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Abstract—Federated learning (FL) is a promising solution to
overcome data island and privacy issues in intrusion detection
systems (IDS) for the Industrial Internet of Things (IIoT). How-
ever, the heterogeneity of various IIoT devices poses formidable
challenges to FL-based intrusion detection, especially the training
cost relating to delay and energy consumption. In this paper,
we propose a delay and energy-efficient asynchronous FL (AFL)
framework for intrusion detection (DEAFL-ID) in heterogeneous
IIoT. Specifically, we address the shortcomings of low efficiency
and high energy consumption in existing FL-based solutions
involving all idle IIoT devices. To do so, we formulate an AFL-
based optimal device selection problem which aims to select high-
quality training devices in advance by exploring the device advan-
tages in detection accuracy, delay reduction, and energy saving.
Subsequently, a deep Q-network (DQN)-based learning algorithm
is developed to quickly solve the above high-dimensional problem.
In addition, to further improve the detection performance, we
build a hybrid sampling assisted convolutional neural network
(CNN)-based IDS model, which can eliminate the imbalance of
IIoT data and enable the selected devices to fully extract data
features. Through simulations, we demonstrate that DEAFL-ID
achieves a significant improvement in training cost and detection
performance compared with existing IDS schemes.
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detection, asynchronous federated learning (AFL), heterogeneous
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I. INTRODUCTION

THE Internet of Things (IoT) is an emerging paradig-
m with a wide span of interconnected smart devices

and computing capabilities, and its specific applications have
significantly changed the way we live [1]. Although IoT
can increase productivity and efficiency through intelligent
interconnection and remote management, it also increases the
risk of cyber attacks due to the broadcast nature of wireless
communications [2]. Especially in the industry 4.0 revolution,
mission-critical industrial IoT (IIoT) systems support many
anomaly-sensitive tasks such as industrial machinery opera-
tions and infrastructure control systems which require a high
level of security to prevent attacks on critical operating devices
and avoid system outages [3].

To alleviate the security vulnerability in IIoT devices, an
effective IDS is essential to identify the possible attack through
constantly analyzing IIoT data flows. Recently, learning-based
IDSs have attracted significant attention due to their improved
detection performance based on the learning and feature
extraction from typical environmental data [4]. Traditional-
ly, such IDS solutions can be categorized into two groups
according to the different executors of data learning, namely
local execution and server execution. In local execution [5],
each device learns the intrusion detection model using its
own private data. In reality, the IIoT environment is highly
heterogeneous, which causes a wide variety of local data at
different devices or at different locations. In this case, local
execution cannot fully extract the data features in an industrial
factory or department due to the one-sidedness of single-
device data, and thus limiting the IDS performance. In contrast
to local execution, server execution can overcome this by
allowing a centralized server to collect local data from all
devices within its coverage area and train a global intrusion
detection model. In this case, the server manages the data of
all IIoT devices, which is vulnerable to data privacy attacks
and leads to a single point of failure. Consequently, IIoT data
holders are often reluctant to share their training data with
the central server to preserve data privacy. The resultant data
island makes it challenging to achieve a satisfactory detection
performance.

As such, there is an urgent need to develop a realistic
learning-based IDS model to solve this formidable challenge.
Very recently, federated learning (FL) has been considered as
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a promising solution [6] to enable participating IIoT devices to
build a global intrusion detection model without disclosing the
underlying raw data [7]. In simple terms, FL allows devices to
manage their own local data and send only certain parameters
to the server for model aggregation. This provides a parallel
scheme for devices to learn a global intrusion detection model
collaboratively and protect their data privacy [8]. Typically,
FL frameworks assume that all IIoT devices participate in
detection model training and updating, but this assumption
is not applicable to a heterogeneous industrial environment.
In highly dynamic heterogeneous IIoT environments, the sig-
nificantly different computation and communication resources
of devices make it impossible for all IIoT devices to perform
synchronous training and uploading of FL parameters [9]. As
a consequence, a direct application of existing FL frameworks
without any consideration of such heterogeneous properties
will make the overall training process inefficient and unsuit-
able for rapid intrusion detection in IIoT.

Two limitations are crucial in this heterogeneous IIoT
context. Firstly, at any time there will be a large number of idle
devices with limited resources and requiring all of them to par-
ticipate in the model training will lead to unnecessary waste of
system resources. Secondly, the FL-based IDS will suffer from
longer training times since some small IIoT devices have very
limited computation capabilities and poor communication con-
ditions. In such scenarios, the FL framework must wait for the
upload parameter from the slowest device before aggregation,
which compromises the training efficiency of the intrusion
detection model. Therefore, traditional FL frameworks could
result in severe performance bottlenecks for intrusion detection
in heterogeneous IIoT environments. Given this background,
the asynchronous federated learning (AFL) framework [10] is
proposed to explore novel ideas for rapid model aggregation.
Specifically, the conventional AFL approach is for the central
server to perform global model aggregation as soon as it
collects a local model. This is challenging for IIoT because
the frequent model transfer aggregations result in massive
communication resource consumption. For this limitation, one
solution is to set a random deadline to terminate the upload
step and ignore any updated parameters after the deadline. Of
course, this simple approach will waste resources of delayed
devices and could bias results to devices with fast training
speed but low model accuracy. More recently in [11], the
authors studied a client selection problem to minimize the
training time of the FL process. But the authors in [11] focused
only on training time and use the size of the local dataset
as a rough proxy for client importance, which presents two
challenges. On the one hand, due to the resource heterogeneity
of IIoT devices, some devices have very limited computing
resources and are more concerned with energy consumption
than training time. Only considering the training time is not
enough. On the other hand, due to the data heterogeneity in
IIoT, the data among IIoT devices are not independent-and-
identically-distributed, and thus the data size cannot directly
represent the importance of IIoT devices. As such, there is a
lack of a comprehensive AFL framework to handle the highly
heterogeneous IIoT environment.

Motivated by the aforementioned discussion, in this paper

we propose a delay and energy-efficient AFL framework for
intrusion detection (DEAFL-ID) in heterogeneous IIoT. In
our proposed DEAFL-ID scheme, we use prior knowledge
(i.e., the previous device selection and model training results)
to analyze the model training ability of the device or the
quality of its local data. Our main goal is to select high-
quality training IIoT devices in advance to overcome the
shortcomings of low efficiency and high energy consumption.
Here, the term “high-quality devices” refers to IIoT devices
that have comprehensive advantages in terms of detection
accuracy, training delay reduction, and training energy saving.
Specifically, according to the heterogeneous computational
capabilities, dynamic communication conditions and previous
training results, we select the most suitable IIoT devices to
participate in the current model updating. We believe the
problems formulated and solved in this work are of great
practical significance. The main technical contributions of this
paper are as follows:

(1) We study the delay and energy efficiency advantages
of AFL applied to intrusion detection in heterogeneous
IIoT. Considering dynamic and heterogeneous IIoT, we
aim to build a periodically updated intrusion detection
system using an AFL framework. Due to concerns about
both detection performance and model training cost,
we focus on the whole intrusion detection process,
including optimal device selection of AFL, data balance
preprocessing, and convolutional neural network (CNN)
model training.

(2) To improve the detection performance in the practical
noisy IIoT environment, we design a hybrid sampling
assisted CNN-based intrusion detection model, which
can transform the practical unbalanced data set into
a balanced one with no noise and clear classification
boundaries. As such, each selected IIoT device can fully
learn the various data features and quickly train a high-
performance local intrusion detection model.

(3) To reduce training cost and concurrently ensure intrusion
detection performance, we design a resource utilization
efficiency (RUE) function to explore the gains of our
proposed DEAFL-ID scheme in accuracy performance,
delay reduction, and energy saving. Then, the formulated
RUE maximization problem is equivalent to an optimal
device selection problem subject to the selection state
of currently idle IIoT devices. Subsequently, a DQN-
based learning algorithm is developed to solve this high-
dimensional problem.

