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Abstract—The convergence of advanced communication tech-
nologies and powerful computing architecture has unlocked a
plethora of opportunities for Internet-of-Things applications. To
fully realise this potential, a synergistic design encompassing
sensing, computing, and communication is crucial. This paper in-
vestigates these critical technologies to facilitate service-oriented
systems by minimising end-to-end latency and the number of
deployed services at edge servers in mobile edge computing, all
within the confines of stringent ultra-reliable and low-latency
communication requirements and system budget constraints.
The addressed optimisation problem takes into account various
variables such as service placement strategies, task offloading
portions, and bandwidth allocation. Simulation results validate
the effectiveness of our solution and highlight the impact of key
parameters on system performance.

Index Terms—Integrated sensing and communications, mobile
edge computing, service-oriented networks, task offloading, ultra-
reliable and low latency communications.

I. INTRODUCTION

Mobile edge computing (MEC) has emerged as a promising
technology poised to unlock the full potential of future com-
puting systems. With its distinctive computing architecture,
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MEC offers robust support for a multitude of delay-sensitive
applications, ranging from industrial control and augmented
reality/virtual reality (AR/VR) to intelligent transport systems
[2]. Leveraging the MEC paradigm, constrained devices such
as actuators and sensors can offload computational tasks to
edge servers (ESs) via task offloading mechanisms, thereby
reducing processing time. Moreover, ESs can serve as efficient
data caches, diminishing the volume of information that needs
to be transmitted [3]. However, despite these numerous bene-
fits, MEC presents various challenges which require resolution,
including offloading decisions, task caching, and the joint
allocation of computation and communication resources [4],
[5]. Consequently, MEC has garnered increasing attention
from researchers in both academia and industry [4], [6].

Ultra-reliable and low-latency communications (URLLC)
technology stands out among advanced communication tech-
niques as a pivotal enabler for 5G and beyond mission-critical
applications [7]. URLLC-based transmissions play a crucial
role in various emerging services with stringent reliability
and delay requirements, including motion control in industry,
telesurgery in healthcare, and the tactile Internet [8]–[10].
Existing studies on URLLC have primarily centred on resource
allocation, beamforming design, and minimising decoding er-
ror probability based on short-packet transmissions [11], [12].
These studies have delved into the intricate trade-off between
transmission rate and reliability in URLLC-based mission-
critical applications. In recent years, expanded research on
URLLC in conjunction with other emerging technologies such
as multi-tier computing [13]–[15] has opened up new imple-
mentation opportunities in real-world deployments [16]. This
research direction holds tremendous potential for realising the
vision of URLLC-aided MEC in future wireless networks [17].

Task offloading and service placement are two fundamental
pillars of MEC. Service placement entails configuring the
service platform, encompassing services, software, libraries,
storage, and databases at Edge Servers (ESs) to cater to
specific tasks [18]. This involves strategically positioning these
components to ensure they are available where they are most
needed. In practice, ESs can only accommodate a limited
number of services due to resource constraints, necessitating
careful management of computational and storage resources.
Optimal service placement strategies not only enhance system
performance and reduce deployment costs but also improve
scalability, ensure high availability, and mitigate security risks
by minimizing potential attack surfaces and ensuring critical
services are properly isolated [19]. Considering service place-
ment in the task offloading problem effectively bridges the
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gap between theoretical evaluation and real-world deployment,
where ES capacity is restricted, and the environment is highly
unpredictable [20].

Recently, integrated sensing and communication (ISAC)
has emerged as a promising technology for future wireless
networks, wherein base stations (BS) undertake dual func-
tions encompassing sensing and communication. The ISAC
technology has potential to enable new applications across
many different domains. This includes enhancing localisa-
tion and tracking, drone monitoring, smart home and in-
cabin sensing, vehicle-to-everything (V2X) communication,
smart manufacturing, industrial Internet-of-Things (IoT), re-
mote sensing, and geoscience, as well as human-computer
interaction [21]. However, there exist many open challenges
within ISAC systems. Among these are fundamental theories
pertaining to radar sensing and wireless communication within
the integrated ISAC framework, optimal physical-layer system
design for ISAC systems, and optimal cross-layer design for
performance optimisation [22], [23]. Consequently, numerous
research groups are focusing on studying this topic to enable
real-world applications built upon the concept of ISAC [24].

A. Related Works

The convergence of MEC and advanced wireless communi-
cation technologies has recently garnered significant attention
from the research community. Publications in this domain
primarily focus on resource allocation solutions for the joint
computing and communication problem [3], [15], [25]–[27].
Specifically, a distributed computation and communication re-
source management solution was introduced in [25] to address
a fairness-aware latency minimisation problem in digital twin-
aided MEC systems. In [3], the proposed iterative optimi-
sation solution effectively tackled a sum-utility maximisa-
tion problem in computation-intensive systems by optimising
computation offloading and service caching. Furthermore, an
alternating optimisation algorithm was applied to solve the la-
tency minimisation problem in [15], where various computing
and communication variables such as edge selection, power
allocation, task offloading portion, and computing capacity
allocation were jointly optimised. A learning-based approach
was introduced in [26] with edge-assisted spectrum sharing
for freshness-aware industrial wireless networks. Additionally,
[27] presented a contextual clustering of bandits-based online
vehicular task offloading to minimise the expectation of total
offloading energy consumption. However, there are still open
challenges to explore further in this area, such as adaptive
service placement for task-oriented MEC systems, cooper-
ation between MEC and advanced wireless communication
technologies like URLLC, and ISAC for future industrial IoT
applications.

In the realm of ISAC-assisted MEC, recent publications
mainly concentrate on the joint optimal design of computing
and communication resources, aiming either at maximising en-
ergy efficiency or minimising energy consumption [28]–[30].
Specifically, a joint optimisation problem involving beamform-
ing for radar sensing and task offloading has been addressed
to maximise the energy efficiency of ISAC devices [28].

