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Abstract—Network intrusion detection systems (NIDS) are
vital for identifying security attacks and predicting early invasion
attempts, which is essential for protecting the Internet. Recently,
Deep learning (DL) has made significant achievements in en-
hancing intrusion detection accuracy. Nevertheless, the practical
implementation of high-complexity DL models is limited by the
constrained computational capabilities of the Internet of Things
(IoT) devices, e.g., home routers and IoT gateways. This article
introduces a novel NIDS approach explicitly tailored for IoT
networks, leveraging a lightweight deep learning model. During
the data preprocessing phase, we use a spatially enriched data
conversion technique to decrease the dimensionality of high-
dimensional raw traffic variables. This helps to offset the prob-
lem of increased model complexity. Furthermore, when spatial
relationships often exist in the data, we can simplify the learn-
ing architecture by utilizing state-of-the-art vision transformer
techniques in the computer vision field that can substantially
reduce model complexity. The experimental results indicate that
the proposed method achieves outstanding accuracy up to 99.57%
with high-volume traffic input. Moreover, the proposed method
reaches substantial reductions in learnable parameters by 55.35%
and 82.07%, along with a remarkable decrease in floating point
operations (FLOPs) by 93.56% and 99.28% compared to existing
studies. The outstanding achievement highlights the proposed
method’s ability to balance model complexity and accuracy
performance, making it extremely appropriate for deployment
on IoT gateways with limited resources.

Index Terms—Intrusion Detection System, Vision Transformer,
Internet of Things security

I. INTRODUCTION

Distributed denial of service (DDoS) attacks have been
one of the most powerful threats against online services’
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Fig. 1: Illustration of an intrusion detection system in IoT
compact devices where the requirements on real-time traffic
processing are often challenging to satisfy, particularly if state-
of-the-art (SOTA) computer vision techniques are used.

availability. These attacks gain worldwide attention due to their
devastating impact on businesses, governments, and critical
infrastructure. DDoS attacks involve flooding a target server
with excessive web/service requests, sometimes peaking at
staggering rates, such as the reported case of 46 million
requests per second [1], rendering these services inaccessible.
What exacerbates the challenge posed by these attacks is
their increasing frequency and complexity. Attackers often
leverage botnets of thousands of zombie IoT devices to launch
the attacks, making mitigation efforts even more challeng-
ing. Intrusion detection systems (IDS) are essential methods,
specifically developed to promptly detect and coordinate to
filter the volume of attack traffic [2], [3].

Recently, there has been significant emphasis on integrating
deep learning (DL) techniques to enhance intelligence in IDSs,
particularly for IoT networks or near the source (e.g., at an
IoT gateway [4] or software-defined networking controller [5],
[6], as shown in Figure 1). However, the limited computing
power and memory size in IoT systems present challenges
for incorporating DL methods, which often have large model
sizes. Researchers are becoming more interested in creating
lightweight IDSs with real-time detection capability in IoT
networks [7], [8]. The strategies for enhancing the efficiency
and lightweight capability of deep learning methods often
focus on two primary factors: 1) reducing the dimensionality
of traffic features, and 2) decreasing the learning model
complexity. Both of these approaches aim to reduce comput-
ing complexity. The first method achieves this indirectly by
reducing network traffic feature dimensionality [9], [10], while
the second method directly lessens the complexity of the DL
learning layer structure, making the proposed approach more
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lightweight [11]. While many researchers have successfully re-
duced model complexity and achieved promising performance
through these two approaches, striking a good balance between
the two approaches remains an open research issue.

In order to tackle the identified concerns, we develop a
novel NIDS by exploiting the inherent characteristics of vision
transformer-based techniques and spatial transformation data
of network traffic. Accordingly, we introduce a transformer-
based lightweight architecture that effectively balances model
complexity and performance. The IDS can reduce the feature
dimension by compressing the data generated by the Image
Generator for Tabular Data (IGTD) technique [12]. The study’s
contributions are as follows.

1) The first attempt to propose a lightweight vision
transformer(ViT)-based learning model for malicious traf-
fic detection, leveraging the inherent characteristics of
computer vision-based techniques. ViT uses spatial rela-
tionships in network traffic and multihead self-attention
mechanisms to focus on crucial information and general-
ize from training data to identify and flag novel or zero-
day attacks with fewer learning layers.

2) The first attempt to exploit IGTD transformation tech-
niques and data compression to enhance learning effi-
ciency. Accordingly, this computer vision-based feature
dimensionality reduction does not affect the learning
capability. The data compression approach not only de-
creases the feature dimension but also preserves the
most crucial features, contributing to an effective balance
between data efficiency and information retention.

3) The system is evaluated on the benchmark public dataset,
CICDDoS2019 [13]. Experimental results indicate that
the proposed system maintains both outstanding classifi-
cation accuracy and significantly lower model complexity
and model size compared to state-of-the-art (SOTA) stud-
ies. Moreover, experiment results show that the model
complexity and system performance are resistant to
changes in input size.

The remaining sections of this paper are organized as
follows. Section II provides an overview of existing research
related to IDS. Section III presents the system model and
problem statement. Section IV offers detailed explanations of
the components of the proposed framework. Section V outlines
the data preprocessing methods as well as experimental results.
Finally, Section VI concludes the work.

