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Abstract—In analog and mixed-signal integrated circuits (ICs),
low-dropout regulators (LDOs) are crucial for maintaining a
stable power supply throughout the IC. As such, designing LDOs
with both time and quality efficiency has attracted substantial re-
search interest. This paper presents an implementation of multi-
agent proximal policy optimization (MAPPO) in both separated-
parameter and parameter-sharing configurations to address the
challenges of multi-objective, multi-variable LDO design. Our
experiments show that parameter-sharing MAPPO outperforms
both separated-parameter MAPPO and single-agent PPO in ex-
ploration and convergence, benefiting from cooperative learning
via parameter sharing, which accelerates the identification of
optimal design configurations. In summary, our findings indicate
that parameter-sharing MAPPO efficiently manages complex
specifications and variables.

Index Terms—proximal policy optimization (PPO), multi-agent
proximal policy optimization (MAPPO), low-dropout regulator
(LDO), multi-agent reinforcement learning (MA-RL).

I. INTRODUCTION

In analog and mixed-signal integrated circuits (ICs), low-
dropout regulators (LDOs) play a critical role in power
management by providing a stable, “clean” power supply to
various components within System-on-Chip (SoC) architec-
tures [1]. The ideal LDO output voltage should be robust
against process, supply voltage, and temperature variations
(PVT), exhibiting minimal noise and maintaining stability
under varying load conditions and environmental changes. Fur-
thermore, LDOs should minimize the dropout voltage, defined
as the difference between the input and output voltages. These
characteristics make LDOs critical in diverse applications,
including biomedical sensors [2], cameras, memory devices
[3], and satellite systems [4].

Designing LDOs is a complex task that typically involves
three stages: topology selection, sizing, and layout. The sizing
stage, in particular, is time-consuming and highly reliant on
designer expertise due to inherent non-linearities and intri-
cate trade-offs among performance specifications [S]. Conse-
quently, significant research effort has been directed towards
automating the sizing process for LDOs and other analog
circuits.

Traditional approaches to automated sizing often employ
evolutionary algorithms, such as genetic algorithms (GA) [6]
and particle swarm optimization (PSO) [7]-[9]. However,
these heuristic methods can be susceptible to local optima,
particularly in high-dimensional design spaces with numerous
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local optima. Bayesian optimization (BO) offers an alternative
[10], [11], but its computational cost scales cubically with the
number of samples [5], potentially limiting its applicability
in large-scale problems. Additionally, BO’s sample efficiency
can be a concern as the number of design variables increases.

Recently, reinforcement learning (RL) has emerged as a
promising technique for addressing optimization challenges in
IC design. Using neural networks as function approximators,
RL algorithms can effectively model complex relationships
and learn from experience. Previous studies [12], [13] have
explored the use of deep deterministic policy gradient (DDPG)
method for LDO sizing problem. However, these studies
often simplify the design problem by assuming a constant
reference voltage, neglecting the design of the bandgap ref-
erence (BGR) circuit that generates this voltage in practical
LDO implementations. This simplification may stem from the
limitations of single-agent RL in handling the interactions
between interdependent circuit blocks.

This study aims to overcome these limitations by em-
ploying a multi-agent reinforcement learning (MARL) ap-
proach, specifically Multi-Agent Proximal Policy Optimization
(MAPPO). MAPPO has demonstrated superior performance in
multi-agent environments, including telecommunications [14]
and game playing [15]. Recent work [16] has also shown its
potential for analog circuit design. However, a comprehensive
comparison between MAPPO and single-agent PPO in this
context is lacking, as is an investigation into the impact of
different multi-agent settings, such as parameter-sharing and
separated-learning, on MAPPO’s performance. This research
addresses these gaps by systematically evaluating the perfor-
mance of MAPPO under different multi-agent configurations
and comparing it to single-agent PPO in the challenging task
of LDO and BGR co-design.

This article presents the following main contributions:

1) Introduces a multi-agent framework for LDO design,
enabling the decomposition of the complex optimization
problem.

2) Employs MAPPO with both parameter-sharing and
separated-parameter schemes to optimize LDO sizing.

3) Demonstrates the superior performance of parameter-
sharing MAPPO over separated-parameter MAPPO and
single-agent PPO through a comparative analysis.