(4) Through extensive numerical results, we demonstrate
that our proposed DEAFL-ID scheme significantly out-
performs the existing schemes in [23] and [24] in terms
of detection performance and training cost of delay and
energy consumption. Our solution is also proven to be
more suitable for intrusion detection in heterogeneous
IIoT.

The remainder of this paper is organized as follows. Section
2 introduces relevant state-of-the-art research. Section 3 intro-
duces the system architecture and workflow of our proposed
DEAFL-ID scheme. In Section 4, we present the hybrid



XXX, VOL. XX, NO. X 3

sampling assisted CNN-based intrusion detection model. In
Section 5, we propose a delay and energy-efficient AFL
framework for intrusion detection (DEAFL-ID), and formulate
a RUE maximization device selection problem. We propose
a DQN-based learning algorithm to solve our optimization
problem in Section 6. In Section 7, we provide a detailed
overview description of our DEAFL-ID scheme. We evaluate
our proposed DEAFL-ID scheme by experimental simulation
in Section 8. Finally, we conclude and discuss the paper in
Section 9.

II. RELATED WORKS FOR INTRUSION DETECTION

In recent years, we have witnessed an increasing research
interest regarding intrusion detection in IoT [2]. Amongst
the most popular intrusion detection methods, learning-based
techniques have shown great potential for computer and IoT
networks [12], [13]. In [12], the authors provided a com-
prehensive review of intrusion detection solutions deploying
different aspects of learning techniques for IoT, and dealt with
both traditional machine learning (ML) and reinforcement
learning (RL) for intrusion detection. The authors in [13] in-
troduced new regularizers into traditional ML to overcome the
challenges posed by network data regarding high dimension,
sparsity, and a lack of anomaly data. In [14], to improve
the detection performance of traditional supervised learning
approaches, the authors presented an active learning based
method in IoT. However, traditional learning-based intrusion
detection techniques may not be suitable in industrial IoT
scenarios with an extremely large amount of data [15].

The authors in [16] indicated that simple ML-enabled solu-
tions exhibit a lower performance and prediction accuracy for
detecting intrusions in highly dynamic environments than that
of deep learning-based solutions. To this end, they examined
the use of optimization techniques to enhance the performance
of a single-learner in intrusion detection. To accommodate
the highly dynamic large-scale characteristics of the Internet
of Vehicles (IoV), the authors in [17] considered an arti-
ficial intelligence (AI)-based intrusion detection architecture
comprising deep learning engines for identification and clas-
sification of the vehicular traffic in the IoV networks. The
deep learning-based intrusion detection model usually requires
learning massive online environmental data, which is resource-
consuming [18]. Therefore, to alleviate the burden of resource-
constrained MEC servers, the authors in [19] proposed an
intelligent intrusion detection algorithm for IoT using big
data mining based on generative adversarial network (GAN)
and CNN. However, these typically deep neural networks via
conventional centralized training methods require aggregating
all raw data to a central server, which will require large
amounts of wireless bandwidth and may lead to privacy
concerns [1].

To address the aforementioned shortcomings, researchers
have proposed a new distributed model training framework
known as FL [20]. In [21], the authors proposed an FL-based
collaborative intrusion detection in vehicular edge computing,
and blockchain was used to store the training models to ensure
the security of the aggregation model. For large-scale and

complex industrial systems, the authors in [3] proposed a
deep learning scheme named DeepFed to detect cyber threats.
In addition, [22] and [23] presented an FL-based intrusion
detection algorithm to proactively recognize intrusions in
IoT networks. The above schemes focus on the synchronous
learning framework for intrusion detection, which incurs high
communication energy costs while also leading to higher time
waiting for slower nodes. More importantly, as we stated ear-
lier, our work aims to design an intrusion detection system for
heterogeneous IIoT where the IIoT devices always have a wide
range of computation/communication resources and dynamic
device conditions. These heterogeneous properties make it
cumbersome for all IIoT devices to perform synchronous mod-
el training and updating. Also, the resulting intrusion detection
model is inefficient and resource intensive. These challenges
motivate us to develop a novel delay and energy-efficient AFL-
based intrusion detection system for heterogeneous IIoT.

III. SYSTEM ARCHITECTURE AND WORKFLOW

As illustrated in Fig. 1, we consider an AFL-based intrusion
detection framework for heterogeneous IIoT, where a MEC
server manages many IIoT devices within a large-scale indus-
trial area. Different from the traditional AFL framework [10],
we only select some high-quality training devices in advance
before model training. Compared with the traditional way
of employing all idle IIoT devices, this can improve energy
efficiency and reduce unnecessary waste of resources. More-
over, our solution considers the environmental heterogeneity
of IIoT, and aims to build a periodically updated intrusion
detection system using an AFL framework. Therefore, our
solution is more suitable for resource-constrained devices
in heterogeneous and dynamic IIoT. Our considered system
framework comprises two types of entities, i.e., a MEC server
and N idle IIoT devices at any time.
(1) MEC Server: The MEC server is a communication infras-

tructure (e.g., a wireless base station) with large amounts
of computing/communication resources in the industrial
IoT network area. Typically, a MEC server manages an
industrial factory or several same-type factories within a
given area. It is responsible for managing all the industrial
devices in the covered area. Furthermore, in our AFL
architecture, the MEC is responsible for selecting the IIoT
devices for local model training in each iterative updating
and building a comprehensive intrusion detection model
by aggregating the local model parameters at the selected
industrial agents. Multiple rounds of interactions between
the MEC server and selected IIoT devices are demanded
to obtain a final “perfect” intrusion detection model.

(2) IIoT Devices: IIoT devices are heterogeneous industrial
devices with limited computing resources. They may
access or leave the AFL architecture at any time due to
the variability of the IIoT environment. Moreover, the
devices managed by the MEC server generally have the
same-type local data. Hence, all of these devices locally
train a consistent intrusion detection model together.
Each IIoT device trains a local intrusion detection model
based on its own industrial data. Besides, it continuously



XXX, VOL. XX, NO. X 4

IIoT

Device 

Layer

MEC

Server 

Layer

IIoT device selection Model parameter aggregation

Selected device 1 Selected device 2 Selected device n
uLocal data

Local modelLocal modelLocal model

MEC Server

 Intrusion detection

Uploading local 

model parameters

Downloading global 

model parameters

Iteration For 

model updating

CNN model 

training

Local data Selected device 2ddd d n
u

Normal

Attack
 Intrusion detection  Intrusion detection

Local data

Normal

Attack

Local data

Normal

Attack

Device 1 Device 2 Device Device n
u N

u

Global modelLocal models

Fig. 1: AFL-based intrusion detection framework for heterogeneous IIoT

updates the local parameters of the intrusion detection
model by recurrently interacting with the MEC server.

Next, we introduce the workflow of our AFL-based in-
trusion detection framework. For each iteration for periodic
model updating, it involves the following steps:
(1) System Initialization: First, the MEC server determines

the structure of the CNN model for intrusion detection.
Specifically, it includes the number of convolutional
layers, the number of maximum pooling layers, the size
and number of filters in each layer, and the number of
fully connected layers at the end of the model structure.
Then, the MEC server uses public data to pre-train an
initial intrusion detection model for local devices.

(2) Selecting IIoT Devices by MEC Server: Due to the rapid
response requirements of the IIoT environment and the
resource limitations of the IIoT devices, we focus on the
delay and energy-efficient AFL for intrusion detection in
heterogeneous IIoT networks. At the beginning of each
iteration for model updating, we select some IIoT devices
with better gains in training delay, energy consumption,
and accuracy from the currently idle devices. Specifically,
depending on the heterogeneous computational capac-
ities, channel conditions, and model training accuracy
of industrial devices, the MEC server adopts the DQN
algorithm to select the most advantageous IIoT devices
to participate in the current model training process.

(3) Training Local Model by IIoT Devices: After the selection
of IIoT devices, each selected device locally trains a
CNN-based intrusion detection model using their labeled
private data. After that, each selected device uploads the
currently trained model parameters and corresponding
training accuracy to the MEC server. Furthermore, each

selected device updates its own local model after receiv-
ing the global model parameters aggregated by the MEC
server.

