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Abstract—The quantification of physical activity energy ex-
penditure (PAEE) offers significant benefits for healthcare mon-
itoring and has the potential to promote healthy and active
aging for elderly individuals. With recent advancements in quan-
tum information and computation, quantum machine learning
(QML) has emerged as a tool capable of improving upon the
measurement of PAEE. In this paper, we propose a hybrid
machine-learning model to predict PAEE. This model specifically
leverages a classical long short-term memory (LSTM) model
integrated with a variational quantum circuit (VQC). This model,
which we refer to as the enhanced quantum long short-term
memory linear (eQLSTML) model, was subsequently trained
and tested using the publicly available GOTOV Human Physical
Activity and Energy Expenditure Dataset for Older Individuals.
Upon performance comparisons between the classical LSTM and
proposed eQLSTML models, our findings suggest that the eQL-
STML modeling approach demonstrates superior performance
compared to classical machine learning methods, thereby holding
a promise for personalized healthcare monitoring and promoting
healthy aging in the older population.

I. INTRODUCTION

Preserving health and functional mobility is paramount for
maintaining a high quality of life, especially from the perspec-
tive of healthy aging. To date, there have been an increasing
number of studies centered around the positive impacts regular
moderate-intensity exercise has on older individuals, where
the quantification and monitoring of physical activity energy
expenditure (PAEE) was a key factor in promoting physical ac-
tivity [1]. Moreover, additional work has shown that the mea-
surement of indirect calorimetry through wearable accelerom-
eter sensors is an affordable and effective method for PAEE
estimation in older people [2]. More specifically, a combina-
tion of accelerometer data with physiological measurements
(i.e., heart monitoring) has provided reasonable estimations
on PAEE through linear and non-linear modeling methods.
Furthermore, the application of deep learning methods has
also been applied to the estimation of energy expenditure
in individuals. For example, the application of artificial [3]
and convolutional [4] neural network models have since been
proposed to predict an individual’s energy expenditure through
wearable sensors. More recently, a recurrent neural network
employing the use of a gated recurrent unit has been used to

model PAEE in elderly individuals with high accuracy through
the use of raw sensor and participant-level data [5].

In recent years, the development of quantum-based hard-
ware and algorithms has led to a subfield of computing called
quantum machine learning (QML). QML leverages the unique
properties of quantum systems, such as superposition and
entanglement, to develop novel algorithms for complex tasks
beyond the capabilities of classical machine learning. One
promising technique within QML is the variational quantum
circuit (VQC) [6]. The VQC is a special type of quantum
circuit where the parameters are tunable and optimized us-
ing classical algorithms to accomplish a desired outcome.
This approach has shown promise in various applications in
terms of expressive power by leveraging the fundamentals
of quantum mechanics, with examples including quantum-
based convolutional neural networks [7] and recurrent quan-
tum neural networks [8]. In recent years, a quantum-based
LSTM (QLSTM) model has been proposed for time series
data, where VQCs have been used in place of the classical
neural layer [9]. Other work [10] has proposed a linear-
enhanced quantum LSTM (L-QLSTM) model, which utilizes a
specialized embedding layer to achieve the input’s dimension
transformation to the expected output’s dimension, for the
practice of carbon price forecasting.

This paper proposes a novel hybrid enhanced quantum
long short-term memory model which consists of a linear
embedding layer, quantum angle embedding, and a variational
quantum circuit (VQC). This model, which we refer to as
eQLSTML, is applied to publicly available data and forecasts
PAEE in elderly individuals. The main contributions of this
paper are:

o The proposal of a hybrid quantum machine learning
model that utilizes specialized data preprocessing of
down-sampling using standard deviation aggregation to
predict the PAEE for elderly individuals.

o Investigation the isage of VQCs with a controlled x-
axis rotation gate (CRX), for stronger entanglement [11],
and a circuit block connectivity pattern to offer better
expressibility (i.e., the ability of the circuit to create pure
states which are a good representation of the Hilbert
space).



II. DATASET

In this work, experimental data was obtained from the
Growing Old Together Validation (GOTOV) study which is
open access through the 4TU data repository [12]. This dataset
was specifically created to aid in the development of models
for both activity recognition and energy expenditure estimation
for an aging population [5], [13]. The dataset incorporates both
indirect calorimetry measurements and data from accelerom-
eters worn on different body locations such as the ankle and
Wwrist.