Moreover, the intelligent reflecting surface (IRS) technology
has been utilised to support ISAC-based MEC [29]. Here an al-
ternating optimisation algorithm has been proposed to address
an optimisation problem concerning the joint allocation of
computing and communication resources aimed at minimising
energy consumption. More recently, another energy consump-
tion minimisation problem, formulated based on MEC-assisted
ISAC with short-packet transmissions, has been tackled [30].
In [30], a hierarchical optimisation procedure is introduced
to address various variables, including beamforming designs,
computing resource allocation, and transmission duration. In
summary, recent efforts in the research of ISAC-assisted
MEC have mainly focused on resolving optimisation problems
related to joint computing and communication resource allo-
cation. While advanced wireless communication technologies
such as IRS and short-packet transmissions have received
some attention, adaptive solutions with service placement in
MEC remain open issues to be addressed. Further, how these
advanced communications technologies can work in unison
with MEC to improve the overall network performance.

B. Motivation and Contributions

As highlighted in the aforementioned studies, the conver-
gence of MEC and advanced communication technologies
such as URLLC and ISAC presents both vast opportunities
and daunting challenges for the research community. To
fully harness the potential of these emerging technologies, it
is imperative to develop efficient optimisation solutions for
addressing the joint sensing, computing, and communication
problems. However, despite the considerable attention gar-
nered by recent studies in MEC, the focus has predominantly
been on the computation offloading problem, overlooking
the crucial aspect of service placement for adaptive service
deployment [3], [15], [25]–[27]. Furthermore, the integration
of ISAC technology into MEC-based systems, particularly in
contexts with stringent requirements for reliability and critical
communications, remains an open challenge that demands
concerted efforts to make significant contributions [24], [30].
It is evident that addressing these gaps in research is essen-
tial for unlocking the full potential of MEC and advanced
communication technologies, thus paving the way for trans-
formative advancements in various domains. Jointly designing
ISAC with URLLC and edge computing significantly enhances
network reliability and reduces latency, crucial for real-time
applications like industrial automation. This integration allows
for real-time processing and decision-making at the network
edge, minimising the need for data transmission to central
servers. Additionally, it optimises resource use by leveraging
ISAC for efficient spectrum utilisation and edge computing
for local data processing, resulting in a more responsive and
efficient network.

In this paper, we propose an adaptive optimisation solu-
tion for joint service placement, task offloading, and band-
width allocation in ISAC-based MEC under URLLC-based
transmissions. Specifically, we consider the MEC architecture
where base stations perform the dual function of sensing
and communication to facilitate task offloading with stringent
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URLLC requirements. Notably, we introduce a novel cost
metric to minimise not only the number of installed services
in ESs but also the total latency of user equipment (UEs). The
formulated optimisation takes into account service placement
decisions, task offloading portions, and bandwidth allocation
while considering dynamic timescales to deal with uncertain-
ties in practical deployments. The main contributions of this
work can be summarised as follows:

• We initially formulate an optimisation problem aimed
at minimising both the number of installed services in
ESs and the total latency experienced by UEs. This
problem considers various variables within the ISAC-
based service-oriented system, including service place-
ment strategies, task offloading proportions, bandwidth
allocation under latency requirements, energy budgets of
UEs, and computing capacity budgets of ESs.

• Subsequently, we propose an alternating optimisation
algorithm to address this challenging problem. Effective
inner approximations are appropriately utilised to handle
non-convex functions during the solution development
process. Additionally, we introduce a Sequential-Fixing
(SF) algorithm as a near-optimal approach for solving the
mixed-integer non-linear programming (MINLP) problem
associated with service placement optimisation.

• Finally, we conduct extensive simulations to validate the
effectiveness of our proposed solutions. The numerical re-
sults not only demonstrate the superiority of our approach
in optimising the cost metric and minimising latency but
also illustrate the impact of various parameters on system
performance.

C. Paper Structure and Notations
The paper is structured as follows. It begins with an

introduction in the first section, providing an overview of
the topics under examination, recent publications in the re-
search community, and the contributions made by this paper.
Following this, Section II outlines the system model and
problem formulation. This section explains the service place-
ment model, task-oriented MEC model, energy consumption
model, URLLC-based transmission model, and radar sensing
model, concluding with the presentation of the formulated
optimization problem. Subsequently, Section III discusses the
development of the proposed solutions. Finally, the paper
presents simulation results and discussions before concluding
with key highlights.

Notation: In this paper, lowercase letters represent numbers,
while matrices and vectors are denoted by bold uppercase
and lowercase letters, respectively. We adopt the notation
x ∼ CN (., .) to indicate that x follows a complex circularly
symmetric Gaussian distribution. The symbol | · | denotes the
Euclidean norm of a vector, and C signifies the set of complex
numbers. Additionally, we use the notation xmk[tℓ] to denote
a variable x associated with the m-th user (UE) the k-th edge
server (ES) at the long-term time-frame ℓ.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a service-oriented MEC model, as illustrated
in Fig. 1. In particular, there are M UEs connected wirelessly

Fig. 1: An illustration of the service-oriented in ISAC-enabled
MEC. UEs can partially offload computation tasks to multiple
ESs, where the requested services are available at the ESs.

to K ESs via URLLC-based links to guarantee stringent
requirements on latency and reliability. Each ES is associated
with an L-antenna BS. All UEs are equipped with a single
antenna. In our system model, the BS acts as an integrated
sensing and communications BS (ISAC-BS) and is able to
perform the dual-function of sensing and communications. We
assume that there is one sensing target in the coverage area of
each BS (e.g., movable robots, autonomous vehicles, etc.).