(4) Aggregating Local Model by MEC Server: During each
model updating, the MEC server aggregates the local
model parameters of the selected devices and interacts
with the currently selected devices over multiple rounds
to obtain a new global model parameter. Through multiple
communication rounds, a convergent CNN-based intru-
sion detection model can finally be obtained.

(5) Intrusion Detection at IIoT Devices: Each IIoT device
maintains a regularly updated local intrusion detection
model. In addition, each local intrusion detection model
always filters and monitors the local data of the device,
as well as labels and classifies the data to obtain label
data for later local model training and updating.

To sum up, our goal is to provide IIoT with an intrusion
detection framework/model that can be fully learned, quickly
monitored, and updated online, without limiting the data types
of intrusion detection. The specific intrusions that can be
identified depends on the inputted data type during model
training and updating. In other words, for different IIoT,
the model can be trained and updated online according to
their respective network environment and data, and then the
corresponding intrusion monitoring model can be customized.

IV. HYBRID SAMPLING ASSISTED CNN-BASED
INTRUSION DETECTION MODEL

In this section, we build a hybrid sampling assisted CNN-
based intrusion detection model for the local IIoT devices.
CNN is a popular neural network that is typically used in
image processing tasks. In recent years, due to its popularity
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and prominent advantages, CNN is also extensively used in
natural language processing, video analyzing, and intrusion
detection. To better extract data features, we first propose
a hybrid sampling method to preprocess the training data
from two aspects of data balancing preprocessing and data
standardization preprocessing. Then, we describe the CNN
model structure and three main steps of intrusion detection.

A. Data Preprocessing Based on Hybrid Sampling

For intrusion detection, a reasonable data preprocessing
method is essential. In reality, the generated data is an un-
balanced data set, with most of it being normal data and only
a small fraction containing the attack data that is critical to
the system [24]. Due to the existence of boundary data and
noise data, it may be difficult to detect the minority attack data
during model training without data preprocessing. However,
existing FL-based intrusion detection solutions have ignored
the inherent unbalance and disarray of real data. To this end,
we aim to propose a hybrid sampling method to transform the
unbalanced data set into a balanced one with no noise and
clear classification boundaries.

Specifically, for data balancing preprocessing, we present
an improved Synthetic Minority Oversampling Technique (S-
MOTE) method based on K-means++ to alleviate the imbal-
ance of training data, and employ Tomek Links [24] to elimi-
nate noise. For data standardization preprocessing, we further
perform symbolic feature numerization, data normalization,
and data dimensionality reduction to obtain standard training
data directly input to a CNN model. Next, we will detail these
two aspects.

1) Data Balancing Preprocessing: Network traffic data
comprises a large amount of normal traffic and a small
amount of abnormal traffic, which is a typical imbalanced data
classification problem. Moreover, real network data usually
contain a lot of noise. In this case, the prediction accuracy
of minority classes is often very low. Therefore, we aim to
remove the noise while increasing the number of samples in
the minority class.

(1) We divide the unbalanced dataset X into majority class
XM and minority class Xm.

(2) We use K-means++ algorithm [25] to obtain the data
cluster centers of the minority class according to the
following steps.

1) We randomly select a data sample from Xm as the
first initial cluster center ω1.

2) We calculate the Euclidean distance di1 between
each data xi in Xm and the cluster center ω1 as

di1 = ∥xi − ω1∥2. (1)

3) We select the data point with the maximum di1
in set Xm as the second initial cluster center ω2.
Then, the next initial cluster center is the one with
the maximum value of di1+di2. Repeat the above
process until c initial cluster centers are selected.

4) Based on the c cluster centers, we calculate the
Euclidean distance dij between each remaining
data xi in set Xm and each cluster center ωj using

(1). Each data xi is divided into the cluster Cj

corresponding to the nearest cluster center ωj (i.e.,
the minimum dij), and then c clusters are obtained.

5) For each cluster Cj , we recalculate its cluster
center ω′

j as ω′
j = argminJ(ω′

j), where

J(ω′
j) =

∑
xi∈Cj

∥∥xi − ω′
j

∥∥
2
. (2)

6) Repeat 4) and 5) until the cluster centers
{ω1, ..., ωc} no longer change. Then, we obtain the
final c clusters {C1, ..., Cc}. In this paper, the num-
ber of clusters is the number of sample categories
in the minority class, and each cluster contains
sample data of the corresponding category.

(3) We present an improved SMOTE method based on K-
means++ to generate the minority class samples and
alleviate the imbalance of training data.

To avoid the overfitting problem and improve the
classification accuracy of the intrusion detection model,
we fill more samples into the minority class using the
over-sampling method. SMOTE is a commonly used
over-sampling method [24]. The main idea is to form
new minority class samples by interpolating between
several samples that lie together. The new sample ynew
can be obtained by

ynew = yi + gif ∗ (yi,j − yi) , (3)

where yi is a data sample in minority class, yi,j is its
jth nearest neighbor sample, and gif is a given random
number. However, since the neighbor sample of the
randomly selected sample yi may be majority class, this
traditional SMOTE method easily causes the decision
boundaries of the minority class to spread into the major-
ity class space, and then directly affects the accuracy of
the trained intrusion detection model. To solve the above
problem, we present an improved SMOTE method based
on K-means++. Specifically, based on the cluster centers
obtained by step (2), we use sample yi and cluster center
ci in cluster Ci to fill the sample data of the minority
class, which can greatly reduce the probability of the
new sample spreading to the majority class. Then, new
sample ynew can be obtained by

ynew = yi + gif ∗ (yi − ci) , (4)

as such, we expand the number of minority class
samples, and the imbalanced training dataset can be
transformed into a balanced one. The reason we use K-
means++ instead of K-means is that the K-means++
algorithm presents less randomness, and the obtained
multiple cluster centers are less correlated. In this way,
for different minority samples, the samples we fill are
less relevant. As such, we make the boundaries of
different types of samples clearer, which is convenient
for model training and data feature extraction.

(4) We use Tomek Links to eliminate noise and boundary
samples.
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In reality, network traffic data contain a lot of
noise. Besides, some borderline data may be synthesized
during the data balancing processing process. The above
data is considered as “bad” since it may cause the
model to identify on the wrong side of the decision
border. Therefore, to improve the classification accuracy
of the trained model, Tomek links are used as an under-
sampling method to remove noise and borderline data.

Based on the above data balancing preprocessing process,
a balanced data set with low noise and clear classification
boundaries is obtained.

2) Data Standardization Preprocessing: The process of
data standardization preprocessing includes symbolic feature
numerization, data normalization, and data dimensionality
reduction.
(1) Symbolic Feature Numerization

Almost all labeled training data is symbolic data, such
as the NSL-KDD dataset [24], which is commonly used
in the intrusion detection field. Since the input of the
CNN model is a numerical matrix, we convert the non-
numeric symbolic features in the training dataset into
numeric features by using the one-hot encoder.

(2) Data Normalization
Data normalization can eliminate the differences

between different dimensional data and is therefore
widely used in computing. In this paper, we apply the
min-max normalization, and uniformly linearly map the
range of values of each feature in the interval [0, 1]. The
transformation function is given by

xi2 =
xi1 − xmin

xmax − xmin
, (5)

where xi1 represents the initial data i of a feature,
xmax represents the maximum data of the feature, xmin
represents the minimum data of the feature, and xi2

represents the data after normalizing xi1.
(3) Data Dimensionality Reduction

In general, the initial data format in the training
dataset, such as NSL-KDD, is a 1 ∗n dimension vector.
If the initial data is directly fed to the CNN model as
inputs, it will jeopardize the real-time requirement due
to the increased complexity of computation. Therefore,
considering that the CNN model has great classification
performance for image data, we use a dimension reduc-
tion algorithm and convert the 1 ∗ n vector into m ∗m
image data format, where n = m ∗m.

