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Abstract—In this paper, we consider a multi-agent unmanned
aerial vehicle (UAV)-aided system employing mobile edge com-
puting (MEC) servers to satisfy the requirement of ultra-reliable
low latency communications (URLLC) in intelligent autonomous
transport applications. Our MEC architecture aims to guarantee
quality-of-service (QoS) by investigating task offloading and
caching implemented in the nearby UAVs. To enhance system
performance, we propose to minimise the network energy con-
sumption by jointly optimising communication and computation
parameters. This includes decisions on task offloading, edge
caching policies, uplink transmission power, and processing rates
of users. Given the non-convex nature and high computational
complexity of this optimisation problem, an alternating optimi-
sation algorithm is proposed, where the three sub-problems of
caching, offloading, and power allocation are solved in an alter-
nating manner. Our simulation results demonstrate the efficacy
of the proposed method, showcasing significant reductions in user
energy consumption and optimal resource allocation. This work
serves as an initial exploration of the transformative potential of
cutting-edge technologies, such as UAVs, URLLC, and MEC, in
shaping the future landscape of intelligent autonomous transport
systems.

Index Terms—Mobile edge computing, task caching, multi-
agent unmanned aerial vehicles, intelligent autonomous transport
systems

I. INTRODUCTION

Unmanned aerial vehicle (UAV) communication technol-
ogy is an effective solution for intelligent systems, offering
unparalleled flexibility and availability in extending wireless
connectivity. Consequently, UAV-assisted communications has
garnered considerable attention within the research community
[1]–[6]. A holistic approach encompassing UAV deployment
and resource allocation has been a focal point of investigation,
particularly within the context of UAV-aided disaster emer-
gency communications. For instance, in [1], a joint optimi-
sation framework was proposed, leveraging a K-means-based
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user clustering model to enhance resource allocation efficiency
in real time, thereby maximising energy efficiency. Similarly,
in [2], a resource allocation scheme for UAV communications
was devised which optimally managed energy-harvesting time
and power control for device-to-device (D2D) communications
in real time through the application of a path-following algo-
rithm. Moreover, practical path planning optimisation solutions
were explored in [4], [5], offering UAVs optimal trajectories
for collecting Internet-of-Things (IoT) data that satisfy the
requirements of completion time and energy consumption.
UAVs and intelligent reflective surfaces were investigated to
support terahertz communications in [3], where the authors
presented an iterative algorithm relying on successive convex
approximation to improve the system performance. Collec-
tively, these studies highlight the multifaceted nature of UAV-
assisted communications and their implications across various
domains, from disaster response to IoT data collection and
beyond. Continued research in this domain promises to unlock
new possibilities and efficiencies in wireless communication
systems.

With the rapid growth of network technology and advanced
computing architecture, the new generation of wireless com-
munication networks change people’s everyday life drastically.
Recently, the demand to run compute-intensive applications
on user equipment under the stringent constraints of per-
formance metrics can be met by mobile edge computing
(MEC), a technology that brings computation and storage
resources closer to the users [7]–[15]. Many research studies
have been investigated from this perspective [16], [17]. In
particular, the authors in [16] considered joint communica-
tion and computation to tackle the double near-far effect
in a basic wireless-powered MEC network aided by non-
orthogonal multiple access (NOMA). Accordingly, to min-
imise the access point (AP)’s transmit power consumption, the
near user assists the far user in computing and forwarding the
latter’s partial computing task to the AP. In [18], the authors
examined a three-node MEC system and jointly optimised the
communication and computation resources in partial/binary
offloading cases. The study in [19] investigated an MEC-
enabled D2D task offloading system with the active users
being able to offload their computation tasks to the idle
user devices nearby. By jointly optimising communication
and computing resource allocation, the system gets the best
performance. In [20], the joint optimisation of transmit power
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and computing resources was proposed for a multi-user full-
duplex communication system with the employment of MEC
and simultaneous wireless information and power transfer,
aiming to achieve high computation speed and long-lasting
self-sustainability. More recently, a joint communication and
computation resource allocation scheme for a multi-user and
multi-AP radio access network has been introduced in [21],
which was obtained by jointly optimising user pairing and
AP assignment. In [22], considering an MEC-based wireless
network with the presence of energy harvesting devices and
backscatter devices, the authors minimised the total energy
consumption of the wireless devices by proposing a jointly
optimal computation offloading and resource allocation. Fur-
thermore, in [23], the authors considered a multi-user massive
multiple-input multiple-output (MIMO) system in which each
radio frequency chain was associated with a restricted number
of antennas. The network energy efficiency was minimised by
jointly optimising the computation and communication power.
In [24], the total energy consumption in a two-user two-way
relay MEC network was minimised, subject to computational
delay. The two users cooperated in computing and shared their
computational results. In [25], by using a layered algorithm,
the study in jointly optimised the communication and comput-
ing resource allocation in an IoT system supported by multi-
access MEC with NOMA. For an Internet-of-Vehicles edge
computing network, the authors in [26] proposed a multi-
objective reinforcement learning method to find the optimal so-
lution of communication and computation resource allocation,
thus effectively reducing the total system cost. In [17], artificial
intelligence (AI) and cloud/edge computing was integrated to
form an AI-enabled smart edge architecture suitable for IoT
networks. Then, an algorithm was proposed to minimise the
delay and optimise offloading decision and strategies in the
network.