A. Service Placement Model

The system operates in two discrete time-frames, including
long-term frames ℓ ∈ [1, 2, ..., L] for service placement op-
timisation and short-term time-slots t ∈ [1, 2, ..., T ] for task
offloading and resource allocation optimisation. The duration
of each long-term frame is ∆l and each can be divided into
Tl short-term time-slots; thus we have ∆l = Tlδt, where
δt is the duration of each short-term time-slot. The duration
of the long-term time-frames is adaptively adjusted to deal
with uncertainties in operation. The optimisation of service
placement is only executed when there are new requested
services in the system or the latency requirement of UEs is
unsatisfied. The proposed approach is capable of reducing the
processing cost as well as improving the flexibility in practical
implementation.

Each ES can install a finite number of services to execute the
offloaded tasks from UEs. The installed services at ES k are
denoted by sk[ℓ] ≜ [sk1[ℓ], sk2[ℓ], ..., skN [ℓ]], where N is the
total number of services and skn[ℓ] ∈ {0, 1},∀k, n indicates
the n-th service is installed at ES k (i.e. skn[ℓ] = 1) or not
(i.e. skn[ℓ] = 0) at long-term frame ℓ. Due to the limited
computation capacity of ESs, we consider a partial number of
services installed in each ES, yielding

∑N
n=1 skn[ℓ] ≤ Nk,∀k

with Nk ≤ N, ∀k.

B. Service-Oriented Mobile Edge Computing Model

Let Jm[tℓ] ≜ (Tmax
m [tℓ], Dm[tℓ], Cm[tℓ], Gm[tℓ]) be the

computational task offloaded from the m-th UE, in which
Tmax
m [tℓ] is the latency requirement (seconds), Dm[tℓ] is the

task size (bits), Cm[tℓ] is the required CPU cycles to execute
the task (cycles), and Gm[tℓ] indicates the type of service to
execute this task. The computational tasks are only executed
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when they are offloaded to correct services in ESs, following∑K
k=1 skGm [ℓ] ≥ 1,∀k.
Let us denote the processing rate of the m-th UE and the

k-th ES by fue
m [tℓ] and f es

k [tℓ], respectively. In this paper, we
consider partial task offloading to execute computational tasks
[13], [15]. Let α[tℓ] ≜ {αm[tℓ]}∀m | 0 ≤ αm[tℓ] ≤ 1,∀m
be the portion of the task executed locally at the m-th UE at
frame tℓ. Then, the local processing latency of the m-th UE
is given by

T ue
m [tℓ] =

αm[tℓ]Cm[tℓ]

fue
m [tℓ]

,∀m. (1)

By defining β[tℓ] ≜ {βmk[tℓ]}∀m,k | 0 ≤ βmk[tℓ] ≤
1,∀m, k as the portion of the task offloaded from the m-th
UE to the k-th ES, the processing latency for executing the
offloaded task at the k-th ES can be modelled as

T es
mk[tℓ] =

skGm
[tℓ]βmk[tℓ]Cm[tℓ]

f es
mk[tℓ]

,∀m, k. (2)

It is noted that the tasks offloaded from the m-th UE is only
executed at ESs which have already installed the service Gm

at the time-frame tℓ.

C. Wireless Transmission Model

In this paper, we adopt the frequency division multiple
access (FDMA) protocol for the wireless transmission over
the total system bandwidth, B with the noise density N0. The
portion of bandwidth allocated to the m-th UE by the k-th BS
is bmk[tℓ], satisfying

∑M
m=1

∑K
k=1 bmk[tℓ] ≤ 1. The channel

vector between the k-th BS and the m-th UE is denoted by
hmk[tℓ] =

√
gmk[tℓ]h̄mk[tℓ], where gmk[tℓ] is the large-scale

channel coefficient including the path-loss and shadowing,
and h̄mk[tℓ] represents the small-scale fading following the
Rayleigh fading model as h̄mk[tℓ] ∼ CN (0, IL). Similarly, the
sensing channel between the k-th BS and its sensing target is
denoted by dk ∈ CL×1.

1) Radar Sensing Model: The ISAC-BS simultaneously
conducts radar sensing and receives offloaded tasks from
IoT devices on the same spectrum channel. The joint radar-
communications system includes an active, mono-static radar
and supports multi-user task offloading transmissions. At the
k-th BS, the received signal yk comprises the radar sensing
signal ysen

k and the offloaded transmission signal ycom
k , rep-

resented as:
yk = ysen

k + ycom
k + nk, (3)

where nk is the additive white Gaussian noise (AWGN) with
zero mean and variance bmkBN0.

We begin by analysing ysen
k . The radar signal transmitted by

the BS is denoted as xsen
k . Matrix Ak ∈ CL×L represents the

target response matrix for the radar. Following the assumptions
in [31], we consider that we are tracking the target with some
prior knowledge of its range. To process the radar signal, a
predicted radar return is generated using the predicted target
range, which is then subtracted from the received signal to de-
rive a suppressed radar return signal x̃sen

k [31]. Consequently,
the radar sensing signal ysen

k is expressed as:

ysen
k = Akwkx̃

sen
k , (4)

where wk ∈ CL×1 is the beamforming vector of the
radar signal. Following that, we have Ak = dkd

H
k and

wk = dH
k /∥dk∥, employed by the maximum-ratio transmis-

sion (MRT).
For task offloading communications, ycom

k at the k-th BS is
modelled as

ycom
k =

√
pmhmkx

com
mk . (5)

Consequently, the received signal yk at the k-th ISAC-BS
is modelled as follows

yk =
√
pmhmkx

com
mk︸ ︷︷ ︸

the desired signal

+ Akwkx̃
sen
k︸ ︷︷ ︸

the interference of radar signal

+nk. (6)

Under FDMA, the signal-to-interference-plus-noise ratio
(SINR) ratio of the signal received from the m-th UE at the
k-th BS is given by

γmk(bmk) =
pm∥hmk∥2

ρ2(bmkB)2σ2
pre∥Akwk∥2 + bmkBN0

=
pm∥hmk∥2

Φ(bmk)
, (7)

where pm is the uplink transmission power of the m-th UE,
and ρ2(bmkB)2σ2

pre is the variance of x̃sen
k [31].

