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Abstract—Sensing networks play an important role in deliv-
ering high-quality services for emerging applications in wireless
networks, such as seamless immersive experiences and real-time
surveillance. Notably, sensing networks feature the sharing of
sensing information among the network parties, which renders
the importance of ensuring the security and privacy of sensing
data, especially in applications involving the exchange of privacy-
sensitive data. These applications demand ultra-reliable, ultra-
secure, ultra-precise sensing and hyper-accurate measurements.
However, classical sensing networks are limited in their precision,
security, and privacy. Quantum sensing networks (QSNs) incor-
porate quantum sensing and quantum communication to achieve
Heisenberg precision and unconditional security by leveraging
quantum properties such as superposition and entanglement. The
QSN deployment of noisy intermediate-scale quantum (NISQ)
devices faces the near-term practical challenges. In this paper, we
employ variational quantum sensing (VQS) to optimize sensing
configurations in noisy environments for the physical quantity of
interest, e.g., magnetic-field sensing for navigation, localization, or
detection. The VQS algorithm is variationally and evolutionarily
optimized using a genetic algorithm to tailor a variational or
parameterized quantum circuit (PQC) structure that effectively
mitigates quantum noise effects. This genetic VQS algorithm
designs the PQC structure to create a variational probe state that
outperforms the maximally entangled or product quantum state
under bit-flip, dephasing, and amplitude-damping quantum noise
for both single-parameter and multiparameter NISQ sensing,
specifically as quantified by the quantum Cramér–Rao bound.
Furthermore, we incorporate the quantum anonymous broadcast
(QAB) to anonymously share the sensing information in the VQS
network, ensuring anonymity and untraceability of sensing data.
We further analyze the broadcast bit error probability (BEP) for
the QAB protocol under quantum noise, showing its robustness—
i.e., error-free resilience—against bit-flip noise as well as the low-
noise BEP behavior. This work provides a scalable framework
for integrated quantum anonymous sensing and communication,
particularly in a variational and untraceable manner.

Index Terms—Integrated sensing and communication, quan-
tum anonymous communication, quantum Cramér–Rao bound,
variational quantum sensing.
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I. INTRODUCTION

W IRELESS positioning and sensing is pivotal for the
deployment of next-generation integrated sensing and

communication (ISAC) technologies for augmented localiza-
tion services, environmental monitoring, secure positioning,
vehicular safety, real-time precise surveillance, and seamless
immersive experiences [1]–[16]. These services require ultra-
reliable, ultra-secure, and low-latency communications as well
as ultra-precise sensing and hyper-accurate measurements.
However, classical networks face fundamental limitations in
achieving advanced levels of precision and security. For in-
stance, an intrinsic limitation is imposed by the standard
quantum limit (SQL), which states that the variance of mea-
surement precision scales as 1/N for a network of N sensors
[17]. Although this degree of precision is sufficient for diverse
real-world applications, emerging fields, such as healthcare
networks, augmented reality, virtual reality, gravitational wave
detection, and autonomous vehicular networks, require even
more precision [18]–[20]. Moreover, classical noise sources
such as shot noise, which commonly scales as 1/

√
N , can

further undermine classical sensing networks, thereby reducing
their accuracy. In addition, sensing network security based on
computational encryption methods is highly prone to quantum
attacks owing to perpetual quantum computing capabilities.

Quantum Internet of Things (IoT) incorporates both quan-
tum sensing and quantum communication to further augment
sensing and communication capabilities of classical IoT [21],
[22]. The emerging paradigm not only improves precision in
measuring physical quantities such as electric and magnetic
fields but also invokes unconditional communication security
by harnessing quantum properties such as superposition and
entanglement. Herein, the achievable precision of an entangled
quantum sensing network (QSN) is fundamentally limited by
the Heisenberg limit, exhibiting 1/N2 scaling in the measure-
ment precision variance [17], [23]. Nonetheless, deployments
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of QSNs face hurdles, particularly the detrimental noise effects
on quantum-enhanced precision. Noise sources, e.g., thermal
fluctuations and particle loss, can markedly degrade quantum
states essential for achieving the Heisenberg-limit precision,
necessitating intricate noise mitigation and error correction
strategies [24], [25]. In terms of security, post-quantum secure
protocols have been posited for QSNs, employing lattice-based
cryptographic schemes resilient to quantum attacks [26]. Con-
sequently, quantum IoT embodies a potent platform for high-
precision measurements while ensuring robust communication
security against quantum threats. However, the limitations of
noisy intermediate-scale quantum (NISQ) devices, especially
concerning privacy leakage and quantum noise, hinder fully
realizing the potential benefits of integrating quantum sensing
and communication [27]–[29].

Variational quantum sensing (VQS) fully leverages the near-
term quantum advantages while addressing inherent quan-
tum noise effects as well as quantum device imperfections
[30]–[34]. VQS algorithms are resource-efficient, taking into
account the qubit count, gate depth, and robustness against
quantum noise [35]. The algorithms iteratively adjust sensing
configurations to optimize quantum sensing probes to precisely
estimate physical quantities, such as magnetic field, electric
field, frequency, and temperature, under noisy environments
[35]. Employing such an entangled QSN equipped with hybrid
quantum-classical optimization exhibits quantum advantage in
outperforming classical methods for dynamic sensing environ-
ments. In cryptographic metrology, the QSNs are designed
for specific security-oriented sensing tasks related to secure
surveillance, privacy-preserving asset tracking, unauthorized
object detection, and anonymous navigation [36], [37]. Herein,
the location of stationary sensing nodes and the identity
of mobile sensing nodes are sometimes highly relevant in
addition to the private data itself. Therefore, the sensing nodes
are required to operate in an anonymous mode while sharing
the sensing information or estimated parameters with other
network participants. Quantum anonymous communication
(QAC) becomes a primary candidate in such scenarios, which
ensures the sensing anonymity, disapproves unauthorized node
access, limits spoofing by blocking malicious nodes, and
renders the sensing nodes as untraceable [38]–[41]. There-
fore, such integrated quantum anonymous sensing (QAS) and
communication networks can be deployed to deliver improved
precision, enhanced sensitivity, and sensing privacy in parallel
with classical counterparts.

Specifically, in this paper, we propose an integrated frame-
work incorporating VQS with quantum anonymous broadcast
(QAB) for variational QAS networks, as shown in Fig. 1. By
harnessing the power of quantum algorithms, VQS optimizes
NISQ sensors to mitigate quantum noise effects and enhance
measurement precision. In parallel, QAB introduces a privacy
layer to QSNs, preserving the anonymity of sensing data.
This ISAC framework promises to achieve both quantum-
empowered sensing precision and privacy, addressing critical
classical constraints in ISAC—with applications of navigation,
localization, imaging, and detection (radar), for example. Our
main contributions are summarized as follows.