Ultra-reliable low-latency communications (URLLC), as
a component of the 5G network architecture, is under the
spotlight thanks to its ability to assure more effective data
transfer scheduling. Characterised by its exceptionally low
latency, ranging from 1 millisecond to just a few milliseconds,
coupled with a remarkable reliability exceeding 99.999%,
URLLC stands as a transformative technology. It serves as
a cornerstone for mission-critical communications across an
array of domains, including industrial automation, disaster
response and communications, environmental monitoring, and
beyond. The stringent standards of URLLC necessitate the util-
isation of short-packet transmissions as a means to ensure and
uphold the desired quality-of-service (QoS) [27]–[34]. This
paradigm shift towards URLLC signifies a profound transfor-
mation in the way communication networks operate, promising
unprecedented levels of reliability and responsiveness for a
broad spectrum of applications, and it continues to be a focal
point of research and development in the telecommunications
arena [35]–[37]. However, these works often overlook the
combined impact of MEC and UAV technologies on URLLC
performance. For instance, [37] and [38] have explored joint
communication and computation offloading but do not fully
address the energy constraints and latency requirements in a
UAV-assisted setting. Our study fills this gap by providing

a comprehensive solution that optimizes power control, of-
floading decisions, and caching policies under strict URLLC
constraints.

Inspired by the advances in URLLC, a joint communication
and computation offloading scheme of URLLC has been
investigated in an edge-cloud system [38]. To ensure the
QoS, the authors employed alternating optimisation (AO) and
inner approximation (IA) to solve the problem of minimising
the end-to-end (e2e) latency. The digital twin (DT) concept
has often been mentioned with URLLC in recent years to
support time-sensitive applications. DT can create virtual
twins of physical objects, and the DT models will support
more accurate estimation and optimisation for the system.
There is a growing body of research that investigates these
areas [39]–[41]. In particular, an MEC-based URLLC digital
twin framework has been presented in [39] to deal with the
problem of reducing latency. Because of the high complexity
of the non-convex objective function, an AO-based solution is
applied to solve the optimisation problem. A URLLC multi-
tier computing framework is proposed in [40] to support
DT networks for metaverse applications. Another computation
offloading problem under the DT paradigm via URLLC link
has been addressed in [41]. To achieve better performance of
the system, a latency minimisation problem comprised of three
subproblems was solved by AO-IA.

In addition, the convergence of UAVs and MEC is attracting
research attention due to their flexible configuration, mobile
characteristic, and powerful computing ability. UAVs can fly
up into the air to extend wireless coverage, improve transmis-
sion efficiency, and serve as flying edge servers. Thus, exten-
sive studies [42], [43] have been conducted in this research
area. More specifically, the authors in [42] jointly optimised
the energy and latency cost for a UAV-assisted network where
MEC servers were mounted on the UAVs to serve terminal
devices. In [43], an on-board computation and communication
resource allocation problem was jointly optimised, which was
based on the Dinkelbach-like algorithm. The work in [44]
discussed architectures and design considerations of UAV-
enabled aerial computing and demonstrated its benefits over
conventional MEC. In [45], an iterative method depending on
successive convex approximation was used to jointly optimise
the allocation of communication and computation resource
in a UAV-assisted MEC vehicle platoon, where the vehicles
supplied power to the UAV by employing wireless power
transmission. In the UAV-assisted MEC system considered in
[46], the mobile users have the opportunity to compute the
tasks locally or offload a portion of tasks to the UAV, and
the UAV can offload tasks on behalf of the devices and act
as a computational relay to the terrestrial AP. In [47], taking
into account the UAV’s mobility, air-to-ground channels, and
computation dynamics, the energy efficiency of the UAV in a
UAV-oriented computation offloading system was maximised
by using a gradient projection-based iterative algorithm.

The aforementioned studies have made their own contribu-
tions to the research on joint communication and computation
resource allocation. However, to the best of your knowledge,
there is a lack of research that jointly considers MEC, UAV,
and URLLC. The novelty of this study lies in the integration
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of MEC, UAV, and URLLC technologies to optimise energy
consumption in UAV-assisted IoT systems. Unlike previous
works that have primarily focused on individual aspects of
these technologies, our approach jointly considers offloading
decisions, edge caching policies, transmission power, and
processing rates. This comprehensive approach allows for a
holistic optimisation that minimises total energy consumption
while meeting stringent URLLC requirements. The iterative
algorithm based on inner approximation, which decomposes
the original complex problem into manageable subproblems,
represents a novel methodological advancement in this do-
main.

The main contributions of this paper are as follows:
• We formulate an energy consumption minimisation prob-

lem with joint communication, computation, and task
caching in UAV-enabled URLLC for intelligent au-
tonomous transport systems. The formulated problem
not only takes into consideration wireless factors such
as transmission power, but also jointly optimises the
computing rate, and caching policies of UAV-MECs to
minimise user equipment (UEs)’ energy consumption.

