems, where even small improvements
can enhance responsiveness and efficiency. AO’s adaptability
to system configurations allows for finer adjustments and
precise control, especially as N increases and optimization
complexity rises, ensuring consistently lower latency.

Fig. 5 illustrates the convergence of three operational modes
in the active STAR-RIS system: energy splitting (ES), time
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Fig. 6: Reflection amplitude variations with phase shift in active
STAR-RIS.

switching (TS), and mode switching (MS). The results indicate
that the ES mode significantly reduces latency, achieving a
28.4% reduction compared to the MS mode and an 11.04%
reduction against the TS mode. This advantage stems from the
ES mode’s dual-functional capability, allowing simultaneous
energy harvesting and data transmission, thereby optimizing
signal management. In the ES mode, the incoming signal is
divided into two pathways—one for energy harvesting and the
other for information transmission—maximizing electromag-
netic wave utilization without switching. In contrast, the TS
mode alternates between functions, leading to inactivity and
latency during transitions. The MS mode, which dynamically
switches based on system demands, adds complexity and
potential timing errors, further worsening latency issues. Thus,
the ES mode’s seamless integration of functions simplifies the
system architecture while enhancing efficiency and responsive-
ness.

Fig. 6 illustrates the reflection amplitude variations
(βn(φp,n)) as a function of the phase shift (φp,n) in an
active STAR-RIS, plotted over 0 to 2π radians. To estab-
lish the crucial relationship between reflection amplitude and
phase shift for designing active STAR-RIS-aided wireless
systems, we utilize an analytical model applicable to various
semiconductor devices used in STAR-RIS [52]. We define
vp,n = βn (φp,n) e

jφp,n ,∀p ∈ {r, t}, where φp,n ∈ [0, 2π) and
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Fig. 7: Impact of number of RIS elements (N ).

Fig. 8: Impact of Secs
max.

βn (φp,n) ∈ [0, 1] denote the phase shift and corresponding
amplitude for each STAR-RIS element. The relationship for
βn (φp,n) is expressed as:

βn (φp,n) = βmin + (1− βmin)

(
sin(φp,n − φo) + 1

2

)z

,

where βmin ≥ 0 denotes the minimum amplitude, and z ≥ 0
controls the steepness of the response curve. We select βmin =
0.2 and βmax = 1 to reflect realistic operational limits, while
the phase offset φo = π

4 aligns with typical active element
responses. This model reflects practical constraints and op-
erational characteristics of active STAR-RIS elements, which
adjust phase and amplitude based on real-time conditions. The
parameters βmin, ϕ, and z can be determined through standard
curve fitting, facilitating precise optimization of the STAR-RIS
for improved communication reliability and efficiency. The fig-
ure emphasizes the importance of phase-dependent amplitude
variations in active STAR-RIS design, justifying adaptable
beamforming strategies essential for optimizing operational
efficacy across varying conditions.

Fig. 7 illustrates a comparative analysis of the proposed
system under perfect and imperfect CSI scenarios, utilizing
active STAR-RIS optimal beamforming (ARO) across varying
N . This is compared with benchmark schemes: passive STAR-
RIS with optimal beamforming (PRO) and active STAR-RIS
with random beamforming (ARR). The ARO achieves a ≈10%
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latency reduction over the PRO due to its ability to adjust
phase shifts, optimize beamforming, and mitigate interference.
The PRO also outperforms the ARR, achieving a ≈9% la-
tency reduction through its optimized beamforming strategy,
which leverages prior channel knowledge. The number of
active STAR-RIS elements directly impacts latency, as their
integration enhances spectrum capacity, reduces interference,
and improves overall system performance. High CSI accuracy
allows IoT UNs to adapt to channel fluctuations, minimizing
data transmission times, thus enabling lower latency in per-
fect CSI scenarios through effective communication channel
management.