II. RELATED WORK

Recently, DL approaches with network traffic feature learn-
ing capabilities have become popular for DDoS mitigation
[14], [15]. For example, the studies in [16] and [17] proposed
a time-based extraction method based on one-dimensional
convolutional neural network (CNN) for DDoS detection. Ex-
perimental results demonstrate superior performance compared
to a variety of DL methods, both in simulated environmental
data and the CICDDoS2019 dataset. The authors in [18] intro-
duced an intrusion detection model consisting of two cascaded
detection tiers. The system integrates Recurrent Neural Net-
works (RNN) with an enhanced backpropagation algorithm,

enabling commendable performance on both balanced and
imbalanced class data from the NSL-KDD dataset. The study
[4] used a transformer and CNN to identify DDoS attacks. The
recommended solution outperforms the latest deep learning
DDoS intrusion detection algorithms on the CICDDoS2019
dataset. Gupta et al. [19] developed LID-IDS, a two-layer IDS,
to detect network intrusions. The first layer of LID-IDS uses
LSTM binary classifier to detect attack traffic. An ensemble
approach with enhanced one-on-one handles frequent and
infrequent network incursions in the second layer. The same
approach is proposed in the studies [20], [21] but exploits
depthwise separable convolution and bidirectional long short-
term memory technique. The authors in [22] suggested a
hybrid model consisting of three blocks. The first block
reconstructs features using 1D CNN with a residual link. The
second block extracts features using LSTM and GRU. CNN
forms the third block for cyberattack detection.

While numerous methods have demonstrated high perfor-
mance in intrusion detection, the practicality of deploying
models with high complexity to devices with limited comput-
ing resources is sometimes overlooked. Therefore, the efficacy
of feature extraction techniques becomes a crucial factor in
advancing DDoS defense methods [29]. This is particularly
relevant because manually analyzing complete raw network
traffic samples within extensive feature sets is both impractical
and cost-prohibitive, especially when not all features offer per-
tinent insights for detecting malicious payloads. For example,
Sanchez et al. [23] conducted a feature importance analysis
using the Analysis of Variance (ANOVA) statistical method
to detect DDoS traffic. Wei et al. [24] introduced AE-MLP,
a hybrid model integrating autoencoder (AE) and multi-layer
perception (MLP) for precise DDoS attack classification by
extracting vital features from raw network traffic data. The
authors in [30] employed a long short-term memory (LSTM)
autoencoder to effectively identify abnormal traffic through
feature dimensionality reduction, a promising intrusion detec-
tion approach. Federated learning-based approach [31] is an
emerging technique but is complicated in management.

In addition to the aforementioned methods that aim to
enhance efficiency by reducing feature dimensionality, several
researchers have gone further by incorporating models with
lower complexity [32]. This approach allows the IDS engines
to achieve a certain level of accuracy with reduced model
complexity. Table I summarizes the review of related work
for DL-based approaches and the proposed method’s contri-
butions, with specific measurements of the lightweight (e.g.,
model size, memory computation). For example, the authors in
[25] introduced Lucid, a lightweight DDoS detection system,
by leveraging a limited set of specific features. Although their
proposed approach demonstrated promising results on various
datasets, the balance for accuracy and memory computation
requirement is still low [33]. The authors in [26] proposed
an innovative network intrusion detection approach for IoT
utilizing a lightweight deep neural network (LNN). Their
approach incorporates principal component analysis (PCA)
to decrease dimensionality and employs various classifier
techniques, including expansion and compression structures,
inverse residual structures, and channel shuffle operations, to
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TABLE I: Summary of several lightweight DL-based related studies and novelty contributions (performance|ranking)

Reference Feature selector Learning model Accuracy (%|#) Memory computation (FLOPS|#) Model size (KB|#) Response time (ms|#)

ANOVA-DNN [23] ANOVA MLP 97.51|7 7,298|4 40.72|5 2090|4
AE-MLP [24] AutoEncoder MLP 98.53|6 3,957|3 24.64|2 2004|1
Lucid [25] - 1DCNN 98.83|5 3,266|2 39.20|4 2039|2
LNN [26] PCA LNN 99.31|4 111,458|6 304.03|6 2535|6
CNN-LSTM [27] XGB CNN+LSTM 99.62|1 36,028|5 29.55|3 2580|7
DCNN [28] PCA DCNN 99.45|3 167,618|7 311.32|7 2510|5

Ours
Compressed Data

from IGTD
ViT-based

Lightweight Model 99.57|2 2,322|1 13.80|1 2068|3

TABLE II: Summary of the notations used in this study.

Notation Meaning

N Number of features
k Side length of the compressed feature

ri, j
The value assigned to the i-th and j-th feature
pair

qi, j
The value assigned to the i-th and j-th pixel
coordinate pair

coori The coordinate of the i-th pixel
(H,W ) The resolution of the original image
Np Number of patches
(P, P ) The resolution of each image patch
C The number of channels in the input image
D The constant size of latent vector in transformer

h
The frequency of the self-attention mechanism
being applied.