• Under the constraints of various related parameters, i.e.,
latency constraints, energy budget, caching budget, we
propose an alternating algorithm based on inner ap-
proximation to deal with this challenging problem. The
original problem is divided into three subproblems and
solved in an alternating fashion.

• Extensive simulation results confirm the effectiveness
of the proposed solution in terms of minimising the
energy consumption of UEs as well as optimising power
control, offloading portions, computing rate, and caching
policies under the stringent requirement of URLLC-based
transmissions.

The remainder of this paper is organised as follows. Sec-
tion II fully describes the system model and problem formu-
lation, including the URLLC-based edge network model, task
offloading model, latency, and energy model of the considered
system, and problem formulation. Section III proposes the
optimisation solution by decomposing the original problem
into three subproblems and providing the development of
the iterative algorithm. Section IV provides the numerical
results and discussion. Finally, Section V highlights the main
contributions of this paper and presents promising future
research directions.

Notations: Throughout the paper, scalar variables and pa-
rameters are denoted in lowercase, (e.g., x, p); matrices are
represented as bold uppercase and vectors are bold lowercase
letters (e.g., H and x,p). ∥·∥ presents the vector’s Euclidean
norm, while x ∼ CN (., .) represents that x is a complex
circularly symmetric Gaussian distribution, and C represents
the collection of complex numbers. Finally, xmk denotes a
variable or parameter of x in connection with the m-th UE
within the k-th UAV-MEC’s network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model of using UAV to
support URLLC ground users, the transmission model and the

computing policy at the UAV. In this regard, the details of
latency and energy models for UAV-aided URLLC MEC are
also provided. We then introduce the minimisation problem
for UEs’ energy consumption.

A. System and Transmission Models

A URLLC edge network supported by multiple UAVs is
shown in Fig. 1. In this system, the UEs are connected to the
UAV’s network via URLLC links to guarantee the reliability
and low-latency requirements.

Fig. 1: A UAV-enabled URLLC network for intelligent au-
tonomous transport systems.

There are M UEs defined as a collection of M =
{1, 2, ...,M}. There are totally K UAVs in the system, defined
as a set of K = {1, 2, ...,K}. The UAVs are formed into K
clusters, where the k-th UAV covers the connections of Mk

UEs in their group. The UAVs serve as flying APs and can also
perform as edge servers (ES). In order to meet the requirement
on the latency of computational tasks offloaded from UEs, the
UAVs can support the mobile computing and mobile caching
at the edge.

Each UAV is equipped with multiple (L) antennas, whereas
the UEs are equipped with single-antenna.

1) Channel Model: The links between the UAVs and UEs
can be considered as air-to-ground (ATG) communication,
which is supported by the strong signal from line-of-sight
(LoS) channels. However, due to the UAV’s mobility, these
ATG communication links may experience propagation attenu-
ation under the severe blockage geometry and high shadowing
effect, which leads to the fact that the channel modelling is
complex [3]. As a result, the path loss of the transmissions
from the k-th UAV to the (m, k)-th UE can be modelled as
the combination between average additional losses for LoS
(ηLoS) and non-LoS (NLoS) (ηNLoS) as

gmk = PLmk + ηLoSPLoS
m,k + ηNLoSPNLoS

mk . (1)

We further elaborate the individual components in the path
loss formula. Firstly, the conventional path loss (PLmk) is
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described as a function of the distance between the transmitters
and receivers as

PLmk = 10 log

(
4πfcrmk

c

)β

, (2)

in which fc is the carrier frequency (Hz) of the transmitted
signal, c is the speed of light (m/s), β ≥ 2 is the exponent
parameter of the path loss. In addition, we have

rmk =
√
d2mk + Z2

k , (3)

where dmk is the distance from the m-th UE to the k-th UAV
whose antenna height is Zk. We next examine the probabilities
of the path loss components as

PLoS
mk =

1

1 + a exp
[
−b

(
arctan

(
Zk

dmk

)
− a

)] ,
PNLoS
mk = 1− PLoS

mk ,

(4)

(5)

in which a and b are constants and determined by the specific
arrangement of the environment.

The channel vector between the k-th UAV and the m-th UE
is given by

hmk =
√
gmkh̄mk,hmk ∈ CL×1, (6)

in which h̄mk is the small-scale fading for the channel from the
k-th UAV to the m-th UE, and gmk is the large-scale channel
coefficient defined in (1) [1]. Given that the transmitted
message, smk, from the (m, k)-th UE is a Gaussian signal
with zero mean and unit variance, the received signal at the
k-th UAV is expressed as

yk =

Mk∑
m=1

hmk
√
pmksmk + nk, (7)

where hk is the channel matrix of the links between the Mk

UEs and the k-th UAV; pmk is the power of the (m, k)-th UE;
and nk ∼ CN (0, N0IL) is the additive white Gaussian noise
(AWGN) with variance N0.