Fig. 8 demonstrates the total e2e latency versus J by varying
Secs
max under perfect and imperfect CSI cases. The increase

in Secs
max from 40 Kb to 60 Kb for J = 8, J = 12, and

J = 16 results in a respective reduction of total e2e latency
by 22.24%, 16.39%, and 16.97% under perfect CSI scenario,
and by 50.9%, 22.9%, and 16.77% under imperfect CSI
scenario. Firstly, the trend of latency reduction with increased
Secs
max occurs because higher edge caching capacity allows

more efficient data storage and retrieval in the ECS, thereby
reducing the need for data transmission from IoT UN to the
ECS. Consequently, the decreased data transmission require-
ments lead to lower latency, improving system performance.
Secondly, as J increases, latency also increases. This is due
to the higher competition for network resources with an
increasing number of IoT UNs, leading to higher congestion
and potential delays in data transmission. Thirdly, perfect
CSI yields lower latency results because high CSI accuracy
allows IoT UNs to respond precisely to channel fluctuations,
providing optimal adaptive capabilities and minimizing the
time required to transmit and receive data.

Fig. 9 illustrates the effect of p=p1=p2= · · ·=pJ on the
total end-to-end latency of the proposed system. Increasing
power levels enhances signal transmissions from IoT UNs to
the BS, improving signal quality and reducing interference.
Although higher transmit power may raise interference, the
system employs advanced techniques like scheduling, power
control, and beamforming to mitigate this. Under equal power
budgets, PRO with perfect CSI shows a ≈ 7.41% latency
reduction compared to ARR, while ARO with perfect CSI
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Fig. 10: Impact of Emax.

achieves a ≈ 42.56% lower latency than PRO. In scenarios
with imperfect CSI, PRO still delivers a ≈ 4.76% lower
latency than ARR, and ARO demonstrates a ≈ 23.08% lower
latency than PRO. This improved signal quality and reduced
interference lead to fewer transmission issues and a significant
decrease in total latency. Utilizing perfect CSI allows for
precise adjustments based on accurate channel information,
reducing delays and enhancing the efficiency of wireless
communication.

Fig. 10 depicts the total e2e latency versus variations in
Emax under the conditions of perfect CSI and imperfect CSI.
As Emax ranges from 1 to 5, ARO demonstrates a ≈ 6.54%
and ≈ 55.07% reduction in total e2e latency under perfect CSI
conditions compared to PRO and ARR, respectively, while
experiencing corresponding reductions of ≈ 5.66% and ≈
51.94% under imperfect CSI conditions compared to PRO and
ARR. This phenomenon is attributed to the intricate trade-
off between energy efficiency and responsive performance,
highlighting the need for a balanced approach in managing
the relationship between energy and latency. Increased energy
can enhance processing speed and throughput, potentially
reducing latency by allowing the system to respond more
quickly to demands. On the other hand, the role of perfect
CSI and imperfect CSI also influences latency. Perfect CSI
demonstrates lower latency results in contrast to imperfect CSI
conditions.

Fig. 11 highlights the effect of the minimum rate on the
total e2e latency under both perfect CSI and imperfect CSI
scenarios, considering the benchmark schemes, i.e., PRO and
ARR. Increasing the minimum rate from 0.3 bit/s to 0.7 bit/s
reduces latency. Under perfect CSI conditions, ARO achieves
a 9.8% and 22.6% reduction in total e2e latency compared
to PRO and ARR, respectively, while under imperfect CSI,
the corresponding reductions are 10.4% and 22.7% when
compared to PRO and ARR. The observed reduction in latency
by ARO is attributed to the influence of a higher data transfer
rate, which facilitates faster movement of information between
the IoT UNs and the BS. The increased transfer rate enables
quicker data transmission from one point to another within
the network. As a result, the overall time required for data to
transfer from the IoT UNs to the BS is reduced, leading to a
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notable decrease in latency. This underscores the crucial role
of enhanced data transfer rates in optimizing the efficiency
of communication systems, particularly in the context of
IoT networks. In contrast to imperfect CSI, perfect CSI can
lower latency by enabling the transmitter to make precise
adjustments based on accurate knowledge of communication
channel conditions. This reduces the risk of transmission
errors, speeds up data delivery between the transmitter and
receiver, and allows the transmitter to optimize transmission
strategies, minimizing delays and improving overall efficiency
in wireless communication.

