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Abstract—The rapid implementation of the fifth generation
wireless networks has driven advances in digital twin (DT)
technique, which has been widely used, especially in healthcare.
However, the accessibility of data raises concerns about privacy,
security, and accountability among participants, affecting overall
security and performance of the healthcare DT system. In this
paper, we investigate a blockchain-based secure healthcare digital
twin data (HDTD) sharing framework to address data privacy
concerns. In the blockchain-based secure HDTD sharing model,
we propose the access control scheme through cloud storage
and attribute encryption to realize the secure data interaction
between different users. Based on this, in order to solve the
problem of missing valid data due to data tampering or loss with
limited resources, we design an HDTD missing value prediction
algorithm to meet the real-time requirements of data interaction
in DT. The experimental results show that compared with the
existing schemes, the proposed blockchain-based secure HDTD
sharing scheme has superior performance in improving data
security and reducing data interaction delay. The paper outlines
key technical challenges and future directions for blockchain-
based HDTD research.

Index Terms—Digital twin, healthcare, blockchain, data shar-
ing, missing value, prediction.

I. INTRODUCTION

THE global deployment of fifth generation wireless net-
works (5G) has stimulated research into sixth-generation

wireless networks (6G) to identify their requirements and
use cases. A prominent application of 6G is the digital twin
(DT), which has significant utility in digital healthcare. A
DT integrates a physical entity with its digital counterpart,
enabling bi-directional communication that fosters their co-
evolution. By harnessing advanced digital technologies, phys-
ical characteristics and relationships are translated into high-
fidelity virtual models. In healthcare, DT models accurately
reflect individuals’ physiological and genetic traits, thereby
facilitating diverse medical services such as disease prediction
and treatment simulation.

While DT has been implemented in some healthcare scenar-
ios using 5G, it has yet to leverage real-time synchronization
fully [1]. To enhance data accuracy and reliability, healthcare
digital twin data (HDTD) must be aggregated from various
patients and institutions. The limited computational resources
in typical medical facilities, combined with the extensive
nature of DT data, necessitate the distribution of computational
tasks across multiple edge nodes. This calls for robust data
sharing among medical devices, their respective services, and
healthcare data owners to support comprehensive lifecycle
management in healthcare. Consequently, substantial data
interactions throughout a healthcare DT’s lifecycle demand

meticulous attention to data integrity, security, and real-time
transmission capabilities [2]. Traditional 5G models often rely
on centralized data sharing, which may introduce security
vulnerabilities in DT applications. Thus, there is increasing
interest in employing 6G-enabled blockchain solutions to
create a decentralized, reliable framework for medical DTs,
addressing the need for high throughput.

Simultaneously, 6G’s enhanced connectivity expands the In-
ternet of Things (IoT) ecosystem, enriching healthcare DT data
sources via widespread sensing devices. Resource-constrained
healthcare devices, like wearable monitors, can use energy-
efficient protocols such as Bluetooth for data exchange. How-
ever, the complexity of wireless sensor networks, along with
the limitations of edge devices, heightens the risk of data
loss and tampering, adversely affecting the efficacy of DT
models. Therefore, implementing effective recovery strategies
for missing data is crucial to ensure the precision of DT model.

A. Motivation

To more effectively demonstrate the significance of this
study, we present a shared case of DT data in healthcare
scenarios in Fig. 1. To achieve optimal precision and reliability
for DT-based healthcare services, data is collected from mul-
tiple sources, including disparate devices, patients, and even
medical institutions. Furthermore, the necessity for extensive
training in DT models results in a significant increase in the
amount of DT required data [3].

Fig. 1. DT data sharing in healthcare scenarios.

(1) The DT model generated by medical devices offers
the unique advantage of providing accurate dynamic data
references, facilitating services such as medical monitoring,
diagnosis, and treatment simulation [2]. Specifically, shared
detection data from HDTD enables physicians to quickly
identify changes in patient status and trace physiological
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conditions. Multiple specialized healthcare professionals can
collaboratively analyze patient data to enhance diagnostic
accuracy and simulate various treatment options and their
potential effects on the DT, thereby reducing the side effects
of medical interventions.

(2) The healthcare DT model utilizes data from various
sources to predict health outcomes, offering a comprehensive
view that aids healthcare teams in making informed decisions.
Due to privacy and security concerns, data silos exist among
different equipment and data owners. To expedite the aggrega-
tion of DT data and model generation, it is essential to share
HDTD from various equipment and data owners in order to
meet the data requirements for DT-based services [2].