Through the above hybrid sampling, we alleviate the imbal-
ance of training data, eliminate noise and boundary samples,
and standardize data features. As such, we can help the model
fully learn the data features and improve the model training
accuracy.

B. CNN-Based Intrusion Detection Model

After data preprocessing, the processed data is supplied as
an input of the local model for training. In this paper, we
adopt CNN for the local intrusion detection model thanks

to its excellent performance in automatic feature extraction.
Specifically, we consider the classic CNN model LeNet-5
[26] as the intrusion detection model, which mainly contains
two convolutional layers, two pooling layers, and two fully
connected layers. In terms of functionality, the convolutional
layers and pooling layers together handle the feature extrac-
tion of the training samples while the fully connected layer
performs the final classification. Next, we detail the process
of extracting data features using CNN.

First, the preprocessed data matrix is fed into the first
convolutional layer. The convolutional layer is the core of
the CNN structure. It can extract different features of the
data through different convolution kernels. In the convolutional
operation, the same convolutional kernel follows the principle
of “parameter sharing”, which can greatly reduce the number
of parameters and increase the computational efficiency. The
convolutional function is written as

qi = f(qi−1 ⊗ vi + bi), (6)

where qi is the feature map of layer i, f(·) is the activation
function, ⊗ is the convolutional function, vi is the convolu-
tional kernel of layer i, and bi is the bias of layer i.

Next, the pooling layer works after the convolution layer.
It usually samples the feature map following different sam-
pling rules. The pooling layer has two purposes: (i) reducing
network burden by reducing the feature dimension, and (ii)
avoiding over-fitting by filtering out redundant features. The
pooling processes can be expressed as

qi = pool(qi−1), (7)

where pool(·) is the sampling function.
After two convolutional and pooling layers, the fully con-

nected layer converts the 2D data feature to 1D and then passes
it through the classifier for classification. Through the above
CNN processes, we can output the features of the training
traffic data.

For intrusion detection, the pre-processed data is divided
into the training set and test set, of which the training set
accounts for a large proportion (usually 80%). Then, the CNN-
based intrusion detection model includes the following three
steps.

(1) Training: Each IIoT device trains the CNN model using
the local training data. Specifically, the goal of training
is to improve the detection accuracy of the CNN model
through constant adjustment of model parameters.

(2) Testing: After the training stage, each IIoT device checks
the training accuracy of the CNN model using test data.
Specifically, if the model satisfies the training accuracy
requirement or reaches the predetermined training rounds,
the training step would cease; otherwise, the model would
repeat the training step.

(3) Evaluating: Finally, the model performance needs to be
evaluated. In this paper, the considered evaluation metrics
include Accuracy, Precision, Recall, and F1-Score.
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V. DELAY AND ENERGY-EFFICIENT AFL FRAMEWORK
FOR INTRUSION DETECTION

In this section, we explore the efficiency advantages of
AFL applied to intrusion detection in heterogeneous IIoT. We
first abstract the training process of the CNN model into a
local computing model. Then, we describe the local computing
and communication model at the heterogeneous IIoT devices.
Next, we design the device selecting model of AFL, and
formulate the corresponding optimization framework.

A. Local Computing and Communication Model

In this subsection, we explain the local computing and
communication model at each IIoT device. For local comput-
ing, we formulate the training delay and energy consumption
of devices with different computing capabilities during the
local CNN training process. For the communication between
the IIoT devices and the MEC server, we formulate the
transmission delay and energy consumption during the AFL
parameter uploading process.

1) Computing Model: The time required for IIoT device
un to complete CNN training during each iteration can be
expressed as

T comp
n =

Dngn
fn

, (8)

where Dn represents the number of data samples in the local
training data set of device un, gn is the number of CPU cycles
required to train one data sample on device un, and fn is
the CPU frequency (in CPU cycles per second) of device
un. Due to the heterogeneous computing capacities of IIoT
devices, the CPU frequency fn of different devices varies
greatly. Furthermore, the energy consumption [20] for training
Dn data samples at device un is written as

Ecomp
n = ςngnDnf

2
n, (9)

where ςn > 0 is the effective capacitance coefficient for the
chip processor architecture of device un.

2) Communication Model: After the local training is com-
pleted, the selected IIoT device un sends the trained local
model parameter (i.e., weight and offset) to the MEC server
for further parameter aggregation. The achievable transmission
rate rn of device un can be expressed using Shannon’s theory
as

rn = Bnlog2

(
1 +

hnpn
n0

)
, (10)

where pn is the transmission power of device un, and n0 is
the background noise. Here, hn and Bn respectively are the
channel gain and bandwidth of un, and dynamic hn and Bn

reflect the time-varying communication condition of different
devices. Then, the communication time for sending model
parameters from device un to the MEC server is given by

T comm
n =

δn
rn

, (11)

where δn is the local model parameter size of device un. Based
on (11), the energy consumption of device un is Ecomm

n =
pnT

comm
n .

B. Device Selection Model of AFL

The existing FL-based intrusion detection solutions default
to a synchronization process involving all idle devices, which
is time- and energy-consuming. Moreover, in heterogeneous
IIoT, the significantly different computing resources of devices
and time-varying communication conditions make it non trivial
for all idle devices to perform synchronous training and pa-
rameters uploading. Therefore, we propose a delay and energy-
efficient AFL framework for intrusion detection (DEAFL-ID),
and mainly focus on the optimal device selection of the AFL
process. Specifically, we define the time gain and energy gain
indexes and accuracy gain index to measure the comprehensive
advantages of IIoT devices in terms of delay reduction, energy
saving, and detection accuracy. To this end, we introduce a
binary security variable λk

n = {0, 1} to represent the selection
decision of IIoT device un at the kth iteration. λk

n = 1 means
that device un is selected for local model training during the
kth iteration, and otherwise λk

n = 0. Next, we will describe
the device selection process in more detail.

1) Time Gain and Energy Gain Indexes: Regarding our
considered AFL for intrusion detection, the total time con-
sumption TAFL

k and the total energy consumption EAFL
k during

the k-th iterative training process can be expressed as

TAFL
k = max

un∈Uk

λk
n(T

comp
n + T comm

n ) (12)

EAFL
k =

∑
un∈Uk

λk
n(E

comp
n + Ecomm

n ), (13)

where Uk = {u1, ..., un, ..., uN} is the set of N currently idle
IIoT devices.

In addition, we introduce the total time T FL
k and energy

consumption EFL
k of classical FL during the k-th training and

parameter uploading process, respectively, as follows:

T FL
k = max

un∈Uk

(T comp
n + T comm

n ) (14)

EFL
k =

∑
un∈Uk

(Ecomp
n + Ecomm

n ). (15)

As such, the time gain and energy gain indexes of DEAFL-
ID during the k-th device selection process can be defined as
Tk =

TAFL
k

TFL
k

and Ek =
EAFL

k

EFL
k

, respectively.
2) Accuracy Gain Index: For the k − 1th device se-

lection (the k − 1th device selection corresponds to the
k − 1th periodic model updating), we assume that Zk−1

is the set of selected devices. Given the number of com-
munication rounds O, the local model parameter vector of
device un is wloc,k−1

n = (wloc,k−1
n,1 , ..., wloc,k−1

n,o , ..., wloc,k−1
n,O )

and the global model parameter vector is wglo,k−1 =
(wglo,k−1

1 , ..., wglo,k−1
o , ..., wglo,k−1

O ), where o ∈ {1, 2, ..., O}
represents the oth communication round. Then, we measure
the Euclidean distance between wloc,k−1

n and wglo,k−1, which
is defined by βk−1

n = ||wloc,k−1
n − wglo,k−1||2. A smaller

βk−1
n means that the local parameters of device un ∈ Zk−1

are closer to the global parameters. Thus, device un has
better local training data or greater model training advantage
during the k− 1th model updating process. When performing
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the kth device selection, we consider the previous τ times
(i.e., from k − τ to k − 1) device selection results, and pay
attention to the O rounds local training situation of the selected
devices in each model updating process. For each device
un ∈ Zk−i, ∀i ∈ {1, 2, ..., τ}, we set

β̃k−i
n = αk−i · βk−i

n = αk−i · ||wloc,k−i
n −wglo,k−i||2, (16)

where αk−1 > αk−2 > ... > αk−τ and αk−1 + αk−2 + ... +
αk−τ = 1. Here, we set decreasing weighted value for the
Euclidean distances from k − 1 to k − τ . This is because the
idle devices participating in the kth device selection process
and their local data are closest to those of k−1, and conversely
the most different from those of k − τ .