• We begin by fundamentally introducing quantum sensing
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Fig. 1. Quantum anonymous ISAC in a variational and untraceable manner
by integrating genetic VQS with QAB. The genetic VQS prepares a high-
quality sensing probe state by variationally and evolutionarily finding the
tailored PQC structure under quantum noise N . The fittest parameters of the
tailored PQC are optimized using classical optimization routines. This genetic
VQS probe state now interacts with the physical quantity of interest, which
is then estimated by quantum measurement. The sensing information is then
anonymously shared with other sensing nodes in the network using the QAB
protocol. The protocol starts by distributing the GHZ state (broadcast carrier)
among the network participants, followed by the broadcast modulation. The
QAS broadcast is then recovered by measurements of all network parties.
Here, the noisy maps NX , NZ , and NA stand for bit-flip, dephasing, and
amplitude-damping noises, respectively.

protocols and variational quantum algorithms (VQAs)
to formally define VQS protocols for single-parameter
and multiparameter sensing tasks in noisy environments.
Since the search space for optimization is vast and poorly
defined, we develop genetic VQS detailing a genetic algo-
rithm (GA) approach to variationally and evolutionarily
optimize parameterized quantum circuits (PQCs) for VQS
state preparation in NISQ sensing, e.g., scalar and vector
magnetic-field sensing.

• We provide metrologically resourceful ansatzes designed
to create genetic VQS probe states that maximize mea-
surement precision in terms of the quantum Fisher infor-
mation (QFI) under anisotropic quantum noise such as the
bit-flip, dephasing (or phase-flip), and amplitude-damping
(or energy-relaxation) noise. These tailored VQS probe
states exhibit high-sensitivity estimation capacity as quan-
tified by the quantum Cramér–Rao bound (QCRB) under
all inherent quantum noise, compared with maximally en-
tangled Greenberger–Horne–Zeilinger (GHZ) or product
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(separable) states.
• We integrate the QAB protocol into VQS networks to

anonymously share sensing information among network
sensors—ensuring anonymity and untraceability of sens-
ing data. This QAS broadcast takes a series of steps—i.e.,
i) broadcast-carrier preparation (GHZ distribution); ii)
broadcast modulation (Hadamard and conditional bit-flip
operations); iii) broadcast demodulation (computational
basis measurement and classical announcement); and iv)
broadcast decision (modulo sum calculation).

• We derive the broadcast bit error probability (BEP) for the
QAB protocol under anisotropic quantum noise. We show
that this QAS broadcast is error-free, i.e., zero-BEP under
the bit-flip noise, while its BEP under both dephasing and
amplitude-damping noises linearly scales with the noise
parameter and the number of network sensors in the low-
noise regime.

The remainder of this paper is organized as follows. Sec-
tion II preliminarily introduces quantum sensing, including its
fundamental limits, Section III briefly reviews the VQAs, and
Section IV formally provides the VQS framework. Section V
develops the integrated framework of genetic VQS and QAB
for QAS networks in noisy environments. Finally, Section VI
concludes the paper with a brief summary. In the Appendix,
we give the derivations of the BEP for the QAB protocol under
bit-flip, dephasing, and amplitude-damping noises.

II. QUANTUM SENSING

A. Quantum Sensing Frameworks

Generally, quantum sensing follows a series of steps: probe
preparation, probe interaction, probe measurement, and esti-
mation.

1) Probe Preparation: In the first step, an initial state |ψ0⟩
of the sensing protocol is evolved by a specific operator
to prepare the quantum sensor in a suitable quantum
state for interaction with a system of interest. This initial
state |ψ0⟩ is typically set to a known quantum state, such
as |ψ0⟩ = |0⟩. Using a preparation operator W , the
initial state is prepared in a probe state |ψ⟩ = W |ψ0⟩
for the sensing purpose.

2) Probe Interaction: Using the prepared probe state |ψ⟩,
sensing is performed by interacting with a system char-
acterized by a Hamiltonian H. Let η be the physical
quantity to be sensed. This quantity is encoded in the
system by the unitary operation U (H; η), acting on the
probe state as follows:

|ψ (η)⟩ = U (H; η) |ψ⟩
= exp (−ıHη) |ψ⟩ (1)

where ı =
√
−1.

3) Probe Measurement: To extract information about the
sensing quantity η, the interacted probe state |ψ (η)⟩ is
measured. The measurement can be done in any basis.
Let {|ϕi⟩} be the measurement basis. Then, this basis
can be transformed by applying the unitary operator V
to get a different measurement basis {V |ϕi⟩}.

4) Estimation: The final step of the protocol involves esti-
mating the unknown quantity η using the measurement
outcome µ, based on which measurement vector V |ϕi⟩
detects the evolved state |ψ (η)⟩. Hence, the estimate
is generally a function of the measurement outcome as
η̂ (µ).

Due to the probabilistic nature of quantum measurements,
repetitions of sensing are performed to increase the estimation
precision. These repetitions can be done in parallel to save the
protocol’s running time.

B. Quantum Limits

The precision of the estimator η̂ depends on the sensitivity
of the probe state |ψ⟩ on η encoded by the unitary operation
U (H; η). This sensitivity can be quantified with the QFI,
which is a generalization of Fisher information in classical
to the quantum regime by maximizing the Fisher information
among all possible quantum measurement settings. The QFI is
originally defined by a logarithmic derivative operator L for a
quantum state (a density matrix in general) ρ (η) as follows:

Ξ (ρ (η)) = tr
[
Λ2ρ (η)

]
(2)

where tr (·) is the trace operator, Λ is implicitly defined as

∂ρ (η)

∂η
=

1

2
{Λ,ρ (η)} , (3)

and {A,B} = AB +BA is the anti-commutator. Note that
the operator Λ is called the symmetric logarithmic derivative
due to the non-commuting behavior of operators in the quan-
tum state space.

Let F (ρ,σ) be the Uhlmann fidelity between two quantum
states ρ and σ:

F (ρ,σ) =
(
tr
√√

ρσ
√
ρ
)2
, (4)

which simplifies to the pure-state fidelity F (ψ, ϕ) = |⟨ψ|ϕ⟩|2
when both ρ and σ are pure states, i.e., rank-1 projectors onto
state vectors |ψ⟩ and |ϕ⟩. The sensitivity of the probe state |ψ⟩
with the parameterized evolution state |ψ (η)⟩ is related to the
fidelity |⟨ψ|ψ (η)⟩|2 as follows [42]:

Ξ (ψ) = lim
η→0

8

(
1−

√
F (ψ,ψ (η))

η2

)
(5)

where the QFI only depends on the probe state |ψ⟩. For the pa-
rameterized evolution in (1) generated by the Hamiltonian H,
the QFI can be expressed by the variance of this Hamiltonian
as follows:

Ξ (ψ) = 4
(
⟨ψ|H2 |ψ⟩ − ⟨ψ|H |ψ⟩2

)
. (6)

With N -qubit unbiased estimates η̂, the precision of estimating
η is bounded by the QCRB, i.e., the so-called SQL as follows:

Var [η̂] ≥ 1

NΞ (ψ)
(7)

where Var [η̂] is the variance of η̂.
Quantum metrology aims to improve the estimation pre-

cision that beats the SQL by leveraging quantum properties
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such as entanglement. Let λmax and λmin be the maximum
and minimum eigenvalues of the Hamiltonian H, respectively.
Note from (6) and considering the Hamiltonian in its eigen-
vector basis that the QFI is maximized when the measurement
outcomes are λmax and λmin with equal probability. Hence,
the probe state |ψ⟩ is in an equal superposition of the extreme
eigenstates, namely,

|ψ⟩ = |λmax⟩+ |λmin⟩√
2

. (8)

For N -qubit estimation, the Hamiltonian governing the full
system is H⊕N where ⊕ denotes the Kronecker sum.1 Hence,
the maximum and minimum eigenvalues of this full Hamilto-
nian are equal to Nλmax and Nλmin corresponding to the
extreme eigenvectors |λmax⟩⊗N and |λmin⟩⊗N , respectively.
To maximize the variance of the total Hamiltonian H⊕N , the
N -qubit probe state |ψ⟩ should be prepared as follows:

|ψ⟩ = 1√
2

(
|λmax⟩⊗N

+ |λmin⟩⊗N
)
, (9)

which is an entangled state. Using this entangled state, the
estimation precision scales as the Heisenberg limit

Var [η̂] ≥ 1

N2Ξ (ψ)
. (10)

Hence, the SQL can be surpassed with quantum resources such
as entanglement.