Due to the complex nature of interference in the considered
network, to maintain fairness amongst all the UEs and enhance
the overall network performance, we apply the successive
interference cancellation technique at each UAV to decode the
signals from the UEs. Consequently, the signal-to-interference-
plus-noise ratio (SINR) for the transmission from the (m, k)-th
UE to the k-th UAV becomes:

γmk(p) =
pmk||hmk||2

Imk(p) +N0
, (8)

where Imk(p) =
M∑

n>m
pnk

|hH
mkhnk|2
||hmk||2 is the interference im-

posed by the UEs n > m.

2) Transmission rate for URLLC link: The exact transmis-
sion rate of URLLC link with respect to the finite blocklength
design is complicated. Let N = δB denote the blocklength
with B being the bandwidth and δ being the transmission
time interval, and ϵ denote package error probability. The
achievable transmission rate (bits/s) can be approximated as

[32], [48]

Rmk (p) ≈ B log2 [1 + γmk (p)]−B

√
Vmk (p)

N

Q−1 (ϵ)

ln 2
,

(9)

where Q−1(.) is the inverse function of Q(x) =

1√
2π

∫∞
x

exp

(
−t2

2

)
dt, while V is the channel dispersion given

by
Vmk (p) = 1− [1 + γmk (p)]

−2
. (10)

It can be observed that the approximated transmission rate of
URLLC in (9) for the finite blocklength N can be considered
as a special case of maximum transmission rate. Specifically,
as the blocklength approaches to infinity, (9) converges to
Shannon’s formula B log2 (1 + γmk (p)), i.e., the channel
capacity.

B. Computational Task Offloading Model

To characterise a computational task Imk from the (m, k)-
th UE, we use two parameters ψ and Tmk. In this regard,
the task complexity is given as ψ = Cmk

Dmk
(cycles/bit), where

Dmk denotes task size (bits), Cmk is the required computing
resource (CPU cycles), and Tmk (s) is the requirement of
latency to complete the task.

Let x = {xmk}∀m,k, which satisfies 0 ≤ xmk ≤ 1, be
the portion of local processing tasks. Then, there is a portion
(1-xmk) of the task that is offloaded to the UAV-MEC.

1) Local computing: The (m, k)-th UE processes xmk

probability of task Jmk with the computing rate fuemk. Thus,
the local computing latency is calculated as

T ue
mk (xmk, f

ue
mk) =

xmkCmk

fuemk

. (11)

2) Edge computing: Let fuavmk be the computing rate of the
k-th UAV-MEC for handling the offloaded task of the (m, k)-
th UE. The latency associated with the execution of task Jm
by the k-th UAV-MEC can be obtained as

T uav
mk (xmk, f

uav
k ) =

(1− xmk)Cmk

fuavmk

. (12)

C. Latency and Energy for Mobile Edge Computing

In this paper, we follow the traditional caching policy in
MEC. If the task is popular, it will be cached at the UAV.
Therefore, when the UE requests this task, it can be directly
transmitted from the UAV to save the communications time
and the edge processing latency is computed. In contrast, if
the task is not cached at the UAV, the UE will conduct the
task offloading process as normal. In addition, the feedback
latency between the UAV and UEs through the control channel
can be neglected compared with the trasmission latency of the
uplink. As a result, the total latency for the caching policy of
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the UE can be shown as

T tot
mk =

πmkCmk

fuavmk

+ (1− πmk)(T
ue
mk + T co

mk + T uav
mk )

=
πmkCmk

fuavmk

+ (1− πmk)
[xmkCmk

fuemk

+
(1− xmk)Dmk

Rmk (p)
+

(1− xmk)Cmk

fuavmk

]
. (13)

We next investigate the total energy consumed by the m-th
UE as

Eue
mk (πmk, xmk, f

ue
mk,p) = (1− πmk)(E

cp
mk + Eco

mk), (14)

where π ≜ πmk, which satisfies π ∈ {0, 1} for ∀m, k. Here, π
specifies whether the task Jmk is cached at the UAV (πmk =
1) or not (πmk = 0). It is observed that this energy consists of
the energy for computation (Ecp

mk) and communication (Eco
mk),

respectively,

Ecp
mk =

θm
2
xmkCmk

(
fuemk

)2
, (15)

Eco
mk =

(1− xmk)pmkDmk

Rmk (p)
(16)

where the constant θm/2 is the power parameter for the UEs’
computing energy consumption.

Similarly, the energy that is consumed by the k-th UAV to
process the offloaded tasks is modelled as

Euav
mk (πmk, xmk) = πmk[

θk
2
Cmk

(
fuavmk

)2
]

+ (1− πmk)(1− xmk)[
θk
2
Cmk

(
fuavmk

)2
], (17)

where θk/2 is the power parameter for the UAVs’ computing
energy consumption.

D. Problem Formulation

min
x,π,p,f

M∑
m=1

K∑
k=1

Eue
mk (xmk, πmk, f

ue
mk,p) ,

s.t. Eue
mk (xmk, πmk, f

ue
mk,p) ≤ Eue

max,∀m, k,∑
∀m

Euav
mk (xmk, πmk) ≤ Euav

max,∀k,

T tot
mk (xmk, πmk, f

ue
mk,p) ≤ Tmax

mk ,∀m, k,
Rmk (p) ≥ Rmin,∀m, k,∑
∀m,k

[
πmkf

uav
mk + (1− πmk)(1− xmk)f

uav
mk

]
≤ F uav

max,∑
∀m

πmkDmk ≤ Suav
max,∀k,

x ∈ D ,p ∈ P, f ∈ F .