As such, for each device un ∈ Uk, we define its accuracy
gain index as

Vk =

∑
un∈Uk

λk
n · υk

n∑
un∈Uk

υk
n

(17)

υk
n =



β̃k−1
n −β̃min

β̃max−β̃min
, if un ∈ Zk−1

β̃k−2
n −β̃min

β̃max−β̃min
, if un /∈ Zk−1 and un ∈ Zk−2

...
...

β̃k−τ
n −β̃min

β̃max−β̃min
, if un /∈ Zk−1 ∪ Zk−2 ∪ ... ∪ Zk−τ+1

and un ∈ Zk−τ

0.5, else un /∈ Zk−1 ∪ Zk−2 ∪ ... ∪ Zk−τ

(18)

where β̃min = min{β̃k−i
j ,∀uj ∈ Zk−i, ∀i ∈ {1, 2, ..., τ}}

and β̃max = max{β̃k−i
j ,∀uj ∈ Zk−i, ∀i ∈ {1, 2, ..., τ}}.

Moreover, 0.5 represents a random guess for the unknown
devices in Uk. We find that Vk is a normalized variable that
ranges from 0 to 1. Therefore, it is fair to set Vk to 0.5 for
devices whose performance is unknown because they have not
been selected. 0.5 is recognized by scholars as a random guess
for unknown performance. In addition, our device selection
framework is a long-term selection process. For each round
of device selection, we consider the results of the previous
rounds of selections, and many devices are previously selected
(i.e. devices with known training performance). Since Vk is
a normalized indicator that considers all previously selected
devices, for those devices that perform well in model training
accuracy, their Vk value must be greater than 0.5, and the best
performing devices have a value of 1.

Based on the above analysis, to highlight the advantages of
our DEAFL-ID scheme, we define a Resource Utilization Effi-
ciency (RUE) function for the kth device selection process of
AFL, which represents the relative improvement in detection
accuracy, training time and energy consumption according to

RUEk =
Vk

Tk + Ek
, (19)

For k-th device selection, RUEk is equal to the accuracy
gain index of the selected devices divided by the sum of the
time gain index and the energy gain index of the selected de-
vices. For this case, the device selection scheme will converge
to the strategy of selecting devices with both accuracy efficient
and time/energy efficient. Obviously, the RUE of the classical

FL-based intrusion detection solution without device selection
is a fixed value of 0.5. Subsequently, to reduce the training
time and energy consumption of the training process while
ensuring the accuracy of the intrusion detection model, we
aim to maximize RUEk of the AFL process in each iteration
k. Given the computing capacities fn and communication
conditions Bn and hn of all idle IIoT devices, our device
selection problem is formulated as the following maximization
problem with respect to λk

n

max
λk
n

RUEk (20a)

s.t. λk
n ∈ {0, 1}, ∀un ∈ Uk. (20b)

As such, instead of using all idle devices, some highly
qualified devices are chosen to train and upload the models,
which fully combines the advantages of AFL and the heteroge-
neous characteristics of IIoT, thereby improving the resource
utilization efficiency of the system. It helps to reduce training
costs incurred by the delay and energy consumption, while
ensuring detection accuracy. However, the problem in (20) is
a nonlinear integer programming and nonconvex problem due
to the nonlinear and high complexity of our objective function
(20a).

VI. PROBLEM TRANSFORMATION AND SOLUTION BY
DEEP REINFORCEMENT LEARNING

Since optimization problem (20) is NP-hard, traditional
optimization methods usually require high computational com-
plexity to obtain suboptimal solutions. To this end, we use a
deep reinforcement learning (DRL) algorithm - DQN to tackle
this problem. DQN focuses on maximal long-term rewards
through learning from the network state and making an optimal
decision. It can find a good or even optimal policy directly
from historical observations without any requirement to know
the system dynamics.

A. Problem Transformation
We attempt to transform the above RUE maximization

problem into the Q value maximization problem of DQN.
First, we define the state space, action space and reward
function in the DQN process as follows:
(1) State Space S

At each step t of the DQN network training, The state space
includes the following:

1) The CPU frequencies of devices f(t) =
{f1(t), ..., fn(t), ...fN (t)};

2) The channel gains of devices h(t) =
{h1(t), ...hn(t), ...hN (t)};

3) The number of data samples in devices D(t) =
{D1(t), ..., Dn(t), ...DN (t)};

4) The computation bandwidths of devices B(t) =
{B1(t), ..., Bn(t), ..., BN (t)};

5) For each device un, the local model parameters of
previous τ -round completed device selections (if is select-
ed) Wloc

n = {wloc,k−τ
n , ...,wloc,k−i

n , ...,wloc,k−1
n }. For al-

l idle devices, the local model parameters of previous τ -
round completed device selections (if is selected) is Wloc =
{Wloc

1 , ...,Wloc
n , ...,Wloc

N };
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6) The global model parameters of previous
τ -round completed device selections Wglo =
{wglo,k−τ

n , ...,wglo,k−i
n , ...,wglo,k−1

n };
7) The selection state of last step t−1 for devices λ(t−1) =

{λ1,t−1, ..., λn,t−1, ..., λN,t−1}.
As such, the system state s(t) ∈ S can be defined as s(t) =

{f(t),h(t),D(t),B(t),Wloc,Wglo,λ(t− 1)}.
(2) Action Space A

The action at step t is the device selection decision, which
can be regarded as a binary problem. The action a(t) ∈ A is
defined by a vector as a(t) = {λ1,t, ..., λn,t, ..., λN,t}, where
λn,t = 1 means that device un is selected as the participating
devices of AFL. Otherwise λn,t = 0.
(3) Reward Function R(s, a)

Based on the above states and actions, we can obtain the
time gain Tk, energy gain Ek, and accuracy gain Vk of current
devices. Then, we obtain RUE(t) at each training step t of
device selection. The system evaluates the effect of an action
by using the reward function R(s(t), a(t)). It can obtain
an immediate reward when taking action a(t) at state s(t).
Then, the system reward of device selection at step t can be
represented as R(s(t), a(t)) = RUE(t).
(4) Policy π

Let π : S → A denote the policy function, which maps any
state s(t) ∈ S to action a(t) ∈ A. In step t, the action to be
taken can be obtained by the policy a(t) = π(s(t)).
(5) Next State s(t+ 1)

After taking action a(t) at state s(t), the system states transit
from s(t) to s(t + 1), where s(t + 1) ⇐ s(t) + π(s(t)). The
new updated state includes fn(t), hn(t), Bn(t) and λ(t− 1).

Consequently, by using the Q-function, solving problem
(18) is equivalent to finding the optimal policy π∗ to maximize
the total cumulative reward, which can be expressed as

Q∗(s, a) = max
π∗

E

[ ∞∑
t=0

γtR(s(t), π∗(s(t)))

]
, (21)

where E[·] is the mathematical expectation, Q∗ is the optimal
Q-function, and γ ∈ [0, 1] is the discount factor. If the optimal
Q-function value is determined, the optimal policy (i.e., the
optimal device selection strategy) is given by

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S. (22)

B. Problem Solution

We drop the symbol of time slot t and use s′ to represent
the next state. Then, based on (19) and (20), the Q-learning
algorithm is iterated by updating the Q-function value as

Q(s, a) = R(s, a) + γmax
a′∈A

Q(s′, a′). (23)

The Q-learning algorithm is inefficient for solving complex
problems with high dimensions and high dynamics [1]. To this
end, the further evolved DQN algorithm establishes two neural
networks with the same structure and different parameters,
namely Q evaluate (i.e., main) network and Q target network,
to solve the instability of Q-learning. As such, DQN can

extract complex features among various states and actions. The
Q main network is trained to enable Q(s, a, θ) ≈ Qπ(s, a),
where θ is the network weight of the main network. In each
learning iteration, we train the neural network to the minimize
the updated function L(θ) which is defined by

L(θ)=E
[
(R(s, a)+γmax

a′∈A
Q̄(s′, a′; θ−)−Q(s, a; θ))2

]
,

(24)
where θ− is the network weight of the target networks, and
Q̄(·) is the Q-function of the target network. Differentiating
the loss function with respect to the weight θ, the gradient is
given by

∇θL(θ) = E
[
2(R(s, a) + γmax

a′∈A
Q̄(s′, a′; θ−) (25)

−Q(s, a; θ))×∇θQ(s, a, θ)] .