(3) There exists a collaborative relationship among different
DT service providers. Through HDTD sharing, healthcare
institutions can promptly obtain real-time health information
about patients, thereby forming accurate DTs that aid physi-
cians in developing personalized treatment plans. Pharmaceu-
tical institutions can leverage data from healthcare providers
and patients to conduct more precise clinical trial designs
and drug development. Computation centers can undertake
complex medical computational tasks. Regulatory authorities
require access to relevant data to ensure that medical products
and services comply with legal and regulatory requirements.

In this scenario, HDTD primarily derives from physiological
data provided by wearable devices, such as glucose monitors.
However, due to the inherent limitations of the device’s opera-
tional capabilities, it may be susceptible to data loss resulting
from availability and integrity attacks or malfunctions [1]. For
instance, the Dexcom G6 glucose sensor experiences a data
loss of 5% to 15% under availability and integrity attacks and
signal interference. The DT model may inadequately capture
real-world conditions, leading to biased decision-making. It
is therefore necessary to develop a secure method for sharing
HDTD and a recovery mechanism for missing HDTD in order
to enhance the quality of DT services. The requirements for
DT data in healthcare are summarized in Table I.

TABLE I
REQUIREMENTS AND ANALYSIS OF DT DATA IN HEALTHCARE

Requirements Analysis

Multi-Party Participation Sharing To create greater value for stakeholders in healthcare, HDTD must be shared
among different parties.

Low-latency Real-time Information
Update Sharing

In low-latency healthcare scenarios (e.g., real-time monitoring), sub-second
multiple sharing is required from data sources (e.g., sensors) to target
recipients (e.g., applications).

Support for Multiple Data Types HDTD encompasses various data types, including structured, semi-structured,
and unstructured data.

Scalability for Exponential Growth HDTD’s large volume necessitates solutions that support its exponential
growth.

Integrity Verification Participants in HDTD sharing cannot tolerate incomplete or forged data, as
it may lead to serious medical incidents.

Privacy and Security Measures HDTD is shared only with authorized parties that have owner permission, and
resource-constrained users cannot afford complex computations in privacy
protection schemes.

Missing Data Prediction As a key component of HDTD, sensor data from physical devices is often
susceptible to tampering or loss, affecting DT mapping. Therefore, solutions
should support predicting missing HDTD.

B. Existing HDTD Security Issues and Solutions

Since HDTD arises from various systems, it necessitates
central management, IoT device-based collection, and cloud-
based storage in accordance with conventional data-sharing
methods. The cloud subsequently incorporates the data with

external knowledge to deliver services to DT users. For
instance, a cloud healthcare system framework based on DT
healthcare was introduced in [4], enabling data sharing among
users through platform operators that manage medical cloud
services. However, centralized designs may introduce security
and trust risks in healthcare DT applications, such as node
failures and unauthorized data alterations. While distributed
database technology can improve latency and access speed by
geographically distributing data, it still adheres to a master-
slave architecture, creating a single point of failure that can
compromise the entire cluster. Additionally, increased system
complexity and communication overhead among nodes can
elevate failure rates, failing to meet the robustness and security
needs of healthcare scenarios [5].

Blockchain, as a distributed ledger technology, can establish
trust among anonymous users and ensure the security and
traceability of healthcare data by creating reliable transaction
records. Patients maintain control over their data, while med-
ical facilities can grant research institutions access to specific
data via smart contracts. In [6], a blockchain-assisted eHealth
framework was proposed to facilitate the sharing of medical
records among healthcare participants. However, blockchain
solutions fail to address the issue of data movement, particu-
larly when patients transfer between different medical institu-
tions, necessitating uninterrupted data sharing across various
organizations. This can lead to unnecessary communication
overhead. Hence, exploring integrated cloud-based solutions to
eliminate redundant data-sharing requests is crucial. The use of
cryptography in blockchain to enhance the privacy and security
of DT data has been widely validated, including attribute-
based encryption (ABE) [7] and proxy re-encryption (PRE)
[8]. In [8], the PRE scheme was used to manage manufacturing
DT data within cloud and blockchain environments. However,
the authority structures in medical contexts are more complex,
involving factors like patient identity and doctor authority,
and ABE can effectively address these issues. Traditional
ABE requires a central authority for key management, lim-
iting its interoperability across heterogeneous IoT systems.
Instead, blockchain can replace conventional central servers,
allowing information management and data sharing among
diverse systems. However, the high computational complexity
of ABE can place a burden on edge healthcare DT participants,
resulting in the need to outsourced computing resources.