A. Overview

The GOTOV study consists of 35 individuals (14 females,
21 males) mainly from Leiden, Netherlands who are between
60 to 85 years old. The statistical overview of participant-level
data is shown in Table 1.

TABLE I: Statistical information collected while performing
16 activities. SD - standard deviation, EEm - energy expen-
diture measurement, BMI - body mass index, BR - breathing
rate.

Mean SD

Age 65.7 5.0
Height (cm) 174.5 7.9
Weight (kg) 83.1 11.5
BMI (kg/m) 27.2 2.7
EEm (Kcal) 3.8 1.1
BR (s) 0.31 0.04

In total, the participants engaged in 16 indoor and outdoor
activities over a duration of 90 minutes. Indoor activities
included resting postures (i.e., sitting and standing), stair
climbing, and household chores (i.e., washing dishes, and vac-
uuming), while outdoor activities included walking at different
paces and cycling. It is noted that only 25 participants were
involved in outdoor activities due to weather limitations.

B. Devices and locations

The experiment used a set of devices that included an
accelerometer and additional sensors to measure physiological
signals like oxygen consumption, carbon dioxide production,
breathing rate, and heart rate. We note that in this paper, we
restrict our focus to data coming from accelerometers and
indirect calorimetry.

Ankle and wrist-worn GENEActiv accelerometers captured
the activity levels and movement patterns of the partici-
pants. These accelerometers recorded tri-axial acceleration
data within an expected uncertainty of +8 g and a sampling
rate of 83 Hz. Sample data from each accelerometer axis
(ankle and wrist) is shown in Figure 1.

Indirect calorimetry measurements were performed using
a COSMED K4b2 [14] system which measured breath-by-
breath volumes of oxygen (O2) and carbon dioxide (COs)
throughout the activities, with a brief pause between indoor
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Fig. 1: Example showing raw data measured from ankle and
wrist devices for household and walking.

and outdoor sessions. The system includes a mask connected
to a portable unit that housed O- and C, analyzers, barometric
sensors, and processing electronics. These analyzers produced
the measurement for O2, and CO4 exchange, allowing for the
calculation of the energy expenditure measurement (EEm),
along with metabolic equivalents. The EEm output served
as our target variable for our PAEE modeling. Notably, the
sampling rate of this signal matched the participant’s breathing
rate, resulting in a variable sampling rate averaging around 0.3
Hz.

III. QUANTUM CIRCUITS

A Quantum circuit is a sequence of quantum gates that
perform a desired computation. These quantum gates operate
on quantum bits (i.e., qubits), which exist in both the 0 and 1-
bit states simultaneously via a superposition. This generalized
state can be defined as

) = a|0) + B[1) M
where « and [ are the probability amplitudes of the |0) and
|1) states, respectively, such that |a?| + |3|? = 1.

A. VOCs

VQCs are quantum circuits with adjustable parameters that
can be optimized iteratively through parametrized quantum
gates [15], and have gained attention due to their robustness
against quantum noise in the ever-growing Noisy Immediate-
Scale Quantum era [16]. To date, VQCs have been imple-
mented in solving problems for a diverse range of areas,
such as function approximation [6], quantum chemistry [17],
generative modeling [18], and optimization [19]. Furthermore,



other work has shown stronger expressive power of VQCs
in comparison to classical neural networks. Some noteworthy
examples include the usage of a multi-parameterized quan-
tum circuit as a simulator for probability distribution [20]
and quantum annealing strategies coupled with entanglement
methods in intractable classical problems [21].

In Figure 2, we present a simple circuit diagram of a VQC
consisting of four qubits. As seen in the figure, the initial
inputted states are set to |0) and proceed through the circuit
to two unitary operations, where we assign x and 6 as arbitrary
parameters of their respective variational gate. Once these
operations are completed, each qubit is then measured.

0 —

0
U(z) u(e)

0

0

Fig. 2: Example of VQC architecture for a quantum circuit
consisting of four qubits. U - unitary operation, x, 6 - arbitrary
variational gate parameter.