Based on the gradient descent, θ is updated as

θ ← θ + σ∇θL(θ), (26)

where σ is a step size coefficient that controls the updating
step size in each iteration.

Our proposed DQN-based device selection strategy is il-
lustrated in Algorithm 1. Based on the trained deep neural
networks in Algorithm 1, we input the states of all currently
idle IIoT devices. Then, the output would be the device
selection results of our proposed DEAFL-ID scheme.

Complexity analysis: For the DQN-based device selection
algorithm, the training process runs offline and is performed
at the MEC server which has sufficient computation resource.
Hence, we focus our analysis on the complexity for online
decision making. The total complexity of Algorithm 1 is
incurred by calculating the output based on the input and
finding the action with the maximal Q value. Then, the
complexity of Algorithm 1 is theoretically analyzed as follows.
In Algorithm 1, the input state comprises the number of
currently idle devices N , the CPU frequencies of the devices,
the channel gains of the devices, the computation bandwidths
of the devices, and the initial selection state of the devices.
Hence, the number of input neurons for the DQN is 4N . There
are N neurons in the output layer. The number of hidden layers
is denoted as L, and each hidden layer has H neurons. As
such, the number of multiplication operations for the DQN is
4N×H+(L−1)×H×H+H×N = O(LH2+5NH−H2)
and can be simplified into O(LH2). Moreover, the complexity
of applying the activation function is O(L×H). Therefore, the
complexity of computing the DQN output is O(LH2 + LH)
and can be simplified into O(LH2). In addition, the operation
for selecting the action with the maximum Q value is with
complexity O(N). Based on the above analysis, the total
complexity is O(LH2).

Convergence analysis: In the following, we discuss the
convergence property of our AFL framework. As highlighted
above, the asynchrony of our solution is reflected in device
selection. Then, after each device selection, the selected de-
vices participate in the federated learning process, and train a
convergent model together. Next, we analyze the convergence
of the federated learning process. We define the upper bound of
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Algorithm 1 DQN-Based Device Selection Algorithm

1: Initialize experience replay memory D
2: Initialize Q-function with random weights θ
3: Initialize Q̄-function with weights θ− = θ
4: Initialize ε = 0.1, γ = 0.9 and λ0 = [1, ..., 1]
5: for each episode j do
6: Initialize the parameters in environment setup;
7: for each step t do
8: Input initial state and obtain all actions;
9: Choose a random probability e;

10: Perform a ε-greedy policy as a(t) ={
a randomly selected action, if e ≤ ε
argmax

a∈A
Q(s(t), a(t); θ), otherwise ;

11: Execute a(t), and obtain R(s(t), a(t)) and s(t+ 1);
12: Store transition {s(t), a(t),R(s(t), a(t)), s(t + 1)}

into D;
13: Randomly sample transitions from D;
14: Calculate the output of DQN as Yj ={

Rj , if episode terminates at j + 1
Rj + γmax

a′∈A
Q̄(s′, a′; θ−), otherwise

15: Calculate loss according to Lj(θ) =
E[(Yj −Q(s, a; θ))2];

16: Perform the gradient descent on Lj(θ) with respect
to θ using (25);

17: Update θ using (26);
18: Every ι steps, update θ− with θ;
19: end for
20: end for
21: return The parameters of the trained deep neural net-

works.

the divergence between the federated loss function F (w) and
the optimal global loss function F (w∗) as |F (w)− F (w∗)|,
where w∗ is the optimal global model parameters. As such,
the convergence of the federated learning process can be
proved if it satisfies |F (w) − F (w∗)| ≤ ι, where ι > 0 is
a small positive constant. According to [11] and [27], when
F (w) is a η-convex and σ-smooth function, the upper bound
of F (w) − F (w∗) can be expressed F (w) − F (w∗) ≤
ι(F (w(0))−F (w∗)), where w(0) is initial model parameter.
Therefore, for given appropriate communication rounds O, the
federated learning process will finally converge to the global
optimality. The specific proof analysis is similar to the FL
convergence proof in [27].

VII. SOLUTION OVERVIEW

In this section, we provide a detailed overview description
of our proposed DEAFL-ID scheme. Specifically, we present a
visual flow diagram to illustrate the main steps in DEAFL-ID,
as show in Fig. 2. Considering the environmental heterogeneity
of IIoT, we aim to build a periodically updated intrusion
detection system using an AFL framework. Fig. 2 shows the
solution workflow of kth system updating process. We next
detail the process.
(1) List the Current Set of Idle Devices: Due to the high

priority of industrial tasks, for each IDS updating the

kth model updating for our intrusion 

detection system in heterogeneous IIoT

kth device selection 

List the current set of idle devices

MEC server

the selected devices

O-round parameter

communications

Upload 
local model 
parameters

Download 
global model 

parameter

Perform parameter 

aggregation

Perform data 

preprocessing

the selected devices

Perform local 

training

Model training

Fig. 2: Solution workflow of the proposed DEAFL-ID scheme

devices in busy states do not participate in the training
process. As such, we need to list the devices in idle states
before model updating and training (i.e., considering
whether the devices have time to participate in the model
training).

(2) Model Updating for Intrusion Detection Systems: For the
current idle IIoT devices, we use prior knowledge (i.e.,
the previous device selection and model training results)
to analyze the model training ability of the device or
the quality of its local data. Based on this, our goal is to
select the “high-quality” devices that have comprehensive
advantages in terms of detection accuracy, training delay
reduction, and training energy saving. The details of
device selection are given in Sections 5 and 6.

1) Perform data preprocessing: Since the data in reality
is the unbalanced data set with unclear boundaries
and noise data, it may be difficult to detect the
minority attack data during model training without
data preprocessing. To this end, we propose a hybrid
sampling method to transform the unbalanced data
set into a balanced one with no noise and clear
classification boundaries. The details of technical
process is shown in Section 4.

2) Perform local training: Each selected device locally
trains a CNN-based intrusion detection model using
their labeled private data. After that, each selected
device uploads the currently trained model parame-
ters to the MEC server.

3) Perform parameter aggregation: The MEC server
aggregates the local model parameters of the se-
lected devices and then send the aggregated global
model parameters to them. The MEC server interact-
s with the currently selected devices over O rounds
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to obtain a new intrusion detection model.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DEAFL-ID scheme via extensive simulations. All the simula-
tions are conducted in Python on a desktop computer with an
Intel Core i7-7700 3.60GHz CPU and 16GB RAM.

We first describe the simulation setup. Then we validate the
performance of our DEAFL-ID scheme from three aspects:
convergence analysis, training cost analysis, and intrusion
detection performance analysis. As mentioned earlier, due to
concerns about both model training cost and detection per-
formance, we focus on the whole intrusion detection process
including optimal device selection of AFL and data balance
preprocessing assisted CNN model training. Therefore, to
verify our DEAFL-ID, the two other schemes used for com-
parisons are configured as follows:

(1) FL-based intrusion detection scheme without data pre-
processing (FL-ID-NoDP) [23]: This scheme is derived
from [23]. For a fair comparison, this scheme also
adopts the CNN model as the local intrusion detection
model. Then, it utilizes FL without device selection to
iteratively train and update the intrusion detection model,
and finally obtains an optimal global model. As such,
this framework must wait for the upload parameter from
the slowest device before model aggregation. Moreover,
since there is no device selection, the framework cannot
discard model parameters for devices that have disad-
vantages in terms of training time and accuracy.