In the healthcare DT lifecycle, data collection and uploading
are prerequisites for predicting the DT model. However, lim-
ited resources of edge devices constrain the implementation of
security measures, potentially exposing the system to integrity
attacks that could result in loss and tampering of healthcare
data used for DT [1]. Developing an analytical model through
machine learning (ML) to directly address missing data can
provide an effective solution [9], [10]. However, this approach
does not analyze variable relationships and may not be suitable
for DT requiring diverse data sources. An alternative method
is K-nearest neighbor (KNN) interpolation, which utilizes
correlations between examples. A prediction framework based
on KNN was introduced in [11] to predict missing diabetes
data. Nevertheless, KNN solutions often face inefficiencies
due to the time required to determine optimal parameters.
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Deep learning techniques, such as recurrent neural networks
and gated recurrent units (GRU), offer advanced solutions for
time series data and gradient issues, especially in missing
medical data. In [12], the authors employed GRU to predict
monitoring data loss in diabetic patients. However, these
neural network-based solutions also have their own drawbacks,
including difficulties in implementation on low-power devices
and reliance on large datasets for efficacy.

C. Our Contributions

Based on the above challenges, we propose a blockchain-
based healthcare DT architecture that allows for secure sharing
of HDTD and meets the processing requirements for time-
sensitive data. We investigate the security issues encountered
by the above architectures and propose a strategy based on
ABE and fine-grained access control to ensure the security of
HDTD. In addition, we investigate the resource constraints and
massive data interaction problems that the proposed encryption
algorithm may encounter in HDTD, and propose a missing
HDTD prediction algorithm to balance the real-time require-
ments and privacy protection of DT data, and further ensure
the accuracy of DT model. Finally, simulations are performed
to verify the validity of our proposal, and we discuss future
research directions.

Fig. 2. Framework of blockchain enabled secure sharing of HDTD. Partici-
pants and physical devices can establish ownership of the HDTD by sending
the hash value, timestamp, and owner’s signature to the consortium blockchain
network via a client. The network verifies this information and packages it
into new blocks. Subsequently, the HDTD is uploaded and stored in the cloud.
The HDTD owner can set pricing through tokenization, and sharing occurs
based on ABE and smart contracts.

II. OVERVIEW OF BLOCKCHAIN BASED FRAMEWORK OF
SECURE HDTD SHARING

The diagram in Fig. 2 illustrates our proposed framework
for securely sharing HDTD using blockchain technology. The
framework involves various participants, a client, physical
device, and cloud storage.

A. Participants of Blockchain

Typically, participants in healthcare DT include healthcare
institutions, computing centres, regulatory authorities, patients,
pharmaceutical institutions, and others. They serve as crucial

contributors to HDTD sharing as well as primary members
of a consortium blockchain network. Only authorized users
are allowed to join the network to ensure the security of data
sharing. The orderer is responsible for ensuring that transac-
tions on the blockchain network are packaged into blocks in a
consistent order, and then broadcast to other peers. In addition
to the orderer, which consists of a certificate authority and
orderer peers, each participant includes a certificate authority,
leader peer, endorsement peer, anchor peer, committing peer,
and ledger [5], [8]. The peers within a participant are assigned
various responsibilities. Anchor peers act as the participants’
entry nodes into the network and provide a stable identity. The
endorsement peer is accountable for verifying and endorsing
transactions. In the blockchain system, transactions need to
be approved by a designated number of peers. This shows the
validity and legality of the transaction. The committer peer
is accountable for the final confirmation and endorsement of
transactions. In addition, the leader peer is responsible for
the creation of new blocks and informing other peers on
the network. The sequencing of transactions from clients is
the responsibility of the orderer peer in Hyperledger Fabric
[13]. To maintain consistency across all peers, transactions
are ordered according to specific rules.

B. Client and Cloud Storage

Clients are responsible for creating transaction proposals,
generating transactions, and sending them to orderer peers in
our blockchain-based secure sharing framework. The HDTD
sharing application runs on the client side, connecting to
an organization’s peer to communicate with the blockchain
network. Clients also upload, preprocess, and encrypt data for
physical devices and can manage and distribute the HDTD
by connecting to the cloud. Cloud storage provides various
services, including object, file, block, and archive storage.
Unlike local storage, it offers benefits like scalability, high
availability, and multi-device synchronization.