Dh
The size of the vector transformed before
entering the self-attention mechanism

L Number of stacked transformer encoders

extract features effectively while maintaining low computa-
tional expenses. Zainudin et al. [27] employ ML-based IDS
approaches and a hybrid architecture consisting of CNN and
LSTM, with the CNN in this architecture utilizing factorization
to achieve low model complexity. The study in [34] and
[32] introduced a novel vision transformer-based framework
for IDS. However, none of these studies target a good bal-
ance in accuracy, memory computation, response time, and a
lightweight architecture for low-cost IoT gateways.

Despite various considerations of lightweight approaches,
these methods either employ a considerable number of learn-
able parameters to enhance accuracy or sacrifice accuracy to
maintain lower model complexity. Unlike prior work, this
article presents a novel lightweight IDS method for DDoS
detection, striking a better trade-off between model complexity
and accuracy. Table II outlines the main notations used in this
article and their meanings.

III. ATTACK MODEL AND PROBLEM FORMULATION

This section details the attack model and DDoS datasets,
followed by the problem formulation.

A. Attack model

This work assumes that the attacker initiates various types
of DDoS attacks using compromised IoT devices. The primary
objective is to deplete the target server’s resources. For evalua-
tion, the well-known dataset CICDDoS2019 is used [13]. Bot-
IoT [35] and DoS/DDoS-MQTT-IoT [36] with DoS attack traf-
fic from IoT networks using the Message Queueing Telemetry
Protocol (MQTT), such as refrigerators, smart garage doors,
weather monitoring, smart lights, and smart thermostats, can
be utilized to calculate attack detectors’ response time. Never-
theless, as Bot-IoT and DoS/DDoS-MQTT-IoT are not often
used in state-of-the-art (SOTA) research, in this article, the
well-recognized CICDDoS2019 dataset is still used for major
performance evaluation comparison scenarios.

B. Problem statement

This study considers classifying the DDoS attack traffic into
two types: abnormal traffic and legitimate traffic. The objective
is to gain information about a function f : X → Y , where
Y < ∞. Suppose that a DL algorithm denoted as A runs
on a dataset D = {d1, . . . , di, . . . , dn} consisting of training
data points. Each data point di = {x1, . . . , xi, . . . , xN}
represents a network flow characterized by N features, e.g.,
flow duration, total packets in the forward and backward
directions, packet size, number of flow packets, protocols,
attack states, and additional attributes, as in CICDDoS2019
dataset guidelines.

In order to simplify the DL model, we employ a spatially
enriched data transformation method to convert each data point
xi from its original space R1×N to R⌈log2 N⌉×⌈log2 N⌉, and
subsequently compress it to a space with fewer dimensions
Rk×k, where k is a positive integer less than or equal to
⌈log2 N⌉. The reduced feature vectors then serve as input data
for a lightweight deep-learning algorithm. The reduced feature
vectors enable the proposed method to train faster and thus
help to enhance the detection speed.

IV. PROPOSED DATA TRANSFORMATION AND ENHANCED
INTRUSION DETECTION METHOD

This section introduces a novel data transformation to
enhance intrusion detection systems by enabling DDoS tabular
data transfer into computer vision data and utilizing a state-
of-the-art computer vision technique for feature extraction
and DDoS attack traffic classification. The proposed IDS
architecture is illustrated in Figure 2. As illustrated in the right
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side of Figure 2, the architecture comprises several processing
steps. Initially, CICFlowMeter-V3 [37] extracts features from
collected traffic. To ensure data quality, the retrieved features
are preprocessed, which includes cleaning and normalization.
Subsequently, by compressing the transformed data obtained
from the spatial data transformation step, the system can
reduce feature dimensions. This strategy enables the proposed
vision transformer-based learning model to reduce model
complexity while retaining good performance in IoT gateways
(e.g., replacing current IDS of home routers as in Figure 2).

A. Spatial data transformation mechanism

Most tabular data (e.g., network traffic saved in CSV or
pcap files) lacks an inherent spatial connection, making it
unsuitable for computer vision-based methods. To alleviate this
restriction, the following data transformation approach was de-
vised. The purpose of this approach is to turn tabular data into
pictures and arrange comparable characteristics near together
inside the image by giving them precise pixel coordinates.

The complete process of the data transformation approach
is shown in Figure 3. Initially, the data transformer uses

the Euclidean distance to compute pairwise feature distances.
These values are then sorted in ascending order, and values
are allocated depending on the sorted sequence, with smaller
values awarded to pairs of features with shorter distances
and bigger values to those with longer distances. These given
values are recorded in a matrix R with dimensions N by N ,
where N denotes the number of features. In matrix R, the
element ri,j in the i-th row and j-th column indicates the
distance between the i-th feature and j-th feature over all the
sample data in set S. ri,j is expressed by

ri,j =

√√√√ S∑
k=0

(xik − xjk)
2 (1)

Notably, the distance values between the i-th and j-th features
are symmetric, meaning that ri,j = rj,i, resulting in R being
essentially a diagonal matrix.