2) URLLC-based transmission model: As a result, the
URLLC-based uplink transmission rate (bits/s) for task of-
floading from the m-th UE to the k-th BS can be expressed
as [16], [32]:

Rmk(bmk[tℓ]) =
B

ln 2

[
bmk[tℓ] ln

(
1 + γmk(bmk[tℓ])

)
−

√
bmk[tℓ]Vmk(bmk[tℓ])

ϕB
Q−1(ϵmk[tℓ])

]
, (8)

where ϕ is the transmission time interval, Vmk(bmk[tℓ]) =
1 − [1 + γmk(bmk[tℓ])]

−2 is the channel dispersion func-
tion, Q−1(.) is the inversion function of Q(x) =

1√
2π

∫∞
x

exp

(
−u2

2

)
du, and ϵmk is the decoding error prob-

ability.
As a result, the transmission latency from the m-th UE to

the k-th BS for task offloading can be expressed as

T co
m [tℓ] =

skGm
[ℓ]βmk[tℓ]Dm[tℓ]

Rmk(bmk[tℓ])
. (9)

D. Latency and Energy Consumption Model

1) Latency Model: The end-to-end (e2e) latency incurred
in the computation of the task for the m-th UE consists of the
local processing latency, the wireless transmission latency and
the edge processing latency, i.e.

T e2e
m [tℓ] = T ue

m [tℓ] + max
∀k

{T co
m [tℓ]}+max{T es

mk[tℓ]}. (10)

Since each UE can offload tasks to multiple ESs for execution
if these ESs have the indicated services, we use the maximum
operator (max(.)) to calculate the worst-case latency of the
wireless transmission and edge processing latency. We note
that in edge computing, the returned response from ESs to
UEs are typically small (e.g. control packets and the results
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of computations) whereas the transmission ability of APs
are significantly greater than UEs; therefore, the downlink
transmission latency is not considered in this work [33].

2) Energy Consumption Model of UEs: The energy con-
sumption of the m-th UE includes the energy for the local
processing (Ecomp

m ) and wireless transmission (Ecomm
m ), and is

given as

Em[tℓ] = Ecomp
m + Ecomm

m

=
θm
2
αm[tℓ]Cm[tℓ](fm[tℓ])

2

+ pm
∑
k∈K

skGm [ℓ]βmk[tℓ]Dm[tℓ]

Rmk(bmk[tℓ])
(11)

where θm/2 is the term which accounts for the computation
energy consumption of the m-th UE (Watt.s3/cycle3).

3) Cost Metric: In this paper, we consider a novel cost
metric serving as an objective function of the optimisation
problem that aims to minimise the total e2e latency of UEs as
well as number of installed services at each ES. To do that,
the cost metric ηk is modelled as follows

ηk(s[ℓ],α[tℓ],β[tℓ],b[tℓ]) = wω
k

∑
n∈N

skn[ℓ]

+ wt
k

∑
m∈M

T e2e
m (s[ℓ],α[tℓ],β[tℓ],b[tℓ]),∀k (12)

where wω
k and wt

k are weights of the number of services and
the total latency, respectively. In simulations, the weights are
appropriately adjusted to balance the objective components
and improve the optimal solutions while executing the pro-
posed algorithm. The weighting parameters are chosen based
on the simulation scenarios, e.g., maximum number of services
in the system, the total latency of all UEs. The main goal
of setting the weights is to create the balance between total
number of installed services and the total latency of UEs in
the expression of cost metric function.

E. Optimisation Problem Formulation

min
α,β,s,b

K∑
k=1

ηk(s[ℓ],α[tℓ],β[tℓ],b[tℓ]),∀tℓ

s.t. T e2e
m (s[ℓ],α[tℓ],β[tℓ],b[tℓ]) ≤ Tmax

m ,∀m, tℓ

αm[tℓ] +
∑
k∈K

skGm
[ℓ]βmk[tℓ] = 1,∀m, tℓ

1 ≤
N∑

n=1

skn[ℓ] ≤ Nmax
k ,∀k, ℓ

K∑
k=1

M∑
m=1

bmk[tℓ] ≤ 1,∀k, tℓ

Rmk (b[tℓ]) ≥ Rmin,∀m, k, tℓ

Em (s[ℓ], αm[tℓ],βk[tℓ]) ≤ Emax
m ,∀m, tℓ∑

m∈M
skGm

[ℓ]βmk[tℓ]f
es
mk ≤ F es

max,∀k, tℓ

s[ℓ] ∈ S,α[tℓ],β[tℓ] ∈ D,b[tℓ] ∈ B.

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)
(13g)

(13h)

(13i)

In this paper, we aim to minimise both number of installed
services at ES and the total e2e latency of UEs subject to
the latency requirements of the computational tasks and the
resource budget of the system. The considered optimisation
problem is therefore formulated as (13).