III. IMPLEMENTATION METHOD

The proposed framework consists of five steps for the
interaction between its components: ownership determination
of HDTD, HDTD storage, HDTD tokenization, smart contract
design, and smart contract operation.

A. Ownership Determination of HDTD

The transmission of the hash value, timestamp, and signa-
ture of HDTD by its owner is mandatory for the consortium
blockchain network to verify HDTD’s ownership. When the
blockchain network receives the hash value of HDTD, its
immutability is guaranteed owing to the irreversibility of hash
values and the incorruptibility of blockchains. Depending on
the timing of health-related information, it may be classified
as timely or non-timely data. Time-sensitive data comprises
chiefly physiological data gathered by sundry sensors, such as
glycated haemoglobin. Non-time sensitive data encompasses
fixed data, such as genetic information. In the sphere of
healthcare DT, the preponderance of the interchanging data
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entails time-sensitive data. In light of this, we have formulated
two regulations for block creation that enhance recognition and
validation of HDTD ownership and meet transaction demands
for time-sensitive information. The two regulations are as
follows.

1) Level Classification: The HDTD comprises two distinct
levels: low-level and high-level, referring to the non-time
sensitive and time-sensitive data, respectively. The level of
HDTD can be chosen by its owners according to their specific
needs. This offers HDTD owners the flexibility to choose the
category that suits them best.

2) Fee and Priority: The HDTD owner can pay a service
fee to annotate high-level data. The orderer peer collects the
service fee and subsequently prioritizes high-level data with
higher service fees. Low-level data cannot be annotated using
the service fee. Additionally, low-level data in new blockchain
blocks must exceed a specific proportion.

The transaction initiated by the HDTD owner to establish
ownership on the consortium blockchain network includes
several key components. Specifically, it incorporates the hash
of the HDTD provided by the data owner, the timestamp
indicating when the transaction took place, high-level data
that is relevant to the transaction, the service fee paid by
the HDTD owner, and the signature of the HDTD owner for
authentication purposes.

B. HDTD Storage

The cloud offers HDTD owners adjustable storage amenities
and eradicates the obstacle of HDTD local storage quantity
restraints. The HDTD owner pays the cloud for the service
based on the required storage space and usage time. The
blockchain procedure of transaction between the HDTD owner
and the cloud is as follows.

1) The HDTD owner submits transactions related to pay-
ment for HDTD storage to the consortium blockchain. These
transactions include several key elements: the account of the
HDTD owner, the account associated with the cloud service,
the size of the storage space utilized, the duration for which
the storage is required, and the amount of payment involved
in the transaction.

2) The transaction sent by the HDTD owner is audited,
verified, and then packaged into a new block. When this
new block is connected to the blockchain, the transaction is
recorded in an unchangeable form.

3) The cloud must communicate with the consortium
blockchain network upon receipt of a data storage request to
confirm that the owner of the HDTD paid for the storage. If
the response from the network confirms that the fees have been
paid, the HDTD owner will be granted permission to upload
their HDTD.

4) The HDTD owner encrypts HDTD using the ABE
encryption algorithm and confuses the key [13]. Finally, it
uploads the encrypted HDTD to the cloud.

C. HDTD Tokenization

In blockchain, data tokenization converts real-world data or
assets into digital tokens, representing tangible items, rights,

certificates, virtual currencies, and more, facilitating tracking,
recording, and trading. The HDTD tokenization process in-
volves the following steps:

1) An HDTD owner submits a transaction authorizing the
HDTD to the consortium blockchain. This transaction includes
the owner’s account, the cloud storage address of the HDTD,
the HDTD hash, the decryption policy, and the associated
price.

2) The consortium blockchain network interacts with the
cloud for transaction auditing. Upon signature verification
and smart contract compliance, an orderer peer packages the
transaction into a new block. Other peers collectively assess
the block’s validity, including signature checks and policy
adherence. Once consensus is reached, the block is added to
the blockchain, making the transaction immutable.

3) After the transaction is recorded, the HDTD is finalized
as a data asset.