Fig. 12 highlights the impact of increasing power at ac-
tive STAR-RIS on total e2e latency under perfect CSI and
imperfect CSI scenarios. The augmentation of RIS power
enhances the strength of the transmitted signal, leading to a
more reliable transmission between the IoT UNs and the BS.
This reduction in the time required to transmit data and overall
improved system responsiveness contribute to reduced latency.
The findings reveal notable performance improvements in
the perfect CSI case compared to the imperfect CSI case.
Specifically, there is a 4.7% decrease in ARO performance
under a perfect CSI scenario compared to an imperfect CSI
scenario, underscoring the positive impact on reliability. Both
PRO and ARR also experience a 4.4% reduction each, high-
lighting enhanced efficiency in packet reception and round-
trip communication. These results emphasize the significance
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Fig. 13: Computational complexity versus number of RIS elements.
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Fig. 14: Total e2e latency performance comparison of active STAR-
RIS, active RIS, and FD relay using AO and SGD algorithms.

of obtaining accurate CSI in optimizing various performance
metrics, showcasing the potential for refined communication
systems and network reliability.

Fig. 13 illustrates a comparative analysis of the computa-
tional complexities of the SGD and AO algorithms, evaluated
at different numbers of active STAR-RIS elements (denoted
by N = 16, 32, 64) and number of IoT UNs (J = 8, 12). It
is evident from the figure that the SGD algorithm consistently
exhibits lower computational complexity compared to the AO
algorithm across all values of N . This trend is attributed
to the inherent algorithmic designs: SGD’s complexity for-
mula scales linearly with J and polynomially with N , while
AO’s complexity involves quadratic terms in both J and
N , compounded by square roots of polynomial expressions,
leading to a steeper increase in complexity. Moreover, it
is observed that as the number of IoT UNs increases, the
computational burden for both algorithms also rises, which
is indicative of the scalability challenges in systems with a
large user base. The lower complexity of SGD suggests its
suitability for scenarios requiring rapid processing and limited
computational resources. In contrast, the higher complexity
of AO may offer better optimization performance, which is
suitable for applications where solution quality is more critical
than computational speed.

Fig. 14 compares the end-to-end (e2e) latency performance
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Fig. 15: Impact of edge caching capacity on total e2e latency for AO
and SGD with varying numbers of IoT UNs

of active STAR-RIS, active RIS, and FD relay-assisted DT-
MEC-URLLC systems using AO and SGD algorithms. The
results show that the active STAR-RIS system significantly
outperforms the others, achieving lower latency than both
active RIS and FD relay systems. This advantage arises
from active STAR-RIS’s advanced signal management, which
optimizes the propagation environment by modifying both am-
plitude and phase of incoming signals in real-time over a 360-
degree coverage. The AO algorithm further enhances active
STAR-RIS’s physical capabilities by iteratively fine-tuning pa-
rameters based on real-time feedback, while traditional active
RIS systems, despite their ability to manipulate signal phases,
lack simultaneous amplitude adjustments, limiting their control
over the signal path. Although FD relays extend coverage
and improve signal strength, they do not match the dynamic
environmental adaptation of STAR-RIS systems, resulting in
higher latency. Notably, the latency of FD relay systems (both
AO and SGD) remains constant with increasing N , indicating
that their performance relies on direct transmission methods
rather than the reflective and refractive properties of RIS.