Additionally, the data transformer computes the distance
between every pair of pixel coordinates, also employing the
Euclidean distance as the metric. These distances are sorted,
with smaller values assigned to pairs of pixels with closer
distances and larger values to those with greater distances.
The assigned values are stored in a matrix Q of size N by N ,
where N denotes the number of pixel coordinates. In matrix
Q, the value qi,j in the i-th row and j-th column denotes the
distance between the i-th and j-th pixel coordinates as

qi,j =
√

(coori − coorj)2 (2)

Pixel coordinate distances, like matrix R, are symmetric,
which means that qi,j = qj,i. Thus, matrix Q is effectively a
diagonal matrix. With these two matrices, the data transformer
proceeds to cluster similar features together and position
dissimilar features farther apart in terms of pixels. This is
accomplished by minimizing an error function err(R,Q).
err(R,Q) is expressed by the difference between ri,j and qi,j
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as follows:

err(R,Q) =

N∑
i=2

i−1∑
j=1

|ri,j − qi,j | (3)

Essentially, this process calculates the disparity between the
distances of features and the distances of their positions.
The process of minimizing the error function involves clus-
tering similar features together and increasing the distance
between different features. The error function is minimized
by reordering the rows and columns of the R matrix. After
minimizing the error function, the updated R matrix represents
the ordered arrangement of data with spatial information. The
data transformer then sequentially places the features into the
image according to this order, thereby creating transformed
data with a spatial relationship.

B. Proposed vision transformer-based learning for DDoS
classification

After Dosovitskiy et al. [38] introduced ViT, self-attention-
based architectures finally gained the capability to compete
with the established supremacy of CNN-based architectures
in handling computer vision tasks. At the inception of self-
attention-based architectures, especially Transformers [39],
they became the favored models in natural language process-
ing. Nevertheless, CNNs have continued to dominate computer
vision-related techniques. The need for enhancement in self-
attention-based designs stems from the intrinsic inductive bi-
ases of CNNs, including translation equivariance. ViT tackles
this difficulty by training on bigger datasets, allowing it to
overcome inductive biases and maximize its ability to attend to
global information, resulting in enhanced classification results.

In this study, we have identified a unique feature of ViT-
based architectures (i.e., discriminative learning, which is often
seen in image classification of computer vision) to effectively
address the DDoS categorization challenge. Further, we strate-
gically adopt an enhanced version of ViT [40] to improve
the learning. This variant, compared to the original version,

incorporates adjustments that simplify its architecture while
significantly enhancing the performance of ViT. The self-
attention mechanisms in ViT can capture global dependencies
to identify anomalies and generalize from training data that
help the model recognize and flag novel or zero-day attacks.
Figure 4 illustrates the fundamental overview of the proposed
method’s architecture for DDoS classification. At first, the
two-dimensional images x with dimensions H ×W × C are
transformed into patches xp with dimensions Np×(P 2·C). Let
(H,W ) be the dimensions of the original picture, C represent
the number of channels, (P, P ) represent the dimensions of
each image patch, and Np be the resultant number of patches.
Np is computed as HW

P 2 . Subsequently, these patches are
subjected to an embedding procedure using a trainable linear
mapping with a fixed vector size D, which is defined by
the hyperparameter dim. These embedded patches are then
updated using position embeddings Epos to generate integrated
patches z0, which serve as the input to the transformer encoder.
z0 is calculated by

z0 = [x1
pE;x2

pE; . . . ;xNp
p E] + Epos E ∈ R(P 2·C)×D

Epos ∈ RNp×D (4)

The transformer encoder consists of two components: a mul-
tihead self-attention (MSA) component and an MLP compo-
nent. Layer normalization is performed first, followed by the
application of residual connections. The MSA block employs
the self-attention (SA) mechanism on the input h times, as
seen on the right side of Figure 5. The value of h may be
adjusted by the hyperparameter heads. Before entering the self-
attention mechanism, the input is converted into three vectors,
Q, K, and V , each with a size of Dh, which will serve as the
following inputs:

[Q,K, V ] = zW qkv W qkv ∈ RD×3Dh (5)

The transformed vectors pass the scaled dot-product attention
process (shown on the left of Figure 5), resulting in the weights
matrix Osdpa. This matrix is obtained by computing the dot
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Fig. 5: The graphic illustrates the structure of multihead self-
attention. The diagram’s left side showcases the Scaled Dot-
Product Attention mechanism, while the right side demon-
strates the multihead self-attention mechanism [39].

products of Q and K, scaling the result by
√
Dh, applying a

softmax function, and finally utilized to obtain weights on V
as by

Osdpa = softmax(
QKT

√
Dh

) (6)

SA(z) = OsdpaV (7)

The self-attention process produces h outputs in parallel,
which are subsequently concatenated and linearly transformed
to form the final result by

MSA(z) = [SA1(z), . . . , SAh(z)]W
O WO ∈ Rh·Dh×D

(8)

The output of the l-th MSA block, where l ≤ L and L
represents the number of stacked encoders controlled by the
hyperparameter depth in the transformer encoder, denoted as
z′l, incorporates layer normalization and residual connections.
z′l is expressed by

z′l = MSA(LN(zl−1)) + zl−1, l = 1 . . . L (9)

This output is used as the input for the MLP block. The MLP
block is made up of two linear transformation layers with
GELU non-linearity. The hyperparameter mlp dim controls
the dimensionality of the inner layer. Furthermore, the MLP
block begins with layer normalization and is followed by the
addition of residual connections to the output zl by

zl = MLP (LN(z′l)) + z′l, l = 1 . . . L (10)

The output of the MLP block is then transmitted via a global
average pooling (GAP) layer and a layer normalization layer.
Finally, a linear layer is used to get the classification result by

y = LN(GAP (zL)) (11)

C. Proposed low complexity learning model for IoT devices

In light of the preceding introduction, several key insights
can be summarized as follows.