To protect the HDTD owner’s interests, we establish three
levels of access: “Fully Open,” where HDTD is unrestricted;
“Partially Open,” where HDTD is shared with select autho-
rized parties; and “Not Open,” where HDTD is not shared
at all. Access permissions are implemented through policies
defined by the owner.

D. Smart Contract Design

Smart contracts are programs designed to automatically
execute contract terms on blockchain, aiming to automate and
enforce agreements without intermediaries [5]. Their creation
involves negotiating transaction costs and actions between
HDTD owners and users. Once agreed, these terms are con-
verted into code with specific execution outcomes, verified
through the blockchain framework to ensure legitimacy and
security. Finally, both parties review and sign the agreement
before its deployment on the blockchain.

E. Smart Contract Operation

If the smart contract meets the specified conditions, the re-
sults will be executed automatically, triggering the application
programming interfaces of cloud storage and blockchain to
complete communication via network protocols. The input
comprises transactions created by both HDTD owners and
consumers. The output shall detail the execution status of the
smart contract. The smart contract operation process can be
summarized as an HDTD user sending transaction regarding
data payment to the blockchain network. As the transaction
is entered, the state of the smart contract changes and the
smart contract begins execution. The HDTD owner then sends
the data to the HDTD user via the cloud. To ensure the
confidentiality of data, the transmission process uses ABE,
as shown in Fig. 3. The HDTD transmission process is as
follows.

1) An HDTD owner generates a random key k, and then
use it to encrypt its data with a symmetric algorithm as
D = Enc

k
(HDTD). When k is encrypted using a specific

policy, the HDTD owner can ensure that only HDTD users
who meet the policy can access the data. The HDTD owner can
complete the encryption itself, but if the HDTD owner needs
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Fig. 3. HDTD sharing scheme based on ABE.

to outsource encryption calculations, the HDTD owner need
to confuse k to prevent the outsourced calculation undertaker
from illegally obtaining data [13]. We define the confused k
as C and the access policy as Policy. We define C and the
Policy for outsourcing encryption as CT , which contains the
hidden data key, data attributes, the third-party authorization
agency that signed the attributes, and the decryption time of
the authorized user. After receiving the data upload request, the
outsourcing computing undertaker executes outsourcing en-
cryption with CT . Finally, the HDTD encrypted and uploaded
by the HDTD owner is expressed as D = Enc

CT
(HDTD).

2) HDTD users who want to obtain data must first obtain
their user attributes from a third-party authorization agency
(e.g, encryption service provider) and prove that they have
the corresponding permissions. The third-party authorization
agency will calculate the key to obtain Kuid,u and Luid,u

for the attribute u of each HDTD user uid. The HDTD user
then performs an HDTD query to the blockchain network and
obtains the ciphertext.

3) The HDTD user uses Kuid,u and Luid,u to decrypt the
ciphertext and obtain the data key k. Then, the HDTD user
uses k to decrypt the data to obtain the original HDTD.
Similarly, the HDTD user can also outsource decryption
calculations. First, it needs to generate an authorization key to
the outsourcing computing undertaker, and then preprocess the
ciphertext sent to the outsourcing computing undertaker. The
outsourced calculation undertaker uses the authorization key
to complete the calculations and transmits the median result
to the HDTD user. Finally, the HDTD user can easily decrypt
the ciphertext.

During HDTD sharing, the cloud interacts only with cipher-
text, avoiding access to private data. After receiving encrypted
data, HDTD users relay related transactions to the blockchain
network. Once verified and recorded, payment is automatically
executed within the smart contract.

IV. PROPOSED MISSING VALUE DESIGN OF HDTD
In Section III, we have achieved secure sharing of

blockchain-based HDTD. In addition, to mitigate the impact
of data loss on DT modeling and further improve the quality
of healthcare service, we propose a prediction method for
HDTD called prediction LSH, which is derived from locality-
sensitive hashing (LSH) technology [14] and can be summa-
rized as follows:

Step 1: Modelling Healthcare Surveillance Data. In this step,
we create a DT data model using monitored human physiolog-

ical data, taking diabetes monitoring data as an example. We
construct a matrix to represent this data over time, where each
row corresponds to daily monitoring data from sensors and
each column represents different time windows across various
days. To account for significant variations in the HDTD over
time, we normalize the matrix so that all values fall within
the range of 0 to 1. Each normalized row is treated as an
individual entry in the model.