(18a)

(18b)

(18c)

(18d)
(18e)

(18f)

(18g)

(18h)

In this paper, we aim to minimise the total energy con-
sumption of the UEs by jointly considering offloading policies,
caching strategies, transmit power, and computing rates of IoT
and UAV-MEC under the constraints of URLLC QoS. Firstly,
we define the following notations: D = {xmk},∀m,k|0 ≤
xmk ≤ 1,∀m, k, P = {pmk}∀m,k|0 ≤ pmk ≤ Pmaxmk,∀m,

and F = {fmkue}∀m,k|0 ≤ fuemk ≤ F ue
max,∀m, which

represent the feasible domains of the optimisation variables.
With these considerations, the problem of minimising energy
consumption is formulated as (18).

In (18), the constraints (18b) and (18c) indicate the maxi-
mum energy consumption requirements for the UE and UAV,
respectively. Constraint (18d) ensures the maximum latency
for each incoming task, while constraint (18e) guarantees the
minimum transmission rate for uplink transmission. Addition-
ally, constraints (18f) and (18g) define the upper limits for the
computing and caching capacity of the ES.

III. PROPOSED SOLUTION

Our main purpose is to minimise the UEs’ energy con-
sumption. However, it is challenging to solve problem (18)
directly due to the non-convexity of the objective function
and constraints. To solve problem (18), we propose an alter-
nating optimisation algorithm (AOA)-based solution in which
a subset of variables is solved while keeping other variables
fixed. Hence, we have broken down our optimisation problem
into three distinct subproblems, namely, the optimisation of
caching policies, the optimisation of offloading policies, and
the optimisation of communication and computation resources
in a coordinated manner. The subsequent sections will provide
a comprehensive presentation of how our proposed solution
evolves.

A. Caching Policy Optimisation

In this subsection, our purpose is to find the optimal solution
π∗ for π with given current solutions of (x, f ,p). Our goal is
to solve the following problem:

min
πmk|x(i),f (i),p(i)

∑
∀m

∑
∀k

Eue
mk (πmk) ,

s.t. (18b), (18c), (18d), (18f), (18g).

(19a)

(19b)

As defined before, π ≜ {πmk} is an integer variable. Thus,
(19) is obviously non-convex. To address this particular issue,
we introduce the notation eπmk = Eue

mk

(
x
(i)
mk, f

ue(i)
mk , p

(i)
mk

)
for

all m and k. Then, to determine the optimal values of π at the
i-th iteration, we arrange eπmk in descending order among the
M UEs and select the task with a higher eπ (i.e., indicating
greater energy consumption) for caching until the constraint
(18g) is breached relative to the other constraints. It is worth
noting that this method only requires a limited number of
constraint checks (less than M ).

B. Offloading Policy Optimisation

Within this subsection, our aim is to determine the subse-
quent iterative point of x with given (π, f ,p). The considered
optimisation can be represented as follows:

min
xmk|π(i+1),f (i),p(i)

∑
∀m

∑
∀k

Eue
mk (πmk) ,

s.t. (18b), (18c), (18d), (18f), (18h).

(20a)

(20b)

As all the constraints mentioned earlier are linear, (20) is
evidently a convex program. It can be effectively solved
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by using well-known optimisation packages, e.g., CVX [49],
CVXPY [50].

C. Joint Communication and Computation Resources Optimi-
sation

In this subsection, our objective is to determine the sub-
sequent iterative point of the subset (f ,p) with fixed subset
variables of (π,x). The considered optimisation problem in
this subsection is expressed as

min
f ,p|π(i+1),x(i+1)

∑
∀m

∑
∀k

Eue
mk (πmk) ,

s.t. (18b), (18c), (18d), (18e), (18f), (18h).

(21a)

(21b)

Given that the constraints (18b), (18c), (18d), and (18e) are
non-convex, we develop the solution by convexifying for these
constraints with inner approximations as follows.

We first handle the constraint (18e) since it connects to
transmission rate, latency, and energy equations. To do this,
we rewrite (8) as γmk (p) = pmk

qmk(p)
, where qmk (p) is given

by qmk

(
p
)
=

(
Imk(p) +N0

)/
||hmk||2

Then, we develop the following approximation for the
transmission rate:

Rmk

(
p
)
≥ R

(i)
mk

(
p
)
=

B

ln 2

[
W

(i)
mk (p)− ωZ

(i)
mk (p)

]
(22)

under the trusted regions ∀m, i, k:

(qm(p) + pmk)
[
qm(p(i)) + p

(i)
mk

]−1

≤ 2
qm(p)

qm(p(i))
,

(qm(p) + pmk)
[
qm(p(i)) + p

(i)
mk

]−1

≤ 2,

(23)