1) Data transformer proves its proficiency in aggregating
akin features within close proximity within an image.

TABLE III: Configuration of the SimpleViT architecture.

Hyperparameters Value
image size 7× 7

patch size 7× 7

dim 8
depth 1
heads 1
mlp dim 8
channels 1

Fig. 6: The device on which we conducted experiments.

2) Vision Transformer has the ability to collect global infor-
mation, but its efficacy is assured only when a sufficient
number of encoders are used.

Building upon these two fundamental observations, the data
transformer plays a key role in generating spatially corre-
lated data. This process entails the combination of similar
features while segregating dissimilar ones. Furthermore, as a
consequence of aggregating similar data, the direct resizing
of the generated images can indirectly achieve the objectives
of feature extraction and data compression. Subsequently, we
implement an update of the Simple Vision Transformer (Sim-
pleViT) architecture by utilizing only a single encoder block
for DDoS attack classification. While SimpleViT’s typical
ability to access global information relies on the presence of
a sufficient number of encoders, the feature aggregation in
the proposed method helps to advance high performance with
a reduced number of encoders. The detailed hyperparameter
configuration for the revised architecture can be found in Table
III. The cross-entropy loss function is used in the training. The
other settings are the optimizer (Adam), learning rate (0.001),
and training batch size (64).

V. EVALUATION & DISCUSSION

This section provides a comprehensive analysis of the per-
formance of the proposed system while compressing data gen-
erated by the spatially enhanced data transformation technique
at various sizes. In addition, we validate the proposed learn-
ing strategy by enhancing the model’s learning capabilities
through the adjustment of several hyperparameters. Moreover,
the proposed method’s performance is also compared with
that of SOTA studies in order to validate their advantages,
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particularly the capability to balance the trade-off between
complexity and detection accuracy. Evaluations are conducted
on the Nvidia Jetson Nano, which serves as an IoT gateway or
home router. The device is equipped with a Cortex-A57 CPU
and 4GB of RAM, as seen in Figure 6.

A. Dataset description and data preprocessing

For comparison purposes with related SOTA studies, the
evaluation was conducted utilizing the publicly available CI-
CDDoS2019 dataset [13], curated by the Canadian Institute
for Cybersecurity at the University of New Brunswick, fo-
cusing on DDoS attack traffic. This dataset comprises both
benign traffic and common DDoS attacks that are divided
into two distinct segments: the training day and the testing
day on real-world network scenarios. The collection comprises
CICFlowMeter-V3 network traffic analysis results and PCAP
files [37]. The analysis yields labeled flows containing various
features and attack types. According to [13], the dataset
includes 13 DDoS attack traffic on several typical protocols:
lightweight directory access protocol (LDAP), simple network
management protocol (SNMP), simple service discovery pro-
tocol (SSDP), UDP-Lag, or PortScan. As depicted in Figure 7,
the attacks are categorized into two types:

1) Reflection-Based DDoS Attacks: Attackers use reflection-
based attacks by substituting the source IP with the
victim’s IP and flooding fraudulent requests to legitimate
services (known as reflectors). As a result, the victim’s
IP address is flooded with reply packets produced by the
servers while it is difficult to track back the attacker’s
identity. The term “reflection” stems from the utilization
of the same TCP/UDP protocol in both directions but
takes advantage of legitimate servers and IP spoofing to
take down the target. As shown in Figure 7, MSSQL
and SSDP fall under TCP-based attacks, while NTP and
TFTP are categorized as UDP-based attacks. Other types
of DDoS attacks, such as DNS, LDAP, NetBIOS, SNMP,
and PORTMAP, employ techniques that utilize both TCP
and UDP protocols.

2) Exploitation-Based DDoS Attacks: This kind of attack
takes advantage of the operational procedures of several
protocols, such as TCP-based SYN flooding, UDP-based
UDP flooding, and UDP-Lag attacks. These attacks result
in the victim server allocating resources to incomplete
connection attempts originating from the faked IP ad-
dresses, leading to resource depletion and rendering the
victim server unreachable.

Regarding the dataset structure, the training day encom-
passes 12 distinct types of DDoS traffic, whereas the testing
day incorporates 7 such traffic categories. As summarized
in Table IV, labels are present in the training and testing
datasets. We randomly sampled in 30,000 records for each
attack category on the training day and 10,000 records for
each attack category on the testing day while retaining all
benign ones from both the training and testing day.

To ensure the dataset’s integrity, several preprocessing steps
are required before conducting experiments as follows.

TABLE IV: The quantity of sampled instances per class within
the subset of the CICDDoS2019 dataset, as referenced in [41].