C. Multiparameter Sensing

The extension toward multiparameter quantum sensing is
not straightforward from a single parameter due to the non-
commuting property of quantum operators, which can cause
incompatibility among the measurement operators for each
parameter. This incompatibility results in an intricate trade-
off in simultaneously extracting information from multiple
parameters. Let η = (η1, η2, . . . , ηK) be multiple unknown
parameters. Then, these K parameters are encoded using the
Hamiltonian H̄ = (H1,H2, . . . ,HK) in a unitary operator

U
(
H̄;η

)
= exp

(
−

K∑
k=1

ıHkηk

)
(11)

where Hk is the Hamiltonian that encodes the kth parameter
ηk. In a multiparameter case, the (i, j)th element of the QFI
matrix (QFIM) Ξ (ρ (η)) is defined by [43]

Ξij (ρ (η)) =
1

2
tr (ρ (η) {Λi,Λj}) (12)

where the operator Λi is the symmetric logarithmic derivative
for the parameter ηi, defined as

∂ρ (η)

∂ηi
=

1

2
{Λi,ρ (η)} . (13)

1For two matrices (operators)A andB of m×m and n×n, the Kronecker
sum is defined as A⊕B = A⊗In+Im⊗B, where ⊗ denotes the tensor
operator and In is the n × n identity operator. We denote I2 simply by I
for the qubit case.

For the probe state |ψ⟩, the (i, j)th element of the QFIM
Ξ (ψ) is given by [43]

Ξij (ψ) = 2 ⟨ψ| {Hi,Hj} |ψ⟩ − 4 ⟨ψ|Hi |ψ⟩ ⟨ψ|Hj |ψ⟩ ,
(14)

which again depends only on the probe state |ψ⟩. The QFIM
relates with the fidelity as follows [44]:

ηΞ (ψ)ηT ≈ 8∥η∥2
(
1−

√
F (ψ,ψ (ϵη/∥η∥))

ϵ2

)
(15)

where T is the transpose operator and ϵ≪ 1 is a small number.
Using the QFIM, the precision of the unbiased estimator η̂ is
bounded by

Cov [η̂] ≥ Ξ−1 (ψ) (16)

where Cov [η̂] is the covariance matrix of η̂. Hence, the total
variance is bounded by the QCRB as follows:

K∑
k=1

Var [η̂k] ≥ tr
[
Ξ−1 (ψ)

]
. (17)

III. VARIATIONAL QUANTUM ALGORITHMS

VQAs have emerged as potential solutions for tackling a
range of problems using currently available quantum devices.
The VQAs are iterative heuristic algorithms that combine
quantum and classical computing to find a high-quality so-
lution for a problem of interest. Quantum computing is used
to produce a trial solution, while classical computing is used
to guide the quantum computer to generate a better solution.
Generally, the VQAs consist of three main parts, namely, the
PQC, cost function, and classical optimizer.

A. Parameterized Quantum Circuits

A PQC, often called a variational quantum circuit or ansatz,
is a distinct class of quantum circuits with adjustable parame-
ters to be tuned using an optimization algorithm by means of a
cost function. The design of PQCs can be inspired by insights
from a problem of interest. However, in case of an information
lack about the problem at hand, the PQC architecture is
designed to be more universal.

The PQC generally consists of a series of L unitary opera-
tions as follows:

U
(
Q̄;θ

)
= U (QL; θL) · · ·U (Q2; θ2)U (Q1; θ1) (18)

where θ = (θ1, θ2, . . . , θL) is the parameter vector to be op-
timized, Q̄ = (Q1,Q2, . . . ,QL), and Qℓ is the Hamiltonian
that encodes the ℓth parameter θℓ for the PQC. Typically,
U (Qℓ; θℓ) is local unitary or controlled unitary. The con-
trolled unitary operators are applied to introduce entanglement
within the system. On top of a controlled one, unitary operators
with interacting Hamiltonians can also produce entanglement.
The PQC is required to have the ability to generate a diverse
set of quantum states in order to explore various potential
solutions. Furthermore, this quantum circuit requires sufficient
entanglement generation and manipulation capability to pro-
duce more intricate entanglement within the system.
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B. Cost Functions

The quality of a trial solution generated by the PQC using
the trainable parameters θ is evaluated through a cost function.
Typically, the cost function can be written in the form of

C (θ) = f ({|ϕi⟩} , |ψ (θ)⟩) (19)

where f is a real-valued function and |ψ (θ)⟩ is the trial state
generated by the PQC. This cost function relies highly on the
problem at hand and needs to be trainable in a classical com-
puter. Minimizing the cost function corresponds to optimizing
the trial solution, or the optimal cost function corresponds to
the best solution for the problem. As the number of parameters
increases, the landscape of the cost function becomes more
complicated, requiring a good classical optimizer to find a
high-quality solution.

C. Classical Optimizers

Navigating the landscape of the cost function to avoid local
minima and converge to global optima by tuning the trainable
parameters θ is the main task for the classical optimizer,
making it a core component for VQAs. The optimizer seeks
to find the optimal parameter

θ⋆ = argmin C (θ) (20)

by minimizing the cost function. As the number of parameters
increases, the number of local minima can also increase, which
leads to the optimizer being trapped at this local minima [45].
The ability of the optimizer to avoid these local traps is crucial
for finding a good potential solution for the problem at hand.

A gradient-based or -free optimizer can be used to train the
parameters of VQAs. The gradient method uses the gradient to
guide the optimizer to update the parameter in the direction to
minimize the cost function. Typically, in VQAs, the gradient is
obtained by the parameter-shift rule that computes the partial
derivatives ∂C/∂θi [46]. The common gradient methods used
in VQAs are stochastic gradient descent and Adam optimizer
[47], [48]. The gradient optimizer is prone to be trapped
at local minima and regions where the gradient of the cost
function is flat, hindering its ability to find the global minima
[49]. To tackle this issue, gradient-free optimizers are used,
such as the constrained optimization by linear approximations
(COBYLA), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and
evolutionary algorithms [50], [51].

IV. VARIATIONAL QUANTUM SENSING

In line with VQAs, the VQS begins by choosing a PQC.
This PQC is designed to adaptively learn the optimal settings
for both the probe preparation and measurement operators.

A. Single-parameter Sensing

Note from (9) that the optimal probe state is in the entangled
form of an equal superposition of two orthogonal states, where
all the subsystems for each state are in the same exact state.