(24)

where W (i)
mk (p), and Z(i)

mk (p) are defined as in the Appendix,
ω = Q−1(ϵ)√

N
. Consequently, we innerly approximate constraint

(18e) as
R

(i)
mk

(
p
)
≥ Rmin,∀m, i, k. (25)

To handle the non-convex constraint (18b), (18c), and (18d),
we introduce variable ζ ≜ {ζmk}∀m,k, satisfying equation

1

R
(i)
mk

≤ ζmk. (26)

Thus, (18d) can be approximately expressed as

T tot
mk ≤

π
(i+1)
mk Cmk

fuavmk

+ (1− π
(i+1)
mk )

[x(i+1)
mk Cmk

fuemk

+ (1− x
(i+1)
mk )Dmkζmk +

(1− x
(i+1)
mk )Cmk

fuavmk

]
≜ T (i)

mk. (27)

By using ζ, we can rewrite constraint (18b) as

Eue
mk ≤ (1− π

(i+1)
mk )

[θm
2
x
(i+1)
mk Cmk

(
fuemk

)2
+ (1− x

(i+1)
mk )pmkDmkζmk

]
. (28)

However, as (28) is still non-convex, we continue by fol-
lowing the inequality (29) given x = pmk, x̄ = p

(i)
mk, y = ζmk,

ȳ = ζ
(i)
mk:

xy ≤ 1

2
(
ȳ

x̄
x2 +

x̄

ȳ
y2). (29)

By applying (29) to non-convex equation (28), the non-
convex objective function of total energy consumption thus
can be approximately expressed as

Eue
mk ≤ (1− π

(i+1)
mk )[

θm
2
x
(i+1)
mk Cmk

(
fuemk

)2
+

(1− x
(i+1)
mk )Dmk

2
(
ζ
(i)
mk

p
(i)
mk

p2mk +
p
(i)
mk

ζ
(i)
mk

ζ2mk)]

≜ E(i)
mk. (30)

As a result, the resources allocation problem (21) is equiv-
alent to the following convex program:

min
f ,p|π(i+1),x(i+1)

∑
∀m

∑
∀k

E(i)
mk,

s.t.E(i)
mk

(
x
(i+1)
mk , π

(i+1)
mk , f ,p

)
≤ Eue

max,

(18f), (18h), (25), (26), (27).

(31a)

(31b)

(31c)

D. Proposed AOA-based Algorithm
Based on above development, we present Algorithm 1 as a

proposed solution for solving problem (18). To do this, for the
i-th iteration, we denote S1(π

(i)), S2(x
(i)), and S3(f

(i),p(i))
as updating subsets of subproblems (19), (20), and (31),
respectively. We note that the choice of the convergence toler-
ance ε and the maximum iteration index Imax is to ensure that
the algorithm efficiently obtains an optimal solution. When the
difference between the energy consumption of current iteration
and that in the previous iteration is sufficiently small (e.g.,
less than ε times), the algorithm is considered having reached
convergence. The convergence behaviour of the algorithm will
be clearly discussed in simulation results.

Algorithm 1 : Proposed AOA-based algorithm to solve (18).

1: Initialisation: Initialise i = 0 and generate initial points
of optimisation variables S(0)

1 , S(0)
2 and S(0)

3 satisfying
the constraints in (19), (20) and (31); set the convergence
tolerance as ε = 10−3 and the maximum iteration index
as Imax = 20.

2: while (not convergence or i < Imax) do
3: Solve problem (19) with the given S(i)

2 , S(i)
3 to acquire

the next points of (π∗) and update S(i+1)
1 ;

4: Solve problem (20) with the given S(i+1)
1 , S(i)

3 to
acquire the next points of (x∗) and update S(i+1)

2 ;
5: Solve problem (31) with the given S(i+1)

1 , S(i+1)
2 to

acquire the next points of (p∗, f∗) and update S(i+1)
3 ;

6: i := i+ 1;
7: end while
8: Solution: {π∗,x∗,p∗, f∗} and min{

∑
Eue

mk}∀m,k.

IV. NUMERICAL RESULTS

A. Parameter Settings
Our simulations involve a system model comprising two

UAV-MECs and eight UEs. In terms of computation, the
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Fig. 2: Convergence behaviour of the proposed algorithm.

required computation resource of a task (CPU cycles) is varied
in a range of [360, 440] cycles. The data size of the task is
1354 bytes [27]. The processing rate of UAV-MEC is set to 14
GHz and 16 GHz. The maximum processing rate of UEs limits
at 500 MHz. The coefficient parameter of computation energy
is set to 10−26 Watt.s3/cycles3 [39]. The energy budget of the
UEs and UAV-MECs are set to 800 mJ and 20 J, respectively.
For communications, we assume that the UAV-UE networks
are established in advance. The maximum transmission power
of the UEs is 23 dBm and the system bandwidth is 5 MHz.
The latency requirement for task processing is set to 2.5
ms. The URLLC decoding error probability is 10−5 and the
blocklength is 100 [27], [31].