Label Training records Testing records

LDAP 30,000 10,000
MSSQL 30,000 10,000
NetBIOS 30,000 10,000
UDP 30,000 10,000
SYN 30,000 10,000
UDPLag 30,000 10,000
Benign 53,796 51,241

1) Data cleaning: The original dataset contains several non-
contributory features. Therefore, we exclude ten of these
features, such as “Flow ID”, “Fwd Header Length.1”,
“Destination IP”, “Source IP”, “Source Port”, “Desti-
nation Port”, “Timestamp”, “Unnamed: 0”, “Inbound”,
and “SimillarHTTP”. Additionally, we encode the labels
such that benign instances are assigned a value of 0, and
malicious instances are assigned a value of 1, similar
to handling a binary classification task. In addition, any
missing values, occurrences with infinity, and duplicate
values are removed, resulting in a final set of 77 features
for assessment.

2) Data normalization: The CICDDoS2019 dataset includes
features that exhibit substantial variation in values, rang-
ing from the lowest to the highest values. These features
include “Flow Duration”, “Flow IAT Std”, “Flow IAT
Max”, and “Bwd IAT min”. Data normalization may
effectively mitigate the significant variability seen in
these characteristics. Data normalization may decrease
the time it takes to train a model, speed up convergence,
and lessen the likelihood of gradient explosion. In this
work, a min–max normalization procedure, as described
in Eq. 12, is used to normalize the data. Accordingly,
normalized data Xnorm is expressed by

Xnorm =
X −Xmin

Xmax −Xmin
, (12)

where the variable Xnorm indicates a normalized numeric
value that ranges from 0 to 1. The variable Xmax

represents the greatest value of the feature, while Xmin

represents its lowest value.

B. Measurement metrics and evaluation

This research employs four measures to assess the perfor-
mance of the proposed system: accuracy, precision, recall, and
F1-score. These measures are based on the number of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Accuracy represents the proportion of
correct predictions made by the model out of the total number
of predictions. Precision specifically focuses on the accuracy
of positive predictions. Recall is concerned with finding all real
positive situations. The F1-score gives a thorough evaluation
by balancing precision and recall. Here are the expressions for
the metrics.
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Fig. 7: DDoS attack types and the corresponding protocols in CICDDoS2019 [13].

TABLE V: Proposed model performance in terms of complexity and model size with various input and patch sizes.

Image size Patch size Accuracy (%) F1-score (%) Learnable
Parameters FLOPs Model Size (KB)

3× 3 3× 3 99.10 99.21 2,372 2,372 11.72
4× 4 2× 2 99.55 99.63 2,322 2,322 17.56
5× 5 5× 5 99.44 99.53 2,532 2,532 12.56
6× 6 3× 3 99.36 99.45 2,372 2,372 18.00
7× 7 7× 7 99.57 99.65 2,772 2,772 13.80
8× 8 4× 4 99.54 99.62 2,442 2,442 18.62
9× 9 3× 3 99.50 99.63 2,372 2,372 28.46

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP
; Recall =

TP

TP + FN

F1− score =
2 · Precision ·Recall

Precision+Recall

C. The effect of various degrees of dimensionality deduction

Reducing input dimensionality is important in this approach.
The first scenario tests performance across several dimen-
sionality reduction levels to demonstrate the usefulness of
the proposed technique for two performance metrics. To use
created spatial linkages and balance model complexity and
learnable parameters, the patch size is used. Table V presents
the model complexity and patch size. Evaluation results reveal
that the highest accuracy reached is 99.57%, with an F1-score
of 99.65%, when utilizing an image size and patch size of
7 × 7 and 7 × 7, respectively. Conversely, when configuring
the image size as 4×4 and the patch size as 2×2, we observe
a slight decrease in performance, accompanied by the lowest
number of learnable parameters. However, this configuration
creates more patches, making the model bigger than models
with greater input sizes and fewer patches. Generally, setting
the patch size to the same dimensions can maintain the
amount of learnable parameters. Still, the model’s performance
improves with an increase in input size. This is because in the
proposed design, patch size is the only element affecting the
number of learnable parameters during embedding. Note that
the embedding process represents only a small portion of the
architecture. Essentially, the approach intuitively demonstrates
simplicity that helps to reduce the memory computation and

model size of the proposed method. This feature makes it
especially feasible for implementing IoT gateways or devices
that have limited resources.

D. The effect of hyperparameter configurations

The proposed scheme is also evaluated with multiple hy-
perparameters to demonstrate the spatial data transformation
mechanism’s strength. Figure 8 shows the impact of vary-
ing the value of the hyperparameter depth, which controls
the number of learnable parameters and model performance.
It is evident that increasing the number of stacked trans-
former encoders leads to a minor improvement in performance
(0.05% = 99.62%−99.57%), the number of learnable param-
eters increases by more than fivefold (from 2,722 to 13,892).
Figure 9 presents the effect of adjusting the hyperparameter
dim/mlp dim, which controls the transformer MLP output
size and the dimensionality of the MLP inner layer. It is
noticeable that increasing the MLP output size may even
lead to a decrease in the detection accuracy performance. For
instance, when the hyperparameter dim and mlp dim are set
to 64, the number of learnable parameters increases by over
tenfold (from 2,722 to 28,644), but the detection accuracy
performance decreases by 0.01% = 99.57%− 99.56%.