1) Probe Preparation: The VQS protocol starts with N
qubits all initialized to |0⟩, i.e., the N -qubit state in |0⟩⊗N . Let
H = (σx + σz) /

√
2 be the Hadamard operator where σx =

|0⟩⟨1| + |1⟩⟨0| and σz = |0⟩⟨0| − |1⟩⟨1| are the Pauli-x and
-z operators, respectively. Then, by applying the Hadamard
gate H to the first qubit and then sequentially performing
controlled-NOT (CNOT) or controlled-σx gates between the
first qubit (control) and all successive qubits (target), the initial
state |ψ0⟩ of the N -qubit sensing system is prepared in the
N -partite (maximally entangled) GHZ state as follows:

|ψ0⟩ = GN · · ·G2G1 |0⟩⊗N

=
1√
2

(
|0⟩⊗N

+ |1⟩⊗N
)

(21)

where

G1 =H ⊗ I⊗(N−1) (22)

Gi = |0⟩⟨0| ⊗ I⊗(N−1) + |1⟩⟨1| ⊗ X̃i,N (23)

with the Pauli operator σx acting on the ith qubit

X̃i,N = I⊗(i−2) ⊗ σx ⊗ I⊗(N−i) (24)

for i = 2, 3, . . . , N . After preparing the initial GHZ state |ψ0⟩,
a unitary preparation operator for the basis change can be pa-
rameterized such as W θ = U

(
Q̄;θ

)
to obtain the trial probe

state |ψ (θ)⟩ = W θ |ψ0⟩, where θ is the parameters to be
optimized for probe state preparation. Since the entanglement
structure of the optimal probe state is embedded in the initial
state |ψ0⟩, the PQC for the preparation operator W θ can be
designed by only local parameterized unitary operations.

2) Probe Interaction: The trial probe state |ψ (θ)⟩ interacts
with the unknown parameter η through the unitary operation
U
(
H⊕N ; η

)
to create the state

|ψ (θ; η)⟩ = U
(
H⊕N ; η

)
|ψ (θ)⟩ . (25)

This interaction state is then measured by the measurement
operator. Using the measurement outcomes, the parameter
vector θ is updated to minimize a cost function C (θ; η). Note
that the cost function C (θ; η) quantifies how good the trial
probe state |ψ (θ)⟩ in estimating the unknown parameter η,
which can be done by using the QFI in (5). To maximize the
QFI, we utilize the fidelity as the cost function as follows:

C (θ; η) = |⟨ψ (θ) |ψ (θ; η)⟩|2 . (26)

Hence, we need to compute the probability of the interaction
state |ψ (θ; η)⟩ collapses to the trial probe state |ψ (θ)⟩ for
learning the PQC.

3) Probe Measurement: Since the VQS system is initialized
in the computational basis, the unitary operator V θ for the
change of measurement basis can be obtained by the inverse
operation of preparing the trial probe state |ψ (θ)⟩ from the
state |0⟩⊗N as follows:

V †
θ =W θGN · · ·G2G1 (27)

where † denotes the conjugate transpose. Now, the cost func-
tion can be written as

C (θ; η) =
∣∣⟨0|⊗N |ζ (θ; η)⟩

∣∣2 (28)
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where

|ζ (θ; η)⟩ = V θU
(
H⊕N ; η

)
V †

θ |0⟩
⊗N (29)

is the PQC output state ready for the computational basis
measurement. Hence, the cost function C (θ; η) can be seen
as the probability that the output state |ζ (θ; η)⟩ collapses into
the state |0⟩⊗N .

B. Multiparameter Sensing

In a single-parameter case, the structure of the optimal probe
state is analytically known, which guides the design of PQCs.
The optimal structure is generally challenging to obtain in a
multiparameter case. Hence, we design a more generic PQC
to explore a large range of trial solutions.

1) Probe Preparation: To devise a more generic PQC, we
consider a local or entangling unitary operatorU (Qℓ; θℓ). The
entangling unitary operator can be in the form of

U (Qℓ; θℓ) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ exp (−ıQℓθℓ) , (30)

which is a controlled unitary operator that only performs the
local unitary operator exp (−ıQℓθℓ) to the target qubit when
the state of the control qubit is in |1⟩ and leave it unchanged,
otherwise. Using nonlocal Hamiltonian Qℓ, another entangling
unitary operator is in the form of

U (Qℓ; θℓ) = exp (−ıQℓθℓ) . (31)

Let the initial state of the quantum sensor be |ψ0⟩ = |0⟩⊗N .
Then, the trial probe state is prepared as follows:

|ψ (θ)⟩ = U
(
Q̄;θ

)
|0⟩⊗N

. (32)

2) Probe Interaction: The unknown parameters η are en-
coded by the total Hamiltonian

H̄⊕N
=
(
H⊕N

1 ,H⊕N
2 , . . . ,H⊕N

K

)
(33)

in the unitary operator U
(
H̄⊕N

;η
)
, which then interacts with

the trial probe state |ψ (θ)⟩ to generate the state

|ψ (θ;η)⟩ = U
(
H̄⊕N

;η
)
U
(
Q̄;θ

)
|0⟩⊗N

. (34)

This multiparameter evolved state is tested by the cost function
C (θ;η) using the quantum measurement outcomes. Following
(15), we also use the fidelity between the trial probe state
|ψ (θ)⟩ and the generated state |ψ (θ;η)⟩ as the cost function.

3) Probe Measurement: Since the cost function is the fi-
delity between the trial probe and generated states, the unitary
operator V θ for the change of measurement basis is simply
given by

V θ = U † (Q̄;θ
)
. (35)

The cost function is then calculated by evolving the generated
state |ψ (θ;η)⟩ using U

(
Q̄;θ

)
and compute the probability

of finding the state |0⟩⊗N as follows:

C (θ;η) =
∣∣⟨0|⊗N

U † (Q̄;θ
)
|ψ (θ;η)⟩

∣∣2. (36)

V. INTEGRATED VQS WITH QAC

We now consider a QSN of M sensors where each quan-
tum sensor can tailor its quantum state variationally. These
sensors employ a genetic VQA to variationally prepare the
probe state. The PQC is designed by a GA approach for the
physical quantity of interest (e.g., magnetic-field sensing for
localization or classification). After interacting and estimating
the physical quantity, the sensor anonymously broadcasts the
sensing information to all network sensors. This framework
for QAS networks integrates the genetic VQS with the QAB
protocol to ensure anonymity and untraceability.

A. Genetic VQS

Finding a high-quality PQC is hard due to the large PQC
space. Herein, we utilize a genetic approach inspired by the
process of natural selection to heuristically search the PQC
structure for the magnetic-field sensing task.