B. Numerical Results

In this subsection, we present simulation results to validate
the effectiveness of the proposed algorithm. In particular,
the convergence behaviour of Algorithm 1 is displayed in
Fig. 2 while the impact of system parameters on the energy
consumption are demonstrated in Fig. 4-8.

1) Convergence behaviour: To show the convergence be-
haviour of the proposed algorithm, we monitored the total
energy consumption of UEs over iterations. Fig. 2 provides
a clear visual representation of Algorithm 1 successfully
reaching optimal energy consumption. Specfically, with the
system model of 8 UEs and 2 UAV-MECs, our algorithm
converged after just 8 iterations. Fig. 2 also reveals a no-
ticeable reduction in UEs’ energy consumption after the first
iteration, followed by gradual decreases until convergence.
This behaviour confirms that the proposed algorithm works
appropriately and effectively to minimise the energy consump-
tion of the UEs. Notably, the convergence is well established
after only 8 iterations, making it practical for real-world
implementation. Furthermore, Fig. 2 highlights the impact of
UAV-MEC processing capacity on UEs’ energy consumption.
With the same setting at the initialisation (i.e., same task size),
the higher processing rate of UAV-MEC is, the lower energy is
consumped by UEs for task execution. This result underlines
the efficiency of our proposed UAV-MEC architecture in
facilitating task offloading and reducing UEs’ energy usage.
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Fig. 3: Impact of caching capability.

360 380 400 420 440
200

220

240

260

280

300

320

340

Required computation resource (CPU cycles)

T
o
ta
l
en
er
g
y
co
n
su
m
p
ti
o
n
o
f
U
E
s
(m

J
)

fuav
mk = 14 GHz

fuav
mk = 16 GHz

Fig. 4: Impact of UAVs’ processing rate.

2) Impact of caching capability: In order to show the
impact of UAV-MEC caching capability on the optimal energy
consumption of UEs, we present simulation results in Fig. 3
across various levels of required computational resources
(CPU cycles), considering two distinct settings of UAV-MEC
caching capacity. Evidently, when the UAV-MEC possesses a
higher caching capability, UEs are enabled to offload a larger
portion of their computational tasks to the UAV-MEC. This
subsequently leads to a reduction in the energy consumption
of UEs, reflecting the significance of the constraint (18g) and
the UEs energy model defined in (14). Furthermore, Fig. 3
also illustrates the impact of required computational resources
(Cmk) on UEs’ energy consumption for task processing. As
depicted in the graph, an increase in the value of Cmk

corresponds to UEs consuming progressively more energy for
both local processing and task offloading. For instance, when
Cmk increases from 360 cycles to 440 cycles, the optimal total
energy consumption experiences an approximate increase of
100 mJ.

3) Impact of UAVs’ computing capacity: In the MEC-based
architecture, the processing rate of edge servers plays an
important role in reducing completion time as well as saving
UEs energy consumption. To show that, Fig. 4 illustrates the
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Fig. 5: Impact of UAVs’ energy budget.

obtained total energy consumption of UEs among various
values of required computation resource (Cmk) with different
settings of UAV-MEC’s processing rate. In this regard, when
the UAV-MECs are equipped with more powerful processors,
the UEs consume less energy locally. This behaviour is be-
cause UEs can offload a larger portion of the tasks to UAV-
MECs for edge processing. However, due to the limitation
of the UAV’s energy and computation resource budget (i.e.,
(18c), (18f)), it is challenging for the UAV-MECs to deal with
huge computational tasks. This is why the gain of UEs’ energy
consumption between two fuavmk settings gradually reduces
when the computational tasks become more complicated.

4) Impact of UAVs’ energy budget: To show how UAVs’
energy budget affects UEs’ energy consumption in task pro-
cessing, we conduct simulations with varied settings of Euav

max.
Fig. 5 compares the total energy consumption of UEs with
different settings of Euav

max a range of Cmk values. As shown
in the graph, the energy budget of UAV-MEC considerably
impacts on the energy consumption of UEs for task execution,
especially with highly complicated tasks. When a task requires
more computing resource, it is likely to be offloaded to UAV-
MEC to meet latency requirement, i.e., (18d) and UE’s energy
budget, i.e., (18b). This leads to an increase of UAV’s energy
consumption. Therefore, the higher UAV’s energy budget is,
the higher performance gain can be attained.

5) Optimal task offloading versus UAVs’ energy budget:
To illustrate the offloading pattern of UEs in our design,
Fig 6 displays the average offloading portions of UEs among
different level of the UAV-MECs’ energy budget. As modelled
in problem (18) and the energy consumption model of UAV-
MECs (17), when the task is not cached in UAV-MECs, UEs
can offload a portion of the task to UAV-MECs to meet
latency requirement as well as to save energy for computation.
Normally, when the energy budget of UAV-MEC increases,
UEs can offload a higher portion of the task to the UAV-MECs.
This is clearly demonstrated in Fig. 6. As we can see from the
figure, when the energy budget of UAV-MECs increases from
13 J to 25 J, the average offloading portion gradually increases.
Interestingly, under the same setting, the task which requires
more CPU cycles, offloads less portion to UAV-MECs due
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Fig. 6: Optimal task offloading versus UAVs’ energy budget.
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Fig. 7: Effectiveness of optimal UEs’ processing rate.

to the UAV-MEC’s constraints on processing capability and
energy budget.