On the other hand, although setting hyperparameters dim
and mlp dim decrease to 32 results in a slight improvement
of 0.12% = 99.69% − 99.57%, the number of learnable
characteristics increases by more than four times, from 2,722
to 12,324. Considering achieving a better balance between
model complexity and performance, sacrificing a slight accu-
racy performance improvement for fewer model parameters
seems to be a preferable choice. Figure 10 illustrates the
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Fig. 8: The impact of varying configurations of the depth
hyperparameter on accuracy and the number of learnable
parameters.
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Fig. 9: The impact of varying configurations of the
dim/mlp dim hyperparameter on accuracy and the number of
learnable parameters.

impact of varying the hyperparameter heads, which deter-
mines the frequency of attention mechanism execution in
the transformer, on the number of learnable parameters and
model performance. Increasing the number of hyperparameter
heads may not improve model accuracy performance, yet it
significantly increases the number of learnable parameters
by over fourfold (from 2,722 to 13,012). As a result, the
results indicate that the proposed spatial data transformation
mechanism effectively retains model accuracy performance
while reducing the number of learnable parameters in the ViT-
based detection architecture.

E. Performance comparison with the related SOTA studies

Table VI and Table VII show the results for comparison be-
tween the proposed system’s performance and that of existing
studies using the same dataset and input size. The evaluation
results indicate that the proposed approach’s performance is
very competitive in terms of model complexity and size.
Accordingly, when the input size is set to 4 × 4 as shown
in Figure 11, the proposed method’s accuracy and F1-score
are slightly lower than the CNN-LSTM architecture. However,
the system outperforms the CNN-LSTM architecture regarding
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Fig. 10: The impact of configurations of the heads hyperpa-
rameter on accuracy and the number of learnable parameters.

Fig. 11: Image size set to 4× 4.

model complexity. As shown in Table VI, the proposed method
achieves a remarkable 55.35% = (1− 2322

5200 )×100% reduction
in learnable parameters and an impressive 93.56% reduction
in FLOPs.

In contrast, other methods, such as Lucid, ANOVA-DNN,
and AE-MLP, despite having architectures with a limited
number of learnable parameters and FLOPs, fail to deliver
acceptable performance on the same dataset. Furthermore,
while the proposed method’s model size is slightly larger than
that of the Lucid and AE-MLP architectures, the model size
increase is only 3.84 KB and 0.58 KB, respectively. This small
increase in model size results in an accuracy improvement of
0.72% = 99.55%− 98.83% and 1.02% = 99.55%− 98.53%,
respectively. Regarding reaction time, both the LNN and CNN-
LSTM designs have greater FLOPs than other approaches,
resulting in longer response times. Although the AE-MLP
design has the fastest response time, the proposed approach
works effectively with just a tiny delay ( 0.2ms).

If the input size increases to 7× 7, as shown in Figure 12,
this work continues to demonstrate competitive performance,
with accuracy and F1-score only slightly lower than the LNN
architecture. As results shown in Table VII, the proposed
method achieves a remarkable 82.07% = (1− 2,772

15,458 )×100%
reduction in learnable parameters and an impressive 99.28% =
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TABLE VI: The proposed method’s performance in comparison with that of other SOTA methods in terms of model
performance, complexity, size, and response time using the same dataset and input size of 4× 4.

Algorithms ANOVA-DNN [23] AE-MLP [24]
(only MLP part) Lucid [25] LNN [26] CNN-LSTM [27] DCNN [28] Proposed

Model

Accuracy (%) 97.51 98.53 98.83 99.31 99.62 99.45 99.55

Precision (%) 96.60 98.12 98.52 99.09 99.58 99.29 99.48

Recall (%) 98.95 99.27 99.41 99.72 99.82 99.79 99.79

F1-score (%) 97.76 98.69 98.96 99.40 99.70 99.54 99.63
Learnable
Parameters 7,298 3,957

(with encoder) 3,266 15,458 5,200 20,738 2,322

FLOPs 7,298 3,957
(with encoder) 3,266 111,458 36,028 167,618 2,322

Model Size (KB) 30.55 16.98
(with encoder) 13.72 132.63 29.55 159.13 17.56

Response Time (ms) 2.090 1.949 2.039 2.535 2.580 2.510 2.188

TABLE VII: The proposed method’s performance in comparison with that of other SOTA methods in terms of model
performance, complexity, size, and response time using the same dataset and input size of 7× 7.

Algorithms ANOVA-DNN [23] AE-MLP [24]
(only MLP part) Lucid [25] LNN [26] CNN-LSTM [27] DCNN [28] Proposed

Model

Accuracy (%) 98.78 99.08 99.06 99.61 99.52 99.44 99.57

Precision (%) 98.41 98.97 99.12 99.51 99.36 99.22 99.55

Recall (%) 99.44 99.42 99.23 99.86 99.84 99.83 99.75

F1-score (%) 98.92 99.20 99.18 99.69 99.60 99.53 99.65
Learnable
Parameters 9,806 5,805

(with encoder) 9,602 15,458 5,600 20,738 2,722

FLOPs 9,806 5,805
(with encoder) 9,602 385,634 109,308 490,754 2,722

Model Size (KB) 40.72 24.64
(with encoder) 39.20 304.03 48.96 311.32 13.80

Response Time (ms) 2.146 2.004 2.127 2.718 2.722 2.640 2.068

Fig. 12: Image size set to 7× 7.