1) Genetic PQCs: The PQCs used in quantum algorithms
highly determine the quality of a probe state obtained by
VQS. To find the PQC structure, we employ a GA method
to heuristically find the circuit structure [52]. The GA starts
by initializing the population that consists of q chromosomes

P =
{
p1,p2, . . . ,pq

}
. (37)

The ith chromosome pi contains a series of genes as follows:

pi =


(Ai1, |ci1⟩ , |ti1⟩ , θi1)
(Ai2, |ci2⟩ , |ti2⟩ , θi2)

...
(Aiℓi , |ciℓi⟩ , |tiℓi⟩ , θiℓi)

 (38)

where Aij is a Hamiltonian taken from a set {σx,σy,σz} of
Pauli operators, σy = ıσxσz is the Pauli-y operator, |cij⟩ is
the control qubit, |tij⟩ is the target qubit, θij is the parameter,
and ℓi is the length of genes. The gene is mapped into a
single- or two-qubit unitary operator. For a single-qubit unitary
operator, the control qubit |cij⟩ is not defined, and the unitary
operator U (Aij ; θij) = exp (−ıAijθij) is applied on the
target qubit |tij⟩. The two-qubit unitary operator is in the
controlled unitary form of U (Aij ; θij) = |0⟩⟨0|⊗I+|1⟩⟨1|⊗
exp (−ıAijθij) and is applied on the control and target qubits
|cij⟩ ⊗ |tij⟩.

All the chromosomes in the population are tested by calcu-
lating the QFI for the generated state

|ψ (θ)⟩ = M
(
gℓi

)
· · ·M (g2)M (g1) |ψ0⟩ (39)

where M is the map from the gene to the unitary operator,
gk is the kth gene of the chromosome, and |ψ0⟩ = |0⟩⊗N .
The density matrix |ψ (θ)⟩⟨ψ (θ)| is evolved using the Lind-
blad master equation. Based on the corresponding QFI, each
chromosome with the best fitness is chosen as a parent for
generating the next generation of the population. On top of the
best chromosome, the other parents are determined by using
tournament selection, where the tournament round and size are
set to r and s, making the parents of total r+1 chromosomes.
These parents are included in the next generation. To generate
the offspring, we employ the crossover operation that takes
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Fig. 2. Genetic VQS probe state |ψ (θ⋆)⟩ for scalar magnetic-field sensing (N = 6) under bit-flip noise where the bit-flip noise acts independently on
each qubit at the decay rate of γi = 0.1 for all qubits. (a) The PQC structure that maximizes the QFI is obtained by the GA for N = 6 where the red
values denote the optimized angle parameters. The PQC consists of single-qubit rotation gates Rv (θ) = exp (−ıσvθ/2) and two-qubit gates in the form
of controlled-Rx (θ) gates, where v ∈ {x, y, z} and θ ∈ [0, 2π]. (b) The Wigner function W (x, y) for the optimized VQS probe state |ψ (θ⋆)⟩ is plotted
as a function of phase-space parameters (x, y) using the QuTiP (quantum toolbox in Python) package. (c) The QCRB is plotted for VQS, GHZ, and product
states as a function of the number N of qubits involved in the sensing process, where the noisy quantum-state evolution governed by the Lindblad master
equation in (42) is also simulated using the QuTiP and the VQS probe state is optimized for each N .

two parents as the input and generates a new chromosome. The
crossover operation extracts a sequence of genes with random
length from one parent and puts it as the child genes. Then,
another sequence of genes with random length from another
parent is appended to the child’s chromosome. After the child
is generated from the crossover operation, the child undergoes
a series of mutation operations.

• Qubit Mutation: This mutation operator changes the con-
trol and target qubits of each gene randomly at a specific
mutation probability.

• Parameter Mutation: This mutation operator adds the pa-
rameter of each gene with a value taken from a zero-mean
normal distribution with a chosen standard deviation at a
specific mutation probability.

• Genes Deletion: This operator randomly removes a series
of genes within the chromosome.

• Genes Insertion: This operator generates a random series
of genes and inserts it randomly in the chromosome.

• Genes Replacement: This operator performs gene deletion
and insertion operators sequentially.

• Genes Swaping: This operator picks two series of genes
randomly and swaps them.

• Genes Permutation: This operator selects a series of genes
randomly and performs random shuffling of the elements
of the series.

The next generation then repeats the same procedures for the
evaluation, parent selection, crossover operation, and mutation
operation with a specific number of iterations.

2) Scalar Magnetic-Field Sensing: For the single-parameter
VQS to estimate the amplitude of a magnetic field, we consider
that the vector η = (η1, η2, η3) of magnetic field components
is encoded by the Hamiltonian H̄ = 1

2 (σx,σy,σz) in the
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Fig. 3. Genetic VQS probe state |ψ (θ⋆)⟩ for scalar magnetic-field sensing (N = 6) under dephasing noise with the same parameters as in Fig. 2.

unitary operator

U
(
H̄;η

)
= exp

[
− ı

2
(σxη1 + σyη2 + σzη3)

]
. (40)

To cast it as a single-parameter problem, we rewrite the Hamil-
tonian of U

(
H̄;η

)
as H = (σxη1 + σyη2 + σzη3) / (2∥η∥)

and the unitary evolution as U (H; ∥η∥) = exp (−ıH∥η∥)
for VQS to sense the amplitude of the magnetic field ∥η∥.

The eigenvectors of the Hamiltonian H can be identified
by the density matrix form as follows:

ρλ = |λ⟩⟨λ|

=
1

2
(I + a1σx + a2σy + a3σz) (41)

where a = (a1, a2, a3) = η/∥η∥ for |λmax⟩ and a = −η/∥η∥
for |λmin⟩. Hence, in the noiseless case, the optimal probe state
for the N -qubit sensing system can be obtained variationally
with a simple local PQC such as U

(
Q̄;θ

)
= U

(
σ⊕N

x ;θ
)

with the initial GHZ state |ψ0⟩ in (21) to achieve the Heisen-
berg scaling. When the magnetic field is only in the z-axis
direction, i.e., η = (0, 0, η3), the GHZ-type and product states
have the same precision scaling, and hence we need to obtain a

better probe state [35]. In noisy cases, the GHZ-type state may
not also be optimal due to its sensitivity to noise. We consider
the completely positive trace-preserving (CPTP) evolution of
a quantum state in a noisy environment to be governed by the
Lindblad master equation

dρλ (t)

dt
= −ı [H∥η∥,ρλ (t)] +L (ρλ (t)) (42)

with

L (ρλ (t)) =

N∑
i=1

γi

(
Γiρλ (t)Γ

†
i −

1

2

{
Γ†
iΓi,ρλ (t)

})
(43)

where [A,B] = AB−BA is the commutator, γi is the decay
rate, and Γi is the decay operator. The first term in the master
equation (42) corresponds to the noiseless evolution, whereas
the second term L (ρλ (t)) relates to the interaction between
the system and environment, generating non-unitary dynamics.

Bit-Flip Quantum Noise: The decay operator Γi is given
by the bit-flip Pauli operator σx acting on the ith qubit, i.e.,
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Fig. 4. Genetic VQS probe state |ψ (θ⋆)⟩ for scalar magnetic-field sensing (N = 6) under amplitude-damping noise with the same parameters as in Fig. 2.