Fig 15 illustrates the total end-to-end latency versus J by
varying the Secs

max for AO and SGD. Increasing the cache
size from 40kB to 60kB results in lower latency for both
SGD and AO at each level of J . This outcome suggests
that the larger edge caching size of 60 Kb contributes to
lower latency due to its ability to store and serve more
content closer to the end-users. With a larger cache capacity,
there is a higher probability of caching popular or frequently
requested content, reducing the need to fetch content from
distant servers. As a result, the overall latency is decreased,
improving user experience and network efficiency. The larger
cache size likely involves managing more data, which could
introduce delays in data retrieval and processing. The increase
in latency with more IoT UNs is primarily due to higher
data volume, which strains network resources, and increased
network traffic, leading to congestion and delays. Additionally,
more UNs cause resource contention at network and edge
servers, further slowing down data processing and increasing
latency. These factors collectively escalate the complexity
of network management, exacerbating latency challenges in
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Fig. 16: Impact of different working modes versus number of RIS
elements for AO and SGD algorithms.

dense IoT environments.AO consistently demonstrates lower
latencies compared to SGD across all scenarios. The reduction
in latency suggests that AO is more efficient in optimizing the
system’s parameters under varying load and cache conditions.

Fig. 16 demonstrates the impact of the number of RIS
elements on the latency for different operational modes i.e.,
ES, MS, and TS—utilizing AO and SGD algorithms. As the
number of RIS elements increases, there is a notable reduction
in latency across all modes and algorithms, suggesting that
a higher count of RIS elements facilitates improved perfor-
mance in active STAR-RIS-enhanced communication systems.
A key observation is the performance disparity between the
AO and SGD algorithms. While the AO algorithm shows
superior latency performance, particularly in the ES mode, the
SGD algorithm, despite being effective, trails in efficiency, as
indicated by the higher latency lines for both MS and TS
modes. This can be attributed to the inherent nature of SGD,
where optimization might not be as dynamically responsive to
changes in the system’s state as AO. In the MS mode, while
AO and SGD both manage to decrease latency as the number
of RIS elements increases, the decrease is more gradual com-
pared to the ES mode. This points to the potential overhead and
complexity introduced by mode switching, which might not be
as latency-efficient as continuous energy and data management
seen in the ES mode. The TS mode, utilizing time slots for
energy harvesting and data transmission, shows the highest
latency among the three modes for both algorithms. This could
be due to the operational inefficiencies associated with the
switching process, which can introduce delays and reduce the
system’s overall responsiveness and speed.

V. CONCLUSIONS

This paper has investigated an active STAR-RIS-assisted
DT-based MEC system for the first time, facilitating task
offloading and enhancing both IoT-URLLC services and spa-
tial coverage. To this end, we formulated a comprehensive
optimization problem to minimise total e2e latency while
considering active STAR-RIS and MEC constraints. We then
solved this non-convex optimization problem using an efficient
AO algorithm and compared the outcomes with the SGD
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algorithm. The results depict that AO algorithm consistently
delivers superior results compared to SGD, achieving latency
reductions of 19.7% at N = 32 and 20.4% at N = 64.
Moreover, enhancing N from 32 to 64 yields a significant
latency reduction of 39.3% with AO, slightly better than
SGD’s 38.8%. While AO provides greater latency reductions,
it is important to note that SGD maintains a consistently
lower computational complexity throughout. Additionally, the
ES mode further reduces the system’s total e2e latency by
28.4% compared to the MS mode and 11.04% compared
to the TS mode. Our results also demonstrated noteworthy
improvements in total e2e latency when varying edge caching
scenarios (Secs

max). Under perfect CSI, increasing Secs
max led to

total e2e latency reductions of 22.24%, 16.39%, and 16.97%
for J = 8, J = 12, and J = 16, while under imperfect
CSI, reductions were 50.9%, 22.9%, and 16.77%. Elevating
Emax from 1 to 5 resulted in ARO achieving ≈ 6.54% and ≈
55.07% latency reduction compared to PRO and ARR under
perfect CSI, and ≈ 5.66% and ≈ 51.94% reduction under
imperfect CSI. Under perfect CSI, ARO vs. PRO and ARO vs.
ARR yielded 9.86% and 22.6% latency reduction, while under
imperfect CSI, reductions were 10.47% and 22.6%. Moreover,
assessing RIS maximum power impact, ARO, PRO, and ARR
showed 4.7%, 4.4%, and 4.4% latency decrease in perfect CSI
scenario versus imperfect CSI, highlighting active STAR-RIS’s
superior performance over passive STAR-RIS.
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