(1 − 2,772
385,634 ) × 100% reduction in FLOPs. When the input

size increases, other methods tend to exhibit an increase in
either the number of parameters or FLOPs. Meanwhile, if
the input size grows, the proposed approach reduces learnable
parameters and FLOPs significantly.

Regarding memory capacity, it is evident that the proposed
approach reduces the amount of storage required if the input
size increases from 4× 4 to 7× 7. This is because when both

the input size and patch size are set to 7 × 7, fewer patches
are generated, resulting in the proposed architecture occupying
less space in both forward and backward processes. In terms
of response time, the AE-MLP architecture stands out with
a minimum response time of 2.004ms among all methods.
This work follows closely with a slightly shortened response
time while maintaining high performance. In conclusion, this
system is great for deployment on IoT devices with limited
resources since it can find an acceptable balance between
performance, learnable parameters, and FLOPs.

F. Discussion on the worst case and the best case of perfor-
mance for reproducibility

In this subsection, we explore the best and worst-case
scenarios of performance and identify strategies to setup at
best, providing readers with a comprehensive understanding
to reproduce our work. The best-case scenario occurs when
the hyperparameters dim/mlp dim are set to 32, as depicted
in Figure 9. This is because moderately increasing these
hyperparameters allows the model to learn more complex
patterns. However, excessive increments in these hyperpa-
rameters may lead to overfitting issues (as evidenced by the
performance drop when hyperparameters dim/mlp dim are set
to 64 compared to 32 in Figure 9). Therefore, when there are
sufficient computational resources available for deployment
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on IoT devices, increasing the hyperparameters dim/mlp dim
should be done within a reasonable range.

The worst-case scenario occurs when the hyperparameter
heads are set to 2, and increasing the number of heads further
still results in performance degradation compared to before,
as illustrated in Figure 10. This is because increasing this
hyperparameter enhances the model’s ability to learn different
patterns. However, our employed spatial data transformation
mechanism effectively aggregates important information, al-
lowing the model to achieve high performance even when
learning a single pattern. Increasing the hyperparameter heads,
on the other hand, causes the model to focus on less important
patterns, leading to the need for more learnable parameters
(e.g., increasing hyperparameters such as depth, dim, and
mlp dim) to prevent the model from being confused by less
important information. Therefore, even if there are sufficient
computational resources available, this parameter should be
kept as small as possible to enable the model to focus on the
regions where important information is aggregated.

G. Generalization and adaptivity performance on unseen data

To quantify the generalization and adaptivity of the pro-
posed method when applied to other datasets not seen during
the training phase, we have conducted additional experiments
to evaluate the proposed model on different IoT datasets such
as Bot-IoT [35] and DoS/DDoS-MQTT-IoT [36]. The results
show that the model retains its effectiveness, with only a slight
decrease (around 2-3%) in detection accuracy performance.
These findings demonstrate the model’s strong generalization
capabilities and adaptability, thereby reinforcing its potential
utility in varied IoT security scenarios. This comes from the
fact that IGTD and self-attention models in the proposed
model can build generalized patterns for transformed data
from symmetric matrices of network traffic. However, we
found that, while most DDoS activities can be identified,
malicious traffic in highly specialized IoT environments with
unique communication protocols (e.g., MQTT in DoS/DDoS-
MQTT-IoT dataset) and rare attack patterns (e.g., Mirai botnet
spreading codes target specific medical devices in Bot-IoT
dataset), the model’s performance suffer a degradation up
to 5%. The degradation is eliminated after the model is
trained with specialized datasets. This specific case highlights
a potential limitation in generality if the dataset is small
(i.e., CICDDoS2019). Generally, rich datasets (with well-
prepared benchmarking distribution) are critical to maintaining
generality advantage in vision transformer-based generative AI
methods. Further, incremental learning [42] for real-time data
collection can be another promising approach.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel lightweight IDS that is particu-
larly tailored for IoT devices. Initially, the system transforms
tabular data into images while preserving spatial relation-
ships. The method utilizes a vision transformer technique
to reduce the network traffic feature dimensionality. The
vision transformer encoder performs well with few learnable
parameters and FLOPs. The evaluation results indicate that

the proposed method can achieve outstanding accuracy scores
of 99.62% and 99.55%, which are only marginally lower
than the performance of existing methods by 0.07% and
0.04%. Meanwhile, the input dimensionality and the number
of learnable parameters are reduced at 55.35% and 82.07%,
respectively. Furthermore, there is a significant reduction in
FLOPs by 93.56% and 99.28%.

In terms of model complexity, this study continuously
demonstrates the most lightweight design, regardless of the
extent to which the input dimensionality is decreased, com-
pared to other current research. Regarding model size, when
the input size stays the same, the proposed approach shows
an expansion of 3.84 KB and 0.58 KB, which is slightly
larger than other models. Nevertheless, this little increase
results in substantial enhancements in accuracy, namely by
0.72% and 1.02%, respectively. In short, the evaluation results
demonstrate the proposed approach’s ability to balance model
complexity, size, and performance. This capability makes the
method ideal for resource-constrained IoT devices. Our goal
for future work is to include the proposed method in an
automated deep learning pipeline and few-shot learning to
automatically create layers and increase detection performance
in unseen IoT environments, even with sparse data.
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