In problem (13), constraints (13b) and (13c) indicate the
maximum latency requirement and the offloading policies
of each computational task, respectively. Constraint (13d) is
used for the service placement decision in the system model.
The system budget of bandwidth allocation is guaranteed by
constraint (13e). The quality-of-service (QoS) requirements for
the wireless transmission rate and the energy budget of the
UEs are given by constraints (13f) and (13g), respectively.
Finally, constraint (13i) incorporates the feasible sets of the
optimisation variables defined as follows, S ≜ {skn | skn ∈
{0, 1}},∀k, n, D ≜ {αm, βmk | 0 ≤ αm ≤ 1, 0 ≤ βmk ≤
1,∀m, k }, and B ≜ {bmk | 0 ≤ bmk ≤ 1,∀m, k.}

III. PROPOSED SOLUTIONS

As we can see from problem (13), this is a mixed-integer
(binary) non-convex optimisation problem which includes
strong coupling binary and continuous variables (e.g., (13a),
(13c), (13g), (13h)) as well as highly complicated non-
convex constraints (e.g., (13b), (13f), (13g)). These challenges
make the problem computationally intractable and inefficient
to solve directly. Based on the structure of the underlying
problem and the properties in practical implementation, we
therefore propose a two-timescale optimisation solution which
includes the joint task offloading and bandwidth allocation
at fixed short-term time-frames and the service placement
optimisation with dynamic long-term time-frames to obtain
the optimal solutions. The solution is clearly developed in the
following subsections.

A. Short-term Joint Task Offloading and Bandwidth Allocation
Optimisation

In this sub-problem, we solve for the optimal values of task
offloading and bandwidth allocation α[tℓ],β[tℓ],b[tℓ] at the
long-term time-frame ℓ with given s[ℓ]. The sub-problem is
expressed as follows

SP-1:minimise
α[tℓ],β[tℓ],
b[tℓ]|s[ℓ]

K∑
k=1

ηk(s[ℓ],α[tℓ],β[ℓ+1],b[tℓ]),∀tℓ,

s.t.(13b), (13c), (13e), (13f), (13g), (13h), (13i).

(14a)

(14b)

We solve problem (14) by applying the successive convex
approximation (SCA) method. To do that, we have to convex-
ify all non-convex constraints in (14), including (13b), (13f),
(13g). These constraints include the wireless transmission rate
Rmk(bmk[tℓ]) in (8). Therefore, we start with the convexity
of constraint (13f).

Convexity of (13f): Following [12], [16], for a sufficiently
high S, we have Vmk(bmk[tℓ]) ≈ 1. Then, we can rewrite
Rmk(bmk[tℓ]) as

Rmk(bmk[tℓ]) =
B

ln 2

[
Gmk(bmk[tℓ])−Wmk(bmk[tℓ])

]
(15)
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where Gmk(bmk[tℓ]) = bmk[tℓ] ln
(
1 + γmk(bmk)[tℓ])

)
and

Wmk(bmk[tℓ]) = Q−1(ϵmk)
√
bmk[tℓ]

/√
ϕB.

Following inequality [11, eq. 73], given x > 0, y > 0, and
x̄, ȳ are the feasible points of (x, y), we have

x ln(1 +
a

y
) ≥ 2x̄ ln(1 +

a

ȳ
) +

x̄a

a+ ȳ
(1− y

ȳ
)− ln(1 + a/ȳ)

x
x̄2.

(16)

By letting x = bmk[tℓ], x̄ = b
(i)
mk[tℓ], y = Φ(bmk[tℓ]),

ȳ = Φ(b
(i)
mk[tℓ]), and a = pm∥hmk[tℓ]∥2 we can approximate

Gmk(bmk[tℓ]) as follows

Gmk(bmk[tℓ]) ≥ 2b
(i)
mk[tℓ] ln

(
1 +

pm∥hmk[tℓ]∥2

Φ(b
(i)
mk[tℓ])

)
+

b
(i)
mk[tℓ]pm∥hmk[tℓ]∥2

pm∥hmk[tℓ]∥2 +Φ(b
(i)
mk[tℓ])

(
1− Φ(bmk[tℓ])

Φ(b
(i)
mk[tℓ])

)

−
ln(1 + pm∥hmk[tℓ]∥2/Φ(b(i)mk[tℓ]))

bmk[tℓ]
(b

(i)
mk[tℓ])

2

≜ G(i)
mk(bmk[tℓ]). (17)

By applying the following equality

√
x ≤

√
x̄

2
+

x

2
√
x̄
, (18)

which x = bmk[tℓ] > 0 and x̄ = b
(i)
mk[tℓ] > 0, we can innerly

approximate Wmk(bmk[tℓ]) as follows

Wmk(bmk[tℓ]) ≤ κmk


√

b
(i)
mk[tℓ]

2
+

bmk[tℓ]

2

√
b
(i)
mk[tℓ]


≜ W(i)

mk(bmk)[tℓ]), (19)

where κmk = Q−1(ϵmk)/
√
ϕB.

Consequently, the transmission rate Rmk(bmk[tℓ]) can be
innerly convexified as follows

Rmk(bmk[tℓ]) ≥
B

ln 2
[G(i)

mk(bmk[tℓ])−W(i)
mk(bmk)[tℓ])]

≜ R
(i)
mk(bmk[tℓ]). (20)

As a result, (13f) can be expressed as

R
(i)
mk(bmk[tℓ]) ≥ Rmin,∀m, k, tℓ, (21)

which is now a convex constraint.
Convexity of (13g): By introducing r ≜ {rmk[tℓ]}∀m,k

with rmk[tℓ] ≥ 1/R
(i)
mk(bmk[tℓ]),∀m, k, we can equivalently

express (13g) as (22a) and (22b):

rmk[tℓ] ≥ 1/R
(i)
mk(bmk[tℓ]),

pm
∑
k∈K

skGm [ℓ]Dm[tℓ]βmk[tℓ]rmk[tℓ]

+
θm
2
αm[tℓ]Cm[tℓ](fm[tℓ])

2 ≤ Emax
m .