Γi =Xi,N where

Xi,N = I⊗(i−1) ⊗ σx ⊗ I⊗(N−i). (44)

Hence, the non-unitary dynamics L (ρλ (t)) for the bit-flip
noise is given by

L (ρλ (t)) =

N∑
i=1

γi (Xi,Nρλ (t)Xi,N − ρλ (t)) . (45)

Dephasing (Phase-Flip) Quantum Noise: The decay op-
erator Γi is given by the phase-flip Pauli operator σz acting
on the ith qubit, i.e., Γi = Zi,N where

Zi,N = I⊗(i−1) ⊗ σz ⊗ I⊗(N−i). (46)

The non-unitary dynamics L (ρλ (t)) for the dephasing noise
is then given by

L (ρλ (t)) =

N∑
i=1

γi (Zi,Nρλ (t)Zi,N − ρλ (t)) . (47)

Amplitude-Damping (Energy-Relaxation) Quantum Noise:
The decay operator Γi is given by the combined Pauli operator
σxy = (σx + ıσy) /2 acting on the ith qubit as follows:

Γi = I
⊗(i−1) ⊗ σxy ⊗ I⊗(N−i). (48)

Numerical Examples: Figs. 2–4 show the prepared ge-
netic VQS probe states |ψ (θ⋆)⟩ for scalar magnetic-field
sensing when N = 6 under bit-flip, dephasing, and amplitude-
damping noises, respectively, where the noise acts indepen-
dently on each qubit at the decay rate of γi = 0.1 for all
qubits. The PQC structure that maximizes the QFI is obtained
by the GA with 30 chromosomes (q = 30), 3 tournament
rounds (r = 3), and 7 tournament sizes (s = 7) for each
N . The PQC consists of single-qubit rotation gates Rv (θ) =
exp (−ıσvθ/2) and two-qubit controlled-Rx (θ) gates, where
v ∈ {x, y, z} and θ ∈ [0, 2π]. The optimized angle parameters
are shown in red values. The Wigner function W (x, y) for the
optimized VQS probe state |ψ (θ⋆)⟩ is plotted as a function
of phase-space parameters (x, y). The Wigner function is
a quasi-probability distribution function on the position and
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Fig. 5. QFI Ξ (ψ) for scalar magnetic-field sensing as a function of t seconds under quantum noise as in Figs. 2–4. The QFI for VQS, GHZ, and product
probe states is plotted under (a) bit-flip and dephasing noises and (b) amplitude-damping noise when N = 6. In addition, the QFI for the VQS probe state
is plotted under (c) bit-flip and dephasing noises and (d) amplitude-damping noise when N = 2, 3, 4, 5, and 6.

momentum variables and is defined for the density matrix ρ
as

W (x, y) =
1

πℏ

∫ ∞

−∞
⟨x− τ |ρ |x+ τ⟩ e2ıyτ/ℏdτ (49)

where ℏ is the reduced Planck’s constant. This function is use-
ful to characterize non-classical quantum states by visualizing
quantum phenomena such as squeezing and entanglement with
their negative values [53]. Hence, the Wigner function shows
that the tailored VQS probe states |ψ (θ⋆)⟩ are non-classical as
indicated by their negative values. We also compare the QCRB
for VQS, GHZ, and product states when N = 2, 3, 4, 5, and
6, where the noisy quantum-state evolution governed by the
Lindblad master equation in (42). We can see from the figures
that VQS probe states exhibit improved precision bounds for

all three types of quantum noise. Both GHZ and product states
are in the eigenbasis of the Hamiltonian H. It can be seen that
the GHZ and product states are more prone to the bit-flip and
dephasing noises as compared to the amplitude-damping noise.
However, the product state is more robust to the dephasing
noise than the bit-flip noise and outperforms the GHZ for the
amplitude-damping case. The VQS state is also more prone to
the bit-flip and dephasing noises than the amplitude-damping
noise when N = 2, 3, and 4. The VQS state is tailored to have
roughly similar precision bounds for all three noises.

Fig. 5 shows the QFI Ξ (ψ) for scalar magnetic-field sensing
as a function of t seconds under quantum noise as in Figs. 2–
4. The maximum value of QFI represents the fundamental
sensitivity the quantum state can achieve. The required time to
reach this value is also valuable in quantum sensing, especially
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Fig. 6. QCRBs for vector magnetic-field sensing with VQS, GHZ, and product
probe states as a function of N under bit-flip noise as in Fig. 2(c).

in noisy and time-critical scenarios. Generally, the maximum
achievable QFI should be acquired quickly to enable faster,
more precise, and more efficient parameter estimation. There-
fore, the metrological precision of noisy quantum sensing can
be comparatively evaluated by analyzing temporal dynamics
of QFI for respective probe states. We can see from Fig. 5(a)
and 5(b) that the VQS probe state reaches its larger QFI peak
at a negligibly delayed time than the GHZ or product states, as
expected. Fig. 5(a) shows a negligible QFI difference for VQS
and GHZ states under bit-flip and dephasing noises, while the
product probe state peaks at a delayed time with a large value
in dephasing noise. The GHZ probe state peaks marginally
faster, while the VQS state attains a notably higher maximum
QFI. As seen from Fig. 5(b), the time difference to reach QFI
peak is negligible, but the maximum values significantly vary
in the order of VQS, product, and GHZ probe states under the
amplitude damping noise. Figs. 5(c) and 5(d) show the QFI
achieved by VQS probe states under bit-flip, dephasing, and
amplitude-dampling noises when N = 2, 3, 4, 5, and 6. As the
number N of qubits increases, the maximum achievable QFI
notably increases, while the time to reach its peak decreases
slightly under bit-flip and dephasing noises or remains largely
unchanged for amplitude-damping noise. We can also see from
Fig. 5(c) that the QFI difference under bit-flip and dephasing
noise nearly vanishes as N increases.

3) Vector Magnetic-Field Sensing: To sense all the mag-
netic field components, multiparameter sensing is employed
for simultaneous parameter estimation. In contrast to using
qubits for individual component estimation, this method lever-
ages all the qubits at once, offering improved precision. The
optimal probe state for simultaneously estimating all magnetic
field components is not as well established as in the single-
parameter case. Using a single- or two-qubit system, the GHZ
state is optimal for two-dimensional magnetic-field sensing.
However, the GHZ state may not be optimal for larger systems.
For the three-dimensional magnetic field, the GHZ state even
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Fig. 7. QCRBs for vector magnetic-field sensing with VQS, GHZ, and product
probe states as a function of N under dephasing noise as in Fig. 3(c).
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Fig. 8. QCRBs for vector magnetic-field sensing with VQS, GHZ, and product
probe states as a function of N under amplitude-damping noise as in Fig. 4(c).

leads to a singular QFIM for one or two qubits.
Since the Pauli operators σx,σy, and σz are traceless and

have −1 determinant, the eigenvalues of each Pauli operator
are equal to ±1. Let |±1⟩v be the normalized eigenvectors
corresponding to eigenvalues ±1 for the Pauli operator σv for
v ∈ {x, y, z}. The eigenvectors of the Pauli operators σx and
σy are linear combinations of the eigenvectors of σz and σx,
respectively, as follows:

|±1⟩x = |±⟩ (50)

|±1⟩y =
|+⟩ ∓ ı |−⟩√

2
(51)

|±1⟩z = | 12 (1∓ 1)⟩ (52)

where |±⟩ = (|0⟩ ± |1⟩) /
√
2 are the x-basis (Hadamard-basis
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or bit-flip) states. Let |ghzN ⟩v be the v-basis GHZ state of N
qubits, given by

|ghzN ⟩v =
1√
2

(
|+1⟩⊗N

v + |−1⟩⊗N
v

)
(53)

for v ∈ {x, y, z}. Now, we consider the probe state for
the three-dimensional magnetic field with the unnormalized
version as follows [54]:

|ϕ (θ)⟩ = |ghzN ⟩x + e−ıθ1 |ghzN ⟩y + e−ıθ2 |ghzN ⟩z (54)

Then, the normalized probe state is given by

|ψ (θ)⟩ = |ϕ (θ)⟩
|⟨ϕ (θ) |ϕ (θ)⟩|

. (55)

When N = 4n for a positive integer n, by setting the angle
θ = (θ1, θ2) to θ = 0, the variance of the estimator is bounded
as [54]

K∑
k=1

Var [η̂k] ≥
3 + 6/sinc2 (∥η∥)

4N (N + 2)
(56)

where sinc (x) = sin (x) /x and ∥η∥ is not an integer multiple
of π. For noisy cases, the purity of the probe state |ψ (θ)⟩ is
decreased, rendering it to be mixed (which is described by
the density matrix |ψ (θ)⟩⟨ψ (θ)|), and tailored variationally
using the PQC designed by the GA. Let

ρ (θ) =

{
|ψ (θ)⟩ , for noiseless
|ψ (θ)⟩⟨ψ (θ)| , for noisy.