Step 2: Entry Index Creation. Following the DT data model,
we employ LSH to create an index for each entry. Each
element of the normalized matrix is transformed into a vector
before indexing. This process involves generating multiple
random vectors with values between -1 and 1, where the
number of dimensions corresponds to the number of columns
in the matrix. We then compute the dot products of these
random vectors with each entry’s corresponding vector. If the
result of the dot product is positive, the sub-index for that
entry is set to 1. Otherwise, it is set to 0. This results in a
series of sub-indices that together form a vector representing
the entry’s index. We repeat this for all entries to create a
comprehensive index representation.

Step 3: Missing Value Prediction. We generate a hash table
for all item indices obtained in Step 2 and replicate this
process multiple times to create several hash tables. According
to the principles of LSH, if two index values match in
any of the hash tables, it indicates that the corresponding
entries are similar. This similarity indicates that the associated
HDTD is consistent over the observed days, allowing effective
prediction of missing values within the specified time window
and accurately forecasting the missing data points for the DT
model.

V. PERFORMANCE EVALUATION

To validate the proposed framework and algorithm, we
analyze the security of the HDTD shared framework in Sub-
section A. Additionally, we develop an evaluation system using
Hyperledger Fabric and Alibaba Cloud [8] to assess time
sensitivity. In Sub-section B, we evaluate the efficiency of the
proposed HDTD algorithm for predicting missing values using
medical monitoring data simulations from the BIG IDEAs Lab
[15]. The study employs the Dexcom G6 continuous glucose
monitor and the Empatica E4 wearable device, which measure
interstitial glucose at five-minute intervals and electrodermal
activity at 4 Hz. Data collected by these sensors is shared
through a decentralized application developed in Golang.

A. Performance and Analysis of HDTD Sharing Framework

1) Security Analysis: The essential prerequisites for the
secure sharing of DT data have also been described in [3],
including data accessibility, integrity, confidentiality, and the
capacity to safeguard privacy. Compared to conventional cen-
tralized methodologies that rely on authoritative third parties
and distributed databases that rely on a master-slave architec-
tural framework, the blockchain-based distributed methodol-
ogy utilized in our framework has superior security [13].

In terms of availability, our framework enhances security
against denial-of-service attacks by eliminating single points
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of failure, as the HDTD shared service only fails when all
blockchain nodes are unavailable. To ensure data integrity
and mitigate data tampering attacks, HDTD owners should
hash the data before uploading it to the cloudand encapsulate
ciphertext and hash when it is published to the blockchain.
HDTD users can then verify the source and integrity using
signatures and hashes. To protect data confidentiality and
privacy from unauthorized access, our framework employs
an ABE encryption scheme for encrypted data in the cloud,
while outsourced computation utilizes a confused key and
access policy. The security of the ABE encryption scheme has
been fully demonstrated in [13]. The design of outsourcing
encryption and decryption tasks has been incorporated into
the framework, but this process does not reveal additional
information to potential attackers. Consequently, the under-
lying security assumptions remain valid. Furthermore, in our
framework, smart contracts facilitate the automatic execution
of transactions, thereby reducing the risk of human error.
Determining ownership can detect of any attempt to change
owner information, effectively preventing fraudulent behavior
[13].

Fig. 4(a) illustrates the secure throughput achievable by our
proposed framework under the three default consensus mech-
anisms of Hyperledger Fabric: Solo, Raft, and Kafka [13].
In this scenario, ten physical medical devices act as clients,
while three malicious devices exist to perform blockchain
operations of data upload, update, and query. Notably, our
framework demonstrates similar secure throughput across dif-
ferent consensus mechanisms, reflecting its robustness. Be-
cause uploading and updating blood glucose and skin electrical
activity data requires changes across all blockchain nodes,
and data queries only retrieve results and are not committed,
performance differences occur.

Fig. 4(b) shows the computational costs of encryption and
decryption for the outsourced ABE scheme simulated with
the Charm-Crypto 0.50 framework [7], we can observe that a
linear increase in cost with the number of attributes due to the
additional computational steps. The higher cost of decryption
stems from the need to verify user attributes for access com-
pliance, which requires additional computations to associate
the user’s private key with the ciphertext. Furthermore, our
proposed ABE scheme achieves an average reduction of 57.6%
in computational time compared to original ABE scheme.