(22a)

(22b)

However, constraint (22b) is still non-convex. We apply the
following inequality

xy ≤ 1

2

(
ȳ

x̄
x2 +

x̄

ȳ
y2
)

(23)

to convexify (22b). Given x = βmk[tℓ] > 0, x̄ = β
(i)
mk[tℓ] > 0

y = rmk[tℓ] > 0, ȳ = r
(i)
mk[tℓ] > 0, (22b) is approximated as

pm
∑
k∈K

skGm
[ℓ]Dm[tℓ]

× 1

2

(
r
(i)
mk[tℓ]

β
(i)
mk[tℓ]

(
βmk[tℓ]

)2
+

β
(i)
mk[tℓ]

r
(i)
mk[tℓ]

(
rmk[tℓ]

)2)
+

θm
2
αm[tℓ]Cm[tℓ](fm[tℓ])

2 ≤ Emax
m , (24)

which is a convex constraint.
Convexity of (13b): By using r defined in (22a), we have

T e2e
m [tℓ+1] ≤

αm[tℓ+1]Cm[tℓ+1]

fue
m [tℓ+1]

+

skGm
[tℓ+1]βmk[tℓ+1]Cm[tℓ+1]

f es
mk[tℓ+1]

+

pm
∑
k∈K

skGm [ℓ]Dmβmk[tℓ+1]rmk[tℓ+1]. (25)

By applying (23) for (25) with x = βmk[tℓ+1], x̄ = β
(i)
mk[tℓ+1],

y = rmk[tℓ+1], and ȳ = r
(i)
mk[tℓ+1], we have

T e2e
m [tℓ+1] ≤

αm[tℓ+1]Cm[tℓ+1]

fue
m [tℓ+1]

+
skGm [tℓ+1]βmk[tℓ+1]Cm[tℓ+1]

f es
mk[tℓ+1]

+ pm
∑
k∈K

skGm
[ℓ]Dmξmk ≜ T (i)

mk, (26)

where ξmk = 1
2

[
r
(i)
mk[tℓ]

β
(i)
mk[tℓ]

(
βmk[tℓ]

)2
+

β
(i)
mk[tℓ]

r
(i)
mk[tℓ]

(
rmk[tℓ]

)2]
and

T (i)
mk is a convex function.
As a result, we can solve the following convex program to

obtain the optimal solution for SP-1 at the i-th iteration:

SP-1-Convex:

maximise
α[tℓ],β[tℓ],
b[tℓ]|s[ℓ]

K∑
k=1

(
wω

k

∑
n∈N

skn[ℓ] + wt
k

∑
m∈M

T (i)
mk

)
,

s.t. T (i)
mk ≤ Tmax

m ,∀m, k,

(13c), (13g), (21), (22a), (24).

(27a)

(27b)
(27c)

In (27), all the convex constraints are linear and/or quadratic,
and therefore it can be efficiently solved by the well-known
CVX package in the MATLAB environment.

B. Long-term Service Placement Optimisation

In this sub-problem, we find the optimal value of service
placement decisions s[ℓ+1] for given α[tℓ],β[tℓ],b[tℓ], which
is expressed as

SP-2: minimise
s[ℓ+1]|

α[tℓ],β[tℓ],b[tℓ]

K∑
k=1

ηk(s[ℓ],α[tℓ],β[ℓ+1],b[tℓ])

s.t. (13b), (13c), (13d), (13g), (13h), (13i).

(28a)

(28b)

The problem (28) is a mixed-integer program. There are
several effective approaches to deal with this kind of problem,
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such as the relaxation or parameterisation.
Based on the above development, we propose Algorithm 1

to solve (13). The most challenging issue in the implemen-
tation of Algorithm 1 is to handle the uncertainties of new
services requested and triggering the long-term optimisation
when the latency requirement is unmet.

Algorithm 1 : Proposed Algorithm for Solving (13).

1: Initialisation: Set ℓ = 1, t = 1, generate the initial fea-
sible points (s(1)[1],α(1)[1],β(1)[1],b(1)[1]), and choose
the initial parameters for (13).

2: while (long-term flag is FALSE) do
3: for t = 1, 2, ..., T do
4: Solve SP-1-Convex (27) for (α[tℓ],β[tℓ],b[tℓ])

with given s[ℓ];
5: Set long-term flag TRUE if: (1) new requested ser-

vices OR (2) latency unsatisfied;
6: if (long-term flag is TRUE) then
7: Solve SP-2 (28) for service placement s(ℓ + 1)

with given (α[tℓ],β[tℓ],b[tℓ]);
8: Update long-term flag;
9: end if

10: Set t = t+ 1
11: end for
12: Set ℓ = ℓ+ 1
13: end while

Notes on the initialisation and the algorithm complexity: In
the initialisation step, we set the offloading portion equally
for all UEs, i.e., αm = 0.3,∀m,βmk = 0.7/M,∀m, k, and
the bandwidth is also equally allocated among all UEs, i.e,
bmk = 1/MK. Regarding the requested service, we assume
that the ESs have already installed neccessary services to
serve UEs in the first time-frame. To guarantee the success
of the initialisation, we implement a function to check if all
constraints in the orginal problem (13) are satisfied or not
before the algorithm proceeds with the next step.

In relation to the algorithm complexity, the short-term joint
task offloading and bandwidth allocation problem (27) has
a total of 2MK + M scalar variables and 3MK + 3M
constraints; therefore, the per-iteration complexity for solving
it is O

(√
3MK + 3M (2MK+M)2

)
[34, Sec. 6]. Similarly,

the per-iteration of the problem (28) is O
(√

KN + 3M + 2K
(NK)2

)
.