(57)

Then, the diagonal and off-diagonal entries of the QFIM are
approximated from (15) as follows:

Ξkk (ρ (θ)) ≈ 8

(
1−

√
F (ρ (θ) ,ρ (θ; ϵek))

ϵ2

)
, (58)

Ξij (ρ (θ)) ≈ 4

(
1−

√
F (ρ (θ) ,ρ (θ; ϵei + ϵej))

ϵ2

)

− Ξii (ρ (θ)) + Ξjj (ρ (θ))

2
, (59)

and Ξij (ρ (θ)) = Ξji (ρ (θ)) due to the symmetric property
of the QFIM, where ek is the kth row of the identity operator
in the parameter space. It has been known that when the noise
is aligned with the magnetic field, the probe state in the form
of (55) cannot surpass the SQL for a constant decay rate [55].

Numerical Examples: Figs. 6–8 show the QCRBs for
vector magnetic-field sensing with the VQS, GHZ, and product
probe states when N = 2, 3, 4, 5, and 6 under the bit-flip,
dephasing, and amplitude-damping noises as in Figs. 2–4. For
this multiparameter sensing, we set q = 20, r = 3, and s = 5
for the GA to optimize the PQC structure for VQS. We denote
(55) simply by the GHZ state and generate the product state
as

|ψ (θ)⟩ =
(

|ϕ (θ)⟩
|⟨ϕ (θ) |ϕ (θ)⟩|

)⊗N

(60)

where

|ϕ (θ)⟩ = |ghz1⟩x + e−ıθ1 |ghz1⟩y + e−ıθ2 |ghz1⟩z . (61)

We also optimize the parameters θ of these GHZ and product
states for comparison. Similarly, the VQS probe states show
improved precision bounds for all three types of noise, and all
the probe states are more robust against amplitude-damping
noise. The bit-flip and dephasing noises degrade the QCRB in
a comparable way and the GHZ state is more robust than the
product state in these types of noise. In contrast, the product
probe state is more robust than the GHZ state in the amplitude-
damping noise.

B. QAS Broadcast

To anonymously share the sensing information obtained by
VQS among all the sensors in the QAS network, we employ
the QAB protocol that ensures anonymity and untraceability
in the broadcast process even when the global quantum state
is completely known to other sensors.
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Fig. 10. Broadcast BEP Pb (N ) for the QAB protocol as a function of the noise parameter p when M = 10 (right) and as a function of the number M of
sensing nodes when p = 10−4 (left) under bit-flip noise NX and dephasing noise NZ . For simulations, we use the NetSquid designed for quantum network
simulations.

1) QAB Protocol: The QAB protocol allows any network
sensor to anonymously broadcast its sensing information with-
out revealing its identity. To modulate (encode) the information
b ∈ Z2 = {0, 1} on its qubit, the broadcasting sensor flips the
x-basis state by applying σb

x. Specifically, the QAB protocol
takes a series of steps as follows (see Fig. 9).

Broadcast Preparation: The QAS broadcast protocol
starts by preparing an M -qubit GHZ-type state in the x-basis
that is shared among all sensor nodes. The M -qubit (z-basis)
GHZ state is generated from the state |0⟩⊗M as

|ghzM ⟩z = GM · · ·G2G1 |0⟩⊗M
. (62)

After the z-basis GHZ state is shared among all M sensors,
each sensor applies the Hadamard operator H to its qubit to
prepare the x-basis GHZ state as follows:

|ghzM ⟩x =H⊗M |ghzM ⟩z
=

1√
2

(
|+⟩⊗M

+ |−⟩⊗M
)

=
1√

2M+1

∑
x∈ZM

2

(
|x⟩+ (−1)

sum2(x) |x⟩
)

=
1√

2M−1

∑
x∈ZM

2 (0)

|x⟩ (63)

where ZM
2 (b) represents the set of M -tuple binary sequences

(or vectors) with sum2 (x) = b ∈ Z2 and

sum2 (x) =

M∑
j=1

xj mod 2 (64)

denotes the modulo 2 addition of all the elements in the binary
sequence (or vector) x = (x1, x2, . . . , xM ) ∈ ZM

2 .

1/S0 = 4/M
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Fig. 11. Broadcast BEP Pb (NA) for the QAB protocol as a function of the
noise parameter p under amplitude-damping noise NA when M = 10.

Broadcast Modulation: Let the ith sensor want to broad-
cast its sensing information b ∈ Z2 to all the network sensors,
where i ∈ {1, 2, . . . ,M}. Then, the ith sensor modulates the
broadcast bit b on its qubit by performing the conditional bit-
flip Pauli σb

x. This broadcast modulation transforms the x-basis
GHZ state to the QAS broadcast state

|qas⟩ =Xb
i,M |ghzM ⟩x

=
1√

2M−1

∑
x∈ZM

2 (b)

|x⟩ . (65)

Note that the modulated state |qas⟩ is in the even superposition
of all |x⟩ = |x1x2 · · ·xM ⟩ with the modulo 2 sum equal to
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the broadcast information b. Since this broadcast-modulated
state does not depend on the sensor index i and completely
hides the broadcasting sensor’s identity, the protocol ensures
anonymity and untraceability in the QAS network.

Broadcast Detection: All the M network sensors measure
their respective qubits in the computational basis and obtain
binary measurement outcomes µ1, µ2, . . . , µM . This M -tuple
binary outcome sequence µ = (µ1, µ2, . . . , µM ) ∈ Z

M
2

appears randomly with an equal probability of 1/2M−1 due to
the x-basis change from the Hadamard operations. However,
the modulo sum of all these measurement outcomes is equal to
the broadcast sensing information b, i.e., sum2 (µ) = b—by
the symmetry of the state |qas⟩ due to the bit-flip modulation.
Now, all network sensors announce their measurement out-
comes by classical communication. Finally, all M−1 recipient
sensors recover the sensing information with probability 1 as

b̂ = sum2 (µ) (66)

without revealing the identity of the broadcasting sensor.
2) Noisy Broadcast: We analyze the QAB error probability

in noisy QSNs, where each qubit of the M -partite GHZ state
|ghzM ⟩z possessed by quantum sensors is subject to the local
quantum noise. Using again (42)–(48), we consider the well-
known anisotropic quantum noise described by the CPTP map
in the Kraus operator-sum representation as follows:

N (ρ) = E0ρE
†
0 +E1ρE

†
1 (67)

where Kraus operators E0 =
√

1− p/2I and E1 =
√
p/2σx

for bit-flip noise N = NX ; E0 =
√
1− p/2I and E1 =√

p/2σz for dephasing noise N = NZ ; E0 = |0⟩⟨0| +√
1− p |1⟩⟨1| and E1 =

√
p |0⟩⟨1| for amplitude-damping

noise; and p ∈ [0, 1] denotes a noise parameter such that
the qubit is bit-flipped, phase-flipped with probability p/2,
or amplitude-damped (i.e., decaying from state |1⟩ to |0⟩)
with probability p while left untouched (no error) with the
complementary probability. Note that the noise parameter p in
Kraus operators is related to the decay rate γi in the Lindblad
master equation as follows:

p =

{
1− e−2γit, bit-flip, dephasing
1− e−γit, amplitude-damping.