IV. QUANTUM LONG SHORT-TERM MEMORY AND LINEAR
ENHANCED LAYERS

Quantum Long-Short Memory (QLSTM) is a quantum-
based version of the classical LSTM model, where the key
distinguishing factor is the replacement of VQCs in different
gates in the circuit. In QLSTM, the implementation of VQCs
has been shown to play an essential role in the extraction of
feature data and compression of data, along with the accel-
erated learning ability and enhanced stability for convergence

[9].
A. Model Architecture

While QLSTM demonstrates effectiveness in time series
forecasting with regular features, limitations arise due to qubit
usage during the data encoding and compressing process.
As QLSTM uses a one-to-one mapping scheme that requires
encoding both hidden states (with p hidden units) and input
features (with ¢ features) to use (p + ¢) qubits in VQC.
However, the output dimension needs to be matched with the
hidden state of ¢ units, resulting in not only wasted quantum
information for the remaining qubits during training but also
to ineffective qubit usage that can hinder the model’s learning
ability. To combat this issue, a linear-layer embedding scheme
was recently proposed which can significantly improve the
QLSTM performance with effective usage of several qubits
[10]. The linear embedding layer acts as a feature compressor,
transforming input features with n-dimensions into a target

dimension m using matrix multiplication. The feed-forward
pass formulation is shown as:

Le(vt) (2)
fth( 1(VQC1(z))) 3)
it = 0(La(VQC2(2t))) 4)
¢ = tanh(L3(VQC3(z:))) (5)
= fi®ci1+it @¢ (6)
or = o(Ly(VQC4(z))) @)
ht = 0y ® tanh(c;) (8)
Yr = Lo(ht) )

where L, is the linear embedding layer applied to the concate-
nated vector, z; represents the compressed output of a function
of Le, v¢, ft, 14, Gt ¢ty 01, hy, and y; represent the forget gate,
input gate, candidate cell state, cell state, output gate, hidden
state, and output, respectively, at time step ¢. ¢ denotes the
sigmoid activation function, and ® represents element-wise
multiplication. {L,,} correspond to the set of linear layers
applied after VQCs’s output m = (1,2, 3,4)

Our proposed model takes into account this well-established
embedding approach, but in different implementations. Specif-
ically, our model employs separate feature embedding layers
before and after each variational quantum layer instead of
using a shared embedding layer before and a separate embed-
ding layer after each VQC. These layers function as feature
maps, transforming the input data vector v; = [hy — 1, x¢] in
which h; — 1 represents the hidden state at the previous time
step and z; represents the current input into a compressed
feature representation denoted as z; ; for VQC;. This strategy
of employing separate embedding layers allows for capturing
non-linearities effectively and each layer can learn a distinct
mapping specifically tailored to the corresponding VQC. This
ultimately allows the model to better capture the intricacies
of the data relevant to each quantum circuit. After the VQC
layer, another separate embedding layer is used to map the
VQC output to h;. This preference stems from the analogy
between VQCs in our proposed eQLSTML model and gates
within a traditional LSTM. Similar to how distinct LSTM
gates handle different functions, each VQC serves a specific
purpose since a single, shared linear embedding layer wouldn’t
be able to effectively extract diverse information tailored to the
unique functionalities of each VQC. Consequently, employing
separate linear embedding layers after the implementation of
the VQCs proves to be a more suitable approach, allowing
the model to capture the nuances of the data relevant to each
quantum circuit. We present a circuit diagram showing the
implementation of our proposed eQLSTML model utilizing an
enhanced layer embedding before and after VQCs in Figure
3.

B. VQC blocks

The VQC is comprised of three main components; the
embedding layer, the variational layer, and the measuring
layer. Quantum embedding refers to the process of encoding
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Fig. 3: Architecture of our proposed eQLSTML model with
separate embedding layers before and after each VQC block.

classical data into its quantum representation. This embed-
ding is done through a quantum feature map. The feature
map acts as a translator converting classical data into a set
of gate parameters, ultimately generating the corresponding
quantum state. The quantum embedding technique used in
the proposed model is angle embedding, which is the most
prevalent encoding approach because of its simplicity and high
efficacy [22]. In this encoding technique, the encoding process
for classical input data x is done by single qubit rotation gates.
Each element within the input vector determines the rotation
angle of its corresponding gate (e.g., a rotation gate R.). This
encoding method requires n qubits or more to encode n input
variables. Mathematically, this relationship can be expressed
as:

where x is the classical input, R,, is selected rotation matrix
in which m = x,y, z.