C. Near-optimal Design for the Mixed-Integer Service Place-
ment Optimisation Problem

In this subsection, we propose a sequential fixing (SF)-based
solution for the MINLP of the service placement problem. This
is a heuristic procedure and has polynomial-time complexity,
which is an efficient technique to deal with MINLPs [35].
This heuristic method balances the need for computational
efficiency with the goal of finding a high-quality solution.
The method is highly dependent on the initial relaxation and
variable selection strategies, which can significantly influence
the quality of the final solution. Additionally, it may require
numerous iterations and adjustments, particularly if feasibility

issues arise, leading to potentially high computational costs.
Regarding applying this method to the paper, the main idea is
to fix the values of skm[ℓ] sequentially by solving a series of
linear program (LP) problems and set at least one binary value
for some skm[ℓ] during each iteration. For instance, during the
first iteration of long-term solving, all binary variables of s[ℓ]
are relaxed to satisfy 0 ≤ skm[ℓ] ≤ 1,∀m, k to transform (28)
into an LP problem. After solving this LP problem, we obtain a
value between 0 and 1 for each variable skm[ℓ]. The procedure
is repeated until each ES reachs the maximum number of
installed services (i.e., constraint (13d)). The solving process
is summarised as the following Algorithm 2.

Algorithm 2 : The SF-based Algorithm for Solving the
MINLP (28) problem.

1: Initialisation: Set up and solve the initial relaxed LP
problem of (13) with variables 0 ≤ skm[ℓ] ≤ 1,∀m, k.

2: Suppose skm[ℓ] is the largest value among all the s-
variables, fix skm[ℓ] = 1.

3: if (all the s-variables are fixed) then
4: Return the obtained solutions.
5: end if
6: Reformulate and solve a new relaxed LP problem with the

newly fixed s-variables and go to Step 2.

IV. SIMULATIONS, RESULTS AND DISCUSSIONS

A. Simulation Settings

In the following simulations, we consider a system model
for industrial automation where all ESs and UEs are dis-
tributed within an area of 100m × 100 m. The large-scale
fading for the wireless transmission between the m-th UE
to the k-th ES is modelled as gmk = 10PL(dmk)/10, where
PL(dmk) = −35.3 − 37.6 log10 dmk [11]. The single-sided
noise spectral density is set to −174 dBm/Hz [11]. The
URLLC decoding error probability is set to ϵmk = 10−6

[36]. The other simulation parameters are provided in Table I.
All simulations were conducted in MATLAB and the convex
programs were solved by the CVX package.

TABLE I: Simulation Parameters.

Parameters Value
Number of antennas L = 8
Transmission power pm = 23 dBm
System bandwidth B = 10 MHz
Number of UEs M = 8
Number of ESs K = 2
Maximum number of services N = 6
UE processing rate fue

m = 1 GHz
ES processing rate f es

mk = 2 GHz
Input task size Dm = 1354 bytes [37]
Task complexity Cm/Dm = [200, 500] cycles/byte
Total delay requirement Tmax

m = 2 ms
Minimum data rate Rmin = 1 Mbps
Maximum energy consumption Emax

m = 1 Joule
Effective capacitance coefficient θm = 10−27 Watt.s3/cycle3 [38]
Radar spectral shape parameter ρ = 2π/12 [29]
The variance of the predicted radar return σ2

pre = 10−14 [29]
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Fig. 2: Convergence pattern of the short-term optimisation for
Emax

m = 1 J and Emax
m = 1.6 J.

B. Numerical Results and Discussions

In this subsection, we present results of simulations to
illustrate the impact of various parameters on system per-
formance, focusing on total latency and the cost metric. We
conducted extensive simulations to validate the effectiveness
of the proposed solutions and explore factors such as the
number of installed services in ESs, optimal service placement,
maximum computing capacity of ESs, energy budget of UEs,
sensing function in ISAC-based systems, and task complexity
of service-oriented systems.

1) Convergence pattern of short-term optimisation: To il-
lustrate the convergence pattern of the proposed iterative algo-
rithm (Algorithm 1), the total e2e latency of UEs obtained after
each iteration is recorded throughout the process. Figure 2
clearly exhibits the convergence of the algorithm as it pro-
gressively diminishes the total latency. In our implementation,
convergence is deemed achieved when the difference in total
latency between the current iteration and the previous one is
sufficiently small (i.e., ϵ = 10−3) relative to the total latency
of the current iteration. As depicted in the graph, the algorithm
effectively optimises the total latency to reach optimal values
and achieves convergence after 10 iterations. It is noteworthy
that the latency experiences a significant decrease after the
first iteration and gradually reduces until convergence. This is
attributed to the initial values being set uniformly to satisfy
all constraints, which are initially far from optimal solutions.

2) Impact of the maximum number of services installed in
ESs and the optimal solutions on the latency: To demonstrate
the impact of service placement optimisation on the optimal
e2e latency, we conducted simulations with different settings
of ESs capacity, varying the maximum number of installed
services (Nk). Specifically, Figure 3 illustrates the total e2e la-
tency of UEs over a period of 50 time-frames with Nk = 3, 4.
As evident from the figure, the proposed solution significantly
outperforms non-optimised schemes (such as no service place-
ment and equal bandwidth allocation) in minimising latency.
Furthermore, when ESs can accommodate a higher number of
services, the service placement optimisation is less frequently
executed. However, this may lead to a decrease in the overall
performance due to the limitation of computing capacity of
ESs.
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Fig. 3: Impact of the maximum number of services installed
in ESs and the service placement optimisation on the obtained
latency for N = 6 services.
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Fig. 4: Impacts of the maximum number of services installed
in ESs on the obtained latency and offloading behaviours.

3) Impact of the maximum number of installed services on
the latency and offloading behaviours: To further examine
the impact of the number of installed services in ESs, we
monitored the offloading behaviour of UEs over time with
different settings of Nk. Figure 4 depicts the offloaded portion
of computational tasks and the total e2e latency over 50
time frames. In particular, the maximum number of services
installed in ESs significantly influences the optimal latency
by adjusting the offloaded portion of tasks. In Figure 4, the
latency obtained in the Nk = 5 scenario is higher than that in
the Nk = 3 scenario due to the computing capacity limitation
of ESs (i.e., (13h)). This difference is evident from the bar
components of the graph. It is observed that the offloaded
portion in the Nk = 3 scenario is considerably higher than
that in the Nk = 5 scenario, confirming the effectiveness of
the proposed optimal task offloading solutions under the edge
computing capacity budget.