(68)

The broadcast BEP for the QAB protocol under quantum noise
N is given by

Pb (N ) =
∑
i∈Z2

Pr
[
b̂ ̸= b

∣∣b = i,ρ (N )
]
Pr [b = i] (69)

=


0, bit-flip
1
2 − 1

2 (1− p)
M
, dephasing

1
2 − 1

2 (1− p)
M/2

, amplitude-damping
(70)

where all derivations are relegated to the Appendix and

ρ (N ) = N⊗M (|ghzM ⟩z⟨ghzM |)

=
1

2

∑
i,j∈Z2

N (|i⟩⟨j|)⊗M (71)

is the noisy z-state GHZ state prepared for the QAS broadcast.
Note that the error-free resilience of the QAB protocol under

bit-flip noise is due to the fact that this noise leaves the qubit’s
phase unchanged, only bit-flipping its state. Projecting |i⟩⟨j|
in x-basis is equal to projecting the bit-flipped version of |i⟩⟨j|
in x-basis, i.e., ⟨±|σx|i⟩⟨j|σx|±⟩ = ⟨±|i⟩⟨j|±⟩, since |±⟩ are
the eigenvectors of σx corresponding to ±1 eigenvalues.

In the low-noise regime, the QAB error probability Pb (N )
behaves as

Pb (N ) = pS0 + o (p) (p→ 0) (72)

where

S0 = lim
p→0

Pb (N )

p

=

{
M/2, dephasing
M/4, amplitude-damping.

(73)

This asymptotic BEP behavior reveals that the low-noise slope
of Pb (N ) as a function of p in a log-log plot is equal to one,
while the quantity 1/S0 represents the low-noise offset in the
BEP asymptote as p→ 0—that is, Pb (N ) scales linearly with
the dephasing or damping probability p and the network size
M in the low-noise regime (see Figs. 10 and 11).

VI. CONCLUSION

Emerging applications in wireless networks demand ultra-
precise and ultra-secure ISAC solutions. Quantum advantages
improve classical precision scaling and provide unconditional
security. However, the near-term quantum devices face prac-
tical challenges, such as inherent quantum noise that hinders
their achievable potential. In this paper, we have developed ge-
netic VQS to optimize sensing configurations variationally and
evolutionarily in noisy environments. This GA approach finds
the fittest PQC structure that effectively combats quantum
noise, such as well-known bit-flip, dephasing, and amplitude-
damping noises. The PQC parameters are adjusted to create a
high-quality variational sensing probe state that maximizes the
QFI in resilience to quantum noise for both single-parameter
and multiparameter sensing. Moreover, we integrate the QAB
protocol into VQS networks to anonymously share sensing in-
formation among all network parties, ensuring anonymity and
untraceability of sensing data. This QAS broadcast has error-
free resilience against the bit-flip noise, while its asymptotic
BEP linearly scales with the network size and the dephasing or
damping probability under dephasing and amplitude-damping
noises in the low-noise regime. This work serves to put forth
the NISQ ISAC framework specifically in a variational and
anonymous manner.

APPENDIX
BROADCAST ERROR PROBABILITY

Due to the symmetry, the broadcast BEP Pb (N ) in (69) for
equiprobable a priori broadcast information, i.e., Pr [b = 0] =
Pr [b = 1] = 1/2, can be written as

Pb (N ) = Pr
[
b̂ = 1

∣∣b = 0,ρ (N )
]
. (74)

Hence, we only consider the case b = 0 to derive the BEP, for
which the QAB modulation and demodulation are equivalent
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to measuring M qubits of the noisy state ρ (N ) locally in x-
basis and calculating the modulo sum of outcomes µ ∈ ZM

2 ,
i.e., sum2 (µ). If the qubit collapses to |+⟩ or |−⟩, the x-basis
measurement outcome is 0 or 1.

A. Bit-Flip Noise

The x-basis projection and bit-flip noise map NX of |i⟩⟨j|
for i, j ∈ Z2 are given by

⟨±|i⟩⟨j|±⟩ = (−1)
i∓j

1/2 (75)
NX (|i⟩⟨j|) = (1− p/2) |i⟩⟨j|+ p/2 |1− i⟩⟨1− j| . (76)

Using (71), (75), and (76), we have the measurement outcome
probability of µ ∈ ZM

2 (0) for the bit-flip noisy GHZ state as
follows:

Pr
[
µ ∈ ZM

2 (0)
∣∣ρ (NX)

]
=

1

2M−1
. (77)

Hence, with 2M−1 possible sequences, we obtain the broadcast
detecting probability under bit-flip noise NX as

Pr
[
sum2 (µ) = 0

∣∣b = 0,ρ (NX)
]
= 1, (78)

leading to the zero BEP in the first case of (70).

B. Dephasing Noise

Using (71), (75), and the dephasing noise maps NZ of
diagonal |i⟩⟨i| and non-diagonal |i⟩⟨1− i| states

NZ (|i⟩⟨i|) = |i⟩⟨i| (79)
NZ (|i⟩⟨1− i|) = (1− p) |i⟩⟨1− i| (80)

for i ∈ Z2, we have

Pr
[
µ ∈ ZM

2 (0)
∣∣ρ (NZ)

]
=

1 + (1− p)
M

2M
. (81)

Again, with 2M−1 possible sequences, we obtain the broadcast
detecting probability under dephasing noise NZ as follows:

Pr
[
sum2 (µ) = 0

∣∣b = 0,ρ (NZ)
]
=

1 + (1− p)
M

2
, (82)

leading to the broadcast BEP in the second case of (70).

C. Amplitude-Damping Noise

Similarly, since the amplitude-damping noise maps NA of
diagonal |i⟩⟨i| and non-diagonal |i⟩⟨1− i| states for i ∈ Z2

are given by

NA (|0⟩⟨0|) = |0⟩⟨0| (83)
NA (|1⟩⟨1|) = p |0⟩⟨0|+ (1− p) |1⟩⟨1| (84)

NA (|i⟩⟨1− i|) =
√
1− p |i⟩⟨1− i| , (85)

we obtain the broadcast detecting probability under amplitude-
damping noise NA as

Pr
[
sum2 (µ) = 0

∣∣b = 0,ρ (NA)
]
=

1 + (1− p)
M/2

2
, (86)

leading to the QAB BEP in the third case of (70).
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