(2) AFL-based intrusion detection scheme with data prepro-
cessing method in [24] (AFL-ID-DP): This scheme is
derived by combining the data preprocessing method in
[24] and our AFL framework. Specifically, we use the
data preprocessing method in [24] to replace our pro-
posed hybrid sampling-based data preprocessing method
in DEAFL-ID. To deal with data imbalances, this
scheme adopts the traditional SMOTE method shown as
equation (3) and interpolated the new samples between
the minority class data and its neighbor sample.

A. Simulation Setup

Before analyzing the simulation results, we detail the stimu-
lation parameter settings and training dataset in our simulation
experiment.

1) Simulation Parameters: The simulation parameters set-
tings are summarized in Table 1 unless otherwise stated.
Specifically, we set different Dn, fn, pn, Bn and hn within the
given ranges as shown in Table 1. As such, we can simulate the
heterogeneous IIoT devices with different data resources (i.e.,
Dn), computational capacities (i.e., fn and pn) and channel
conditions (i.e., Bn and hn). Furthermore, we use a truncated
Gaussian distribution to simulate the varying computational
and communication state, that is fn(t) ∼ N (fn, 0.1), Bn(t) ∼
N (Bn, 0.1), and hn(t) ∼ N (hn, 0.1).

TABLE I: Simulation parameter settings

Parameters Values
Background noise at AP: n0 -50dbm
CPU cycles required to process
1bit data: gn

20 cycles/bit

Effective capacitance coefficient: ςn 2× 10−28

CPU frequency of device un: fn [1 ∼ 3]× 109 cycles/second
The size of data samples: Dn [4 ∼ 6] Mb
The size of local model parameter: δn 0.01 Mb
Channel bandwidth: Bn [2 ∼ 10] MHz
Channel power gain: hn [0.5 ∼ 1]× 10−7

Transmission power: pn [0.2 ∼ 0.5] W

2) Training Dataset: We use the NSL-KDD Train Set [28]
to implement and evaluate the proposed DEAFL-ID scheme.
It is divided into 80% and 20% subsets for training and
testing, respectively. The training set was divided equally
into 30 portions, with each participating user owning one
portion. NSL-KDD contains 41 features labeled as normal
or attack type. They can be categorized as one normal class
and four attack classes. The four attack classes are further
grouped as Denial-of-Service (DoS), Probe, Root to Local
(R2L), and Unauthorized to Root (U2R). NSL-KDD is a
typical unbalanced dataset because the number of R2L and
U2R attack samples is very small. More importantly, R2L
and U2R attacks are hidden in the data payload of packets.
From the outside, packets containing these two attacks look no
different from normal packets. As such, the minority attacks
R2L and U2R are difficult to identify. We highlight that the
purpose of IDSs is to detect more covert and deadly attacks. To
this end, our proposed hybrid sampling method can transform
the imbalanced training dataset into a balanced one, and use
it as our training set. Consequently, before and after hybrid
sampling, the number of various types’ records in the training
set is shown in Fig. 3. Compared to the original dataset in
Fig. 3 (a), the one after our proposed hybrid sampling in Fig. 3
(b) achieves the inter-class balance between majority and
minority classes and intra-class balance within the minority
class. As such, the selected IIoT devices can fully learn the
various data features in the dataset.

3) CNN Model Structure and Evaluation Metrics: Accord-
ing to the feature dimensions of the NSL-KDD data set, this
paper sets the structure of the CNN for intrusion detection
as shown in TABLE 2. We consider the four key metrics of
Accuracy, False positive rate, Precision, Recall and F1-Score
to evaluate the performance of the intrusion detection model.

B. Simulation Results and Analysis

We first evaluate the reward convergence and loss of the
proposed DQN-based device selection algorithm. In addition,
to analyze the effect of device selection, we analyze the train-
ing cost including time and energy consumption of AFL-based
intrusion detection. Finally, we test the detection performance
of our DEAFL-ID scheme.

1) Convergence Analysis: In this case, we assume that the
number of currently idle IIoT devices is 10. Their computation
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(a) Original NSL-KDD
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(b) After hybrid sampling

Fig. 3: The proportion of various attack types in the NSL-KDD
dataset

TABLE II: CNN model structure and parameter settings

Layer Type
Kernel/

Pool size
Strides

Activation
function

Output

L1 Input - - - 1*11*11

L2
Convolutional

layer 1
3*3,

32 filters
1 Relu 32*11*11

L3
Pooling
layer 1

2*2 2 Relu 32*5*5

L4
Convolutional

layer 2
3*3,

64 filters
1 Relu 64*5*5

L5
Pooling
layer 2

2*2 2 Relu 64*2*2

L6
Fully connected

layer 1
- -

Relu+
Dropout

128

L7
Fully connected

layer 2
- - Softmax 5

capacities and communication conditions are randomly gener-
ated based on the given ranges in Table 1. Then, we use our
proposed Algorithm 1 to obtain the optimal device selection
strategy. The convergence performance of the proposed DQN-
based device selection algorithm is shown in Fig. 4. We can
observe that the reward and loss quickly converge to the near-
optimal values within the 500 training episodes. Moreover,
with the increase of training episodes, the reward obtained
by Algorithm 1 gradually increases and the loss gradually
decreases, indicating that the training process will not fall
into overfitting. Therefore, we can conclude that our proposed
Algorithm 1 has good convergence performance.
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Fig. 4: Convergence performance of the proposed DQN-based
device selection algorithm

2) Training Cost Analysis: Next, we evaluate the training
cost performance of the model training process by comparing
our proposed DEAFL-ID scheme with the benchmark scheme
FL-ID-NoDP in [23] (In this case, the results of AFL-ID-
NoDP is the same as our DEAFL-ID scheme since it is derived
from DEAFL-ID). The computation capacities and communi-
cation conditions of idle devices are randomly generated based
on the given ranges in Table 1 for each experimental trial, and
we present the average results for a large number of trials.

Fig. 5 shows the number of selected IIoT devices versus
the number of the currently idle IIoT devices in the two
schemes, and the values on the data lines represent the
detection accuracy of the resulting global model. We find
that the numbers of selected and idle devices are positively
correlated. This is because as the number of idle devices
increases, the server will select more devices to participate in
model training to improve the accuracy of intrusion detection
model. Moreover, it is obvious that our proposed DEAFL-
ID scheme outperforms the FL-ID-NoDP scheme due to the
smaller number of selected IIoT devices and the similar global
model accuracy. Employing fewer number of devices frees
them to perform other industrial tasks and improve their
resource utilization. The reason for the improvement is that
DEAFL-ID selects devices with higher detection accuracy,
and lower training delay and energy consumption, which is
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considerably different from FL-ID-NoDP that requires all idle
devices to participate in model training.
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Fig. 5: Number of selected devices versus number of idle IIoT
devices

Figs. 6 (a) and (b) show the time and energy cost of the
training process changing with the number of currently idle
IIoT devices in the two schemes, respectively. In Fig. 6 (a),
we observe that our proposed DEAFL-ID scheme outperforms
the FL-ID-NoDP scheme, which shows the high efficiency of
our solution. There are two reasons for this improvement. First,
we select only some devices instead of all idle IIoT devices to
participate in model training, and recall that the slowest device
dominates the training time of each round. Therefore, if more
devices are selected, there is a higher probability of including
slow devices. Second, we give priority to selecting those IIoT
devices with better gains in the delay reduction. In Fig. 6
(b), we see that our proposed DEAFL-ID scheme outperforms
the FL-ID-NoDP scheme. This is because we select some
IIoT devices with better gains in energy saving instead of
all idle IIoT devices to participate in model training. This
improvement is explained from the fact that more participating
devices will lead to higher energy consumption in the training
process. More importantly, according to (19), we can obtain
that the average RUE of our DEAFL-ID scheme is about 0.93
while the FL-ID-NoDP scheme in [23] is only 0.5. Therefore,
we conclude that our intrusion detection solution is more
suitable for heterogeneous IIoT with low-delay requirements
and limited-resource devices because of the low training cost
and high RUE.