2) Time Sensitivity Evaluation: Our primary objective is to
facilitate practical real-time data sharing. Thus, our proposed
solution provides a streamlined approach for evaluating data
without requiring HDTD encryption and decryption processes,
as compared to the methodologies in Section III. Fig. 4(c)
shows the latency of our proposed blockchain-based sharing
framework when sharing blood glucose and electrodermal
activity data between one to ten physical medical devices.
Obviously, as the number of physical medical devices in-
creases, so does latency of HDTD sharing in our framework,
mainly due to the fact that the consensus mechanism typically
requiring more time to validate transactions. In contrast, the
latency of the distributed database solution based on Apache
Cassandra [5] remains relatively stable as the system can intro-
duce additional nodes to handle requests, thus distributing the
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Fig. 4. Performance of HDTD sharing framework.

load. While the distributed database solution offers advantages
in terms of performance and data processing speed, it may not
meet the security, transparency, and trust requirements that are
essential in healthcare scenarios. The sub-second latency in the
simulation indicates that our proposed blockchain-based shar-
ing framework allows for multiple HDTD sharing per second
between different devices, thus meeting the exponential time
sensitivity requirements of HDTD [2]. Fig. 4(d) demonstrates
our proposed framework meets the secure HDTD sharing
requirements listed above.
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Fig. 5. Prediction accuracy of vital sign value with respect to monitor hours.

B. Performance and Analysis of Prediction LSH

To demonstrate the Prediction LSH scheme’s effectiveness,
we conduct experiments using real blood glucose variability
and wearable device data from the BIG IDEAs Lab [15]. The
data used in the simulation consisted of interstitial glucose
concentrations and electrodermal activity. Evaluation indica-
tors include time cost, mean absolute error (MAE) and mean
absolute percentage error (MAPE). Our goal is to pursue the
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lowest values of these three indicators as much as possible.
Comparative methods use GRU [12] and KNN [11].

1) Prediction Accuracy Evaluation: High prediction accu-
racy is crucial for healthcare DT to accurately assess physical
entities. The missing value prediction algorithm utilizes a hash
function value of 25 and a hash table size of 30. This study
evaluates the prediction accuracy of interstitial glucose and
electrodermal activity across different monitoring durations by
partitioning daily data into hourly windows.

As shown in Fig. 5, the Prediction LSH scheme out-
performs GRU and KNN in accuracy across different time
windows. Its superior performance stems from LSH’s ability
to identify the most similar days based on daily interstitial
glucose and electrodermal activity data, demonstrating strong
applicability for periodic HDTD.

2) Time Cost Analysis: Our Prediction LSH scheme is
time-efficient compared to complex deep learning methods,
as it allows for offline HDTD index creation with a time com-
plexity of O(1), leading to an overall algorithmic complexity
of O(n) that meets the low time cost requirements of HDTD.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

This article discussed the need for data sharing in the
healthcare domain and proposed a secure sharing framework
and implementation methodology for supporting multi-party
secure data interactions. The framework was designed us-
ing blockchain, cloud storage, and outsourced encryption-
decryption computation for ABE. To address the problems
of data tampering and data loss caused by limited resources,
we proposed a missing value prediction algorithm based on
time-aware LSH. The study demonstrated the effectiveness
of our proposed approach for DT in healthcare scenarios.
Additionally, there are still some challenges and potential
directions for future research:

1) Development of Hybrid Models in ML: The development
of hybrid models that combine the advantages of different
ML algorithms can improve prediction performance. However,
since data on the blockchain can come from multiple sources
of different qualities, there is a risk to the model’s generaliza-
tion capability [10]. To address this issue, techniques such as
cross-validation or regularization can be considered to enforce
model simplification and enhance generalization ability.

2) Processing Non-Periodic Time Series DT Data: ML
anomaly detection can estimate true values from altered or
incomplete non-periodic data, but this presents challenges for
users with limited computing resources. In the future, task
offloading strategies can be considered in edge computing
scenarios [1].

3) Data Consistency: The data uploaded by the user is
not synchronized, resulting in inconsistency between DT sim-
ulations and physical entities. Although controlling upload
rate can reduce large-scale asynchronous upload and mitigate
the impact of traffic attacks, it cannot meet the real-time
requirements of DT. It may be beneficial in the future to
consider utilising edge artificial intelligence for preliminary
data processing and analysis at edge nodes in close proximity

to the data source. This could potentially reduce the volume
of data that needs to be uploaded to the central server, thereby
enhancing response speed [2].
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