4) Impact of the ES’s processing rate and the UE’s energy
budget: Figure 5 illustrates how the computing capacity of ESs
and the UE’s energy budget affect e2e latency of UEs. From
the chart, it is evident that both the processing rate of ESs
and the energy budget of UEs significantly contribute to the
system’s performance in reducing latency. Specifically, as ESs
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Fig. 5: Impact of the ES’s processing rate on the obtained
latency for N = 6, Nk = 3 services.

become more powerful, i.e., with an increased processing rate,
the total latency of UEs gradually decreases. This observation
confirms that the task offloading solution operates correctly
and effectively. Regarding the energy budget of UEs, Figure 5
demonstrates that when the maximum energy consumption of
UEs increases, the latency is reduced. These results can be
clearly explained by (11) and (13g). When UEs have a larger
energy budget, the proportion of local processing increases,
resulting in a reduction in transmission latency for offloading
tasks to ESs. Consequently, the total e2e latency obtained
sustainably decreases. Once again, these results clearly demon-
strate the effectiveness of the proposed offloading scheme in
minimising the total e2e latency.

5) Impact of the task complexity on the cost metric: To
demonstrate the impact of task complexity (cycles/byte) on the
total cost considered (i.e., ηk), we conducted simulations with
different levels of task complexity and computing budgets of
ESs (i.e., Fmax

k ). Figure 6 shows how task complexity affects
the obtained cost. Clearly, as the task complexity increases,
a greater number of CPU cycles are required to execute a
particular byte of the task, the cost gradually rises. This is
because the required CPU cycles significantly contribute to the
processing latency at both the local level (UEs) and the remote
level (ESs), as modelled in (10). Therefore, in order to reduce
the cost, strategies such as reducing the task complexity or
increasing the computing capacity of ESs can be implemented.

6) Impact of the optimal service placement optimisation on
the cost metric: To demonstrate the impact of optimal service
placement on the considered cost, we conducted simulations
comparing scenarios with optimal service placement and with-
out service placement solutions. As depicted in Figure 7, the
optimal solution significantly enhances system performance by
consistently minimising the cost. Throughout the simulation,
the optimal service placement solution achieves nearly a 50%
reduction in cost compared to the non-optimal scheme. This
improvement is evident from the formulation of the cost metric
in (12), where the cost metric is the weighted summation of
total latency and the number of installed services in ESs. With-
out service placement optimisation, the number of installed
services in ESs remains unminimised, and the absence of the
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Fig. 6: Impact of the task complexity on the cost metric.
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Fig. 7: Impacts of optimal service placement optimisation on
the cost metric in the scenarios of N = 6, Nk = 3 services.

best service placement strategy fails to guarantee a reduction
in latency. Consequently, this increases the cost value in the
considered system.

7) Impacts of the sensing function on the cost metric:
To examine the impact of the sensing function of an ISAC-
based system on the overall performance, we log the total cost
value over the running time with sensing and without sensing
scenarios as shown in Fig. 8. As we can see from the figure, the
sensing function increases the cost metric by around 25%. This
result can be explained by the formulation of the transmission
rate (8), where the sensing reduces the transmission rate
by increasing the interference in the SINR calculation (i.e.,
(7)). The result also indicates that it is essential to design
an effective optimisation solution for ISAC-based systems to
mitigate the latency caused by the interference of sensing
signal.

V. CONCLUSION

We have explored the integrated challenge of sensing,
computing, and communication within service-oriented net-
works. Our investigation centres on a system model with
practical relevance for the deployment of ISAC-assisted edge
networks. These networks are equipped with dual-functional
base stations and support various computation-intensive, time-
sensitive services. The optimisation problem addressed in our
study not only aims to minimise the number of installed
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Fig. 8: Impacts of sensing function on the cost metric in the
scenarios of N = 6, Nk = 3 services, and Fmax

k = 10 GHz.

services at ESs but also seeks to reduce the e2e latency among
UEs. This is achieved while considering constraints such as
system budget and unpredictable environmental factors. To
tackle this challenge, we have devised an iterative algorithm
to determine optimal decisions regarding service placement
and resource allocation. Our simulation results underscore the
effectiveness of the proposed solution. A promising avenue for
future research involves developing machine learning-based
solutions for the mixed-integer problem in service placement,
especially for medium-to-large network sizes. Additionally,
exploring strategies for managing multiple sensing targets in
MEC-based systems presents another valuable direction for
future studies.
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APPENDIX

In this appendix, we provide fundamental inequalities based
on the principles of inner approximation [11], [39], which are
used to convexify constraints (13f) and (13g). In particular,
given the concave function f(x) =

√
x over x > 0, its upper

bounding convex function at the point x̄ > 0 is

h(x) ≤ f(x̄) +
∂f(x)

∂(x)

∣∣∣
x=x̄

(x− x̄) =

√
x̄

2
+

x

2
√
x̄
, (29)

which has been used in (19).

As the function g(x, y) =
√
xy is concave on (x, y) with

x > 0, y > 0, the following inequality holds true for all x >
0, y > 0, x̄ > 0, and ȳ > 0:

√
xy = g(x, y) ≤ g(x̄, ȳ) +

∂g(x, y)

∂(x)

∣∣∣
(x,y)=(x̄,ȳ

(x− x̄)

+
∂g(x, y)

∂(y)

∣∣
(x,y)=(x̄,ȳ

(y − ȳ) =
√
x̄ȳ +

√
y

2
√
x
(x− x̄)

+

√
x

2
√
y
(y − ȳ) =

1

2

(√
x̄√
ȳ
y +

√
ȳ√
x̄
x

)
, (30)

which has been used in (23).
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