Within a VQC, the variational layer plays a pivotal role in
achieving accurate learning. This variational layer performs the
entanglement and rotation of qubits from a reference state to a
target state that facilitates non-linear and complex information
mapping. Hence, the variational layer’s mapping properties are
significant factors that influence the accuracy of prediction
made by the Variational Quantum model. To achieve the
optimal performance for the eQLSTML, this work proposes
enhancements to the variational layer such as the usage of
controlled X-rotation (CRX) for quantum entanglement tech-
niques and circuit block for quantum bit connectivity patterns.
The changes can improve the ordinary variational layer in the
following ways. Firstly, the substitution of CRX gates allows
quantum bits to take advantage of quantum entanglement as
it allows the performance of variational rotations, and the
quantum entanglement process, to happen at the same. Ad-
ditionally, compared to the CNOT gate the circuit employing
CRX is proved to exhibit superior expressibility and entangling
capability. Furthermore, the CRX gates offer VQCs a larger
effective number of parameters for the same number of gates
which allows the circuit to explore a broader range of quantum
states and more success in creating entanglement. Secondly,
we used the circuit block connectivity between qubit pairs.

The circuit block configuration is arranged in a natural way
for a set of qubits to form a closed loop. More precisely,
each circuit block within this structure incorporates regions of
consecutive nearest-neighbor interactions complemented by a
non-local interaction that establishes cyclic connectivity. This
establishes increasing connectivity that can possibly lead to
stronger entangling capacity and more relatively favorable
expressibility while maintaining a lower cost of training in
terms of circuit complexity and number of parameters [11].
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Fig. 4: Strongly entangled controlled-X C'RX with circuit
block connectivity interaction configuration in the proposed
variational layer.

Lastly, the measurement layer is the measurement of each
VQC block after the computational processes. In the proposed
model, the measurement to be considered is computational
basis state probabilities in Pauli-z operator. Expectation values
can be computed numerically on classical computers through
quantum simulator software packages that offer zero-noise
quantum computation. However, on real quantum devices,
these values are typically estimated statistically through re-
peated measurements. The measurement process yields a
fixed-length vector and will be further processed by the
classical computer for prediction purposes.

C. Optimization

Similar to classical machine learning models, the eQLSTML
is trained to work with data-driven tasks. This learning process
involves minimizing the loss function L(#) also known as
the objective function. In this paper, we used gradient-based
algorithms to iteratively optimize VQC parameters. In this
approach, the parameters are iteratively adjusted towards the
direction that leads to the most significant decrease in the loss
function, generally expressed as:

05 < 0; —nVa, L(0) (11)
where Vy is the gradient and 7 is the learning rate.

The parameter-shift method, a type of forward-mode au-
tomatic differentiation [6], was employed in the optimization
procedure to calculate the analytical gradient of the VQCs. The
calculation for the gradient of a VQC following the parameter-
shift method can be done via:

Vof(e,6) = 5[0+ )~ f(z,0 - 7))

where f(x,0) is the output function.

(12)

D. Training and testing method

The training and testing process of our model employed the
cross-validation method of leave one subject out (LOSO-CV)



to simulate model generalizability. In this approach, we train
the model using data from all participants except for one that
is left for the test set. This process is repeated to ensure all
participants is tested separately. The LOSO-CV is used in or-
der to minimize potential training set leakage that can occur in
standard cross-validation techniques. Additionally, to monitor
the performance of the model during the training process, a
validation set comprising of two participants was used. These
validation sets were randomly picked for each participant but
stayed consistent across all model configurations to facilitate
unbiased comparison.

V. RESULT AND DISCUSSION

This section will discuss our findings from experiments
on the proposed model eQLSTML on a quantum circuit
consisting of 6 qubits for the LSTM (see Figure 4). The
performance will be compared with certain cases to provide
comprehensive findings on how effective our proposed models
are for energy expenditure prediction.

A. Performance of classical LSTM and proposed eQLSTML

Model performances are presented via averaged root
squared error (R?), root mean square error (RMSE), and mean
absolute error (MAE) metrics. Test data sets consisting of 11
participants which performed all activities data were used to
aid in the models ability to focus on core functionality and
data efficiency.