6) Effectiveness of optimal UEs’ processing rate: To val-
idate the performance gain of the proposed solution, we
compare the total energy consumption of UEs between the
proposed scheme and the conventional scheme (i.e., fixed
UE processing rate). As formulated in problem (18), the
processing rate of UEs (frequency) contributes to the energy
for local processing of UEs, which is presented in (14). When
increasing the processing rate of UEs, UEs can process the
task more quickly to meet the latency requirement; however,
the computation energy also increases exponentially. There-
fore, it is important to solve for optimal control of UEs’
processing rate, which can guarantee the latency constraint but
save energy for UEs. Fig. 7 clearly shows that the proposed
solution significantly outperforms the benchmark scheme for
all settings of task complexity. More specifically, the proposed
solution saves approximately 70% energy consumed by UEs
to process all the tasks among varied settings of Cmk.

7) Effectiveness of optimal UEs power allocation: Similar
to the UEs’ processing rate, the optimal power allocation also
vitally contributes to the minimised energy consumption of
UEs. As modelled in (14), the transmission power of the
UEs appears in the communication energy component. The
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Fig. 8: Effectiveness of optimal UEs power allocation.

transmission power should be optimised to meet the QoS
requirement of transmission rate (i.e., (18e)) as well as the
latency requirement (18d). However, the transmission power
also needs to be adjusted appropriately to save energy. Fig. 8
illustrates the energy gain of the proposed solution compared
to a benchmark scheme with equal power allocation (i.e.,
pmk = 20 dBm). As we can see from the graph, the optimal
power scheme reduces appropriately 40% total UEs’ energy
consumption for most simulations. Fig. 7 and Fig. 8 can be
reflected in the numerical results as shown in Table I.

TABLE I: Effectiveness of the proposed solution compared
with the benchmark schemes.

CPU cycles Alg. 1 Equal Fre. Equal Power

360 222.466548 381.868948 323.178365
380 247.455066 401.629659 340.993792
400 281.704842 424.88549 363.205196
420 311.721097 445.309921 389.924318
440 345.906494 466.028229 421.295347

V. CONCLUSION

In conclusion, this paper has investigated the application
of UAVs communications in enabling task offloading for
URLLC-enabled intelligent autonomous transport systems.
The formulated optimisation problem has taken into consider-
ation various practical variables such as computing rate, task
caching policies, and transmission power of UEs. To deal with
the problem, we have decomposed the original problem into
three subproblems and hae solved the problems iteratively
based on successive convex approximations. The extensive
simulation results clearly demonstrate the effectiveness of the
proposed solution in terms of convergence speed, minimisation
of UE energy consumption, and optimisation of resource allo-
cation. For future work, it is promising to additionally consider
UAVs deployment and path planning problems to fully realise
the potentials of UAV-assisted intelligent autonomous transport
systems. Development of efficient, real-time optimisation solu-

tions is also an important direction to enhance the adaptability
and flexibility in real-world deployment.
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APPENDIX

We first rewrite the SINR (8) as γmk(p) =
pmk

qmk(p)
. Then,

we apply the following inequality [31, Eq. (74)]:

ln
(
1 +

u

v

)
≥ a− b

u
− cv, (32)

in which

a = ln
(
1 + ū/v̄

)
+ 2ū

/
(ū+ v̄)

0 < b =
ū2

ū+ v̄
, 0 < c =

ū

(ū+ v̄)v̄
.

(33)

(34)

By updating u = pmk, v = qmk(p), ū = p
(i)
mk, and

v̄ = qmk(p
(i)) to (33), we obtain the convex approximation

of Wmk(p).
To find a convex approximation of Zmk(p), we apply the

inequality [31, Eq. (81)], we have

Zmk(p, π
(i)
mk) ≤= ϕ

(i)
mk − φ

(i)
mk

q2mk(p)(
qmk(p) + pmk

)2 (35)

where
ϕ
(i)
mk =

√
1− ρ

2
+

1

2
√
1− ρ

,

φ
(i)
mk =

1

2
√
1− ρ

.

(36)

(37)

where ρ =
[
1 + γmk(p

(i))
]−2

. We can see that
q2mk(p)(

qmk(p)+pmk

)2 in (35) is still not convex [31] with

respect to (p). Therefore, we further approximate it by using
inequalities [31, Eq. (76)] and [31, Eq. (77)] as

x2

y2
=
x2

y

1

y
≥ x2

y

(
2

ȳ
− y

ȳ2

)
=

2

ȳ

x2

y
− x2

ȳ2

≥ 2

ȳ

(
2x̄x

ȳ
− x̄2y

ȳ2

)
− x2

ȳ2
(38)

by replacing x = q2mk(p), x̄ = q2mk(p
(i), y = qmk(p) +

pmk, and ȳ = qmk(p
(i)) + p

(i)
mk regarding the regions given

by (24) and (23), we finally obtain the convex approximation
of Zmk(p).
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