3) Intrusion Detection Performance Analysis: Finally, we
evaluate the detection performances of the IDS by comparing
our proposed DEAFL-ID scheme with the two benchmark
schemes of FL-ID-NoDP and AFL-ID-DP. In this case, we
set 10 currently idle IIoT devices. The computation capacities
and communication conditions of these devices are randomly
generated based on the given ranges in Table 1 for each
experimental trial, and we present the average results for a
large number of trials.

Table 3 shows the different intrusion detection performances
for precision, recall, and F1-score with different data types in
the three schemes, and Fig. 7 shows the average performances
of the schemes. From Table 3 and Fig. 7, we can observe that
the different detection performances of our DEAFL-ID scheme
are close to 99% and always outperforms the other schemes in
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Fig. 6: Training cost of training process changing with the
number of the currently idle devices

DEAFL-ID AFL-ID-DP in [24] FL-ID-NoDP in [23]

Different schemes

60%

65%

70%

75%

80%

85%

90%

95%

100%

D
et

ec
tio

n 
pe

rf
or

m
an

ce Average precision
Average recall
Average F1-Score

Fig. 7: Average performances of different schemes

all the considered performance metrics. This improvement is
mainly due to the hybrid sampling method for data preprocess-
ing in our DEAFL-ID scheme. The FL-ID-NoDP scheme does
not have a data preprocessing step, which makes it difficult
for them to find the minority class data and easy to classify
errors due to the presence of environmental noise. The AFL-
ID-DP scheme in [24] proposed a data preprocessing method,
that fills more samples into the minority class using the
SMOTE method. Hence, AFL-ID-DP has better classification
performance than FL-ID-NoDP. However, AFL-ID-DP adopts
the traditional SMOTE method given in equation (3) and
interpolates the new samples between the minority class data
and its neighbor sample. Since the neighbor sample may be
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TABLE III: Detection performances regarding precision, recall and F1-Score to NSL-KDD

Our DEAFL-ID scheme AFL-ID-DP scheme in [24] FL-ID-NoDP scheme in [23]

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Normal (%) 98.88 98.57 98.73 97.95 95.75 96.84 98.07 97.80 97.93

DoS (%) 99.44 99.44 99.44 99.66 97.79 98.72 99.51 98.13 98.82

Probe (%) 96.88 97.72 97.30 96.87 96.65 96.75 97.27 96.60 96.93

R2L (%) 99.22 99.36 99.29 94.55 97.27 95.89 46.48 89.75 61.20

U2R (%) 99.97 99.98 99.99 96.79 97.70 97.24 0 0 0

Average (%) 98.88 99.02 98.95 97.16 97.03 97.08 68.27 76.46 71.00

from the majority class, this approach may cause the decision
boundaries of the minority class to spread into the majority
class space and then decreases the classification accuracy of
the trained intrusion detection model. By contrast, in DEAFL-
ID we present an improved SMOTE method based on K-
means++. Specifically, we identify the data cluster centers of
the minority class. Then, we use sample yi and cluster center
ci in cluster Ci to fill the sample data of the minority class as
equation (4), which can greatly reduce the probability of the
new sample spreading to the majority class and achieve the
best classification performance among the three schemes.

Table 4 shows the detection performances regarding accu-
racy and false positive rates in the three schemes. Benefiting
from our proposed hybrid sampling-based data preprocessing
method, DEAFL-ID outperforms the other two schemes. By
contrast, for the AFL-ID-DP scheme in [24], the sample
spreading results in unclear data sample boundaries, and thus it
achieves the worst accuracy and false positive rates among the
three schemes. Moreover, for the FL-ID-NoDP scheme in [23],
although its classification performances in Table 3 are poor
given the fact that it struggles to identify the minority sample,
it has little influence on the overall accuracy performance due
to the very small proportion (0.83% in NSL-KDD) of minority
class samples.

TABLE IV: Detection performances regarding accuracy and
false positive rates

Different
schemes

Our DEAFL-ID
scheme

AFL-ID-DP
scheme in [24]

FL-ID-NoDP
scheme in [23]

Accuracy rate 99.25% 97.07% 97.75%
False alarm rate 1.42% 4.25% 2.20%

Fig. 8 shows the accuracy performance changing with
communication rounds between the MEC server and the
selected IIoT devices in the three schemes. We can find that
the accuracy in different schemes increases with the number
of communication rounds. This is because the MEC server
performs model aggregation at each round and sends a newer
and better global model to the selected devices. Moreover,
DEAFL-ID quickly achieves the near-optimal values within
9 communication rounds, which verifies the convergence of
our AFL framework. Furthermore, our proposed DEAFL-ID
scheme always outperforms the other schemes, and the reason
is the same as Table 4.
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Fig. 8: Accuracy changing with communication rounds be-
tween the server and selected devices

Fig. 9 shows the accuracy performance versus the number
of currently idle IIoT devices in the three schemes. It is
obvious that our DEAFL-ID scheme performs better than
the other schemes, due to the same reasons discussed for
Table 4. Moreover, we find that the accuracy in DEAFL-ID
and FL-ID-NoDP in [23] increases at first and then slightly
decreases with the increasing number of idle devices. The
early increase in performance is because the more devices will
bring more training data and improve the training accuracy of
the model. Then, when the number of idle devices reaches
a certain number, a continued increase in the number of
devices adversely affects the accuracy performance in the three
schemes. This degradation is because when the training data
set reaches a certain size, the model obtained by training
has reached close to the optimal accuracy. After that, more
devices bring various updated parameters, making it difficult
for the server to aggregate them to a better global model.
This is one of the reasons the AFL-ID-DP scheme in [24]
decreases with the increasing number of idle devices. The
most fundamental reason for AFL-ID-DP’s decline is the
sample spreading caused by the data preprocessing method
in [24]. This further leads to unstable model parameters, and
more participating devices result in worse model aggregation
performance. We note that our DEAFL-ID scheme always
outperforms the other schemes regardless of the number of
idle IIoT devices.

To sum up, benefiting from our delay and energy-efficient
AFL framework and hybrid sampling method for data prepro-
cessing, we can significantly reduce the model training cost
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Fig. 9: Accuracy changing with the number of idle IIoT
devices

as well as improve the model detection accuracy and classifi-
cation performance in heterogeneous IIoT environments.

IX. CONCLUSION AND FUTURE WORKS

For realistic heterogeneous IIoT networks, an effective IDS
plays an essential role in ensuring network security. Amongst
the popular solutions, learning-based techniques have proven
their great potential in IoT networks. However, the existing
learning-based methods depend on collecting the local data
from all participating devices, which leads to privacy concerns.
While FL-based IDS have been considered to address the
privacy problem, it is still challenging to implement in the IIoT
due to its heterogeneous nature and limited device resources.
To this end, we proposed a DEAFL-ID scheme to provide
an efficient and high-performance intrusion detection for het-
erogeneous IIoT. Specifically, we design a CNN-based hybrid
sampling assisted intrusion detection model to fully extract
the features of large-scale unbalanced IDS data. Moreover,
we developed a device selection optimization framework by
exploring the gains of our solution in detection accuracy, delay
reduction, and energy saving compared with the traditional
FL-based intrusion detection. Then, we develop a DQN-based
learning algorithm to find the optimal device selection policy.
Through extensive simulation results, we verified that our
proposed DEAFL-ID scheme can significantly outperform
benchmark schemes.

In future studies, we will continue to improve this work.
For example, we will consider and use some specific IIoT
data such as the dataset proposed in [29] to test and analyze
the proposed intrusion detection framework in this paper.
Moreover, we will consider some non-i.i.d. (independent and
identically distributed) data to conduct the simulation analysis.
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