TABLE II: Evaluation metrics of 11 participants for all activ-
ities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.77 1.27 0.93
LSTM 0.69 1.49 1.15

Table II presents the performance metric comparison be-
tween the classical LSTM model and our proposed eQL-
STML model. From the scores, our proposed eQLSTML
outperformed classical LSTM in terms of all evaluation met-
rics. Specifically, the proposed model achieved a significantly
higher R? score of 0.77 compared to the value of R? = 0.69
from LSTM, representing a 12% improvement. In terms of
RMSE and MAE, the result for LSTMs is 1.49 and 1.14,
respectively, while the eQLSTML model accomplished 1.25
and 0.93, respectively. The overall results show that our
proposed model not only captures the underlying relationships
within the data more effectively but also can make a closer
approximation of actual values.

Figure 5 presents the performed energy expenditure pre-
dictions on the data by both eQLSTML and LSTM models
and the testing data of one participant (labeled GOTOV12).
The prediction of the eQLSTML architecture demonstrates a
remarkable capability to capture the overall trend of both long-
term and short-term time-series behaviors in the unseen (test)
data set.

This is observed in the close gap between the predicted
EEm values (red line) and the actual Eem values (blue line).

eQLSTML prediction for GOTOV12
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Fig. 5: True versus predicted values of EEm/breath for test
participant GOTOV12, with indoor and outdoor activities
included, generated by our eQLSTML model (top) and the
classical LSTM model (bottom).

The eQLSTML sufficiently follows not only the changes of
the blue line in the longer-term (true EEm) but also the
short-term behaviors, including sudden changes indicated as
high-low frequency fluctuations (i.e., the variant fluctuations
from 11:00 to 11:15). In contrast, the classical LSTM model
shows limitations in capturing the overarching temporal trends
within the data and is incapable of following the longer-
term changes. For example, it does not reflect the downtrend
of the true value, especially in indoor activities with low
intensity. Moreover, the models ability to make predictions for
activities with high intensity is also quite lower than the true
value, consequently leading to a significant deviation from the
actual values compared to the results from eQLSTML. These
observations suggest that the LSTM architecture might not be
able to learn long-term dependencies effectively. Furthermore,
our proposed eQLSTML model showed superior R?, RMSE,
and MAE metrics when compared to the classical LSTM
model, as seen in Table III.



TABLE III: Evaluation metrics of the participant GOTOV12
for all activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.87 0.98 0.77
LSTM 0.74 1.37 1.13

TABLE IV: Evaluation metrics of 11 participants for indoor

activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.43 0.90 0.67
LSTM 0.27 1.03 0.82

B. Comparative analysis of model performance for indoor and
outdoor activities separately

In order to make a comprehensive comparison of our pro-
posed models capability in terms of predicting low and high-
intensity activities, we also evaluated the model with a test set
that includes either indoor or outdoor activities and compared
to results from the LSTM. Table IV presents evaluation metrics
for indoor activities. From the tabulated data, the eQLSTML
R? score is 0.43, which is ~ 60% higher than that of LSTM,
which has a score of just 0.27. We also report a favorable
decrease of 8% and 18% in the RMSE and MAE metrics from
the eQLSTML model, with respective scores of 0.90 and 0.67.

TABLE V: Evaluation metrics of 11 participants for outdoor
activities for the eQLSTML and LSTM models.

R2 RMSE MAE
eQLSTML 0.430 0.904 0.671
LSTM 0.266 1.031 0.824

Table V presents the same metric analysis from outdoor-
specific activities. In this case, the eQLSTML model shows
an R? score that is 25% higher than that from the classical
LSTM case. Additionally, the eQLSTML again has smaller
RMSE and MAE scores, with an overall decrease of 12% and
18%, respectively.

VI. CONCLUSION

In conclusion, this paper proposed a hybrid quantum ma-
chine learning model we call eQLSTML for predicting phys-
ical activity energy expenditure for the elderly. This model
showed an improved learning ability compared to the classical
LSTM model by leveraging the capabilities of quantum cir-
cuits for performing learning tasks more efficiently on sequen-
tial target data sets and was further optimized using variational
quantum layers, strongly controlled-X gates for better entan-
glement, and angle embedding techniques. While this work
demonstrates promising performance for the stated problem of
PAEE in healthy aging, further research is necessary. We plan
to extend this study and implement our proposed model on
real quantum hardware to make a further comparative analysis
of the model’s effectiveness on other biosignal processing
tasks. With further exploration, the eQLSTML model has the
potential to unlock the power of quantum computation for

complex learning tasks, especially in the field of healthcare
signal processing.
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