The remaining sections of this paper are organized as
follows: Section II introduces LDO and MAPPO. Section III
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Fig. 1. Schematic of LDO circuit

details the optimization framework. Section IV discusses the
optimization results. Section V concludes the paper.

II. METHODOLOGY
A. Low-Dropout Regulator (LDO)

Fig. 1 illustrates a typical LDO architecture. The circuit
comprises several key components: a pass element, an error
amplifier, and a BGR circuit. The pass element, commonly
an N- or P-channel MOSFET, serves as a variable resistor
responsible for the regulation of the output voltage.

To maintain a stable output voltage, the LDO utilizes a
negative feedback loop. The output voltage is compared with
a reference voltage generated by the BGR circuit, and any
difference is amplified to adjust the gate voltage of the pass
transistor. This dynamic adjustment ensures precise output
voltage regulation despite fluctuations in load current or power
supply voltage.

Under steady-state conditions, the LDO exhibits a linear
relationship between the output Vz g and its reference voltage
Verer: VrReg = (1+ %
demonstrates the LDO’s ability to maintain a consistent output
voltage despite any environment affect.

To ensure the LDO’s output voltage quality, several key
metrics are evaluated, as shown in Table I. The first six
rows cover overall LDO performance, including power supply
rejection ratio (PSRR) and phase margin at both maximum
(10 mA) and minimum (10 pA) loads. The last four rows list
performance metrics for the BGR sub-block.

In analog IC design, multi-objective optimization is typi-
cally addressed by converting multiple objectives into a Figure
of Merit (FoM), often represented as a weighted sum prioritiz-
ing key objectives. Similarly, in reinforcement learning, agents
aim to maximize reward functions. Thus, in optimization tasks,
the objective can be directly defined as the agents’ reward
when applying RL for optimization.

VrEer. This linear relationship

TABLE I

SPECIFICATIONS OF LDO CIRCUIT
Metrics Constraint
Dropout voltage < 200 mV
Load regulation <36 mV
PSRR 1y, < —30dB
PSRR vy, < —20dB
Phase margin > 60°
Quiescent current < 200 pA
BGR’s temperature coefficient | < 10 ppm/°C
VREF ~ 09V
BGR’s PSRR jxy, < —70dB
BGR’s PSRRmp, < —20dB

B. Multi-Agent Proximal Policy Optimization (MAPPO)

A detailed description of the MAPPO is provided in Al-
gorithm 1. In contrast to value-based reinforcement learning
algorithms, MAPPO is hypothesized to be robust against the
issue of value function overestimation.

Algorithm 1: MAPPO

1 Initialize actors and critics parameters of all agents.
2 Initialize data buffer D.
3 for step = 1,2, ..., stepnaz do

4 for i =1 to B do

5 Initialize state of actors and critics.
6 Trajectory 7 = [].

7 fort=1to T do

8 Each agent executes action a;, get reward

r¢ and next state Syyi.

9 T =7U|[8¢, a4, T, St41)-

10 Compute A and R.

11 Split 7 into small data chunks.
12 for ¢ in chunks do

13 | D=DU[rld, Ald, Rle]] .
14 end

15 end

16 end

17 Select a random mini-batch b from D.
18 Update L(¢) and L(6) using b.
19 end

Similar to single-agent PPO, MAPPO employs an actor-
critic architecture. The actor network learns a policy to select
actions that optimize the cumulative reward, while the critic
network evaluates the quality of those actions and guides the
actor’s learning process. The MAPPO framework operates
on the principle of centralized training with decentralized
execution, integrating the benefits of both centralized and
decentralized methods. During centralized training, each critic
has access not only to its local observations but also to shared
state information and actions from all agents, facilitating
more cooperative policy development. The centralized critic
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Fig. 2. Implemented multi-agent optimization framework

is trained to minimized the loss function shown in Eq. (1):

1 B n , R
L(¢) = Bn ZZmaX [(ng(sf) - R;)?, (LgéIP)Q )
=1 k=1
where LCLIP = Chp(V¢( ) V¢old( ) €, V¢Old(sf)+e), V¢
is the value function, R is the discounted return, B is batch
size and n is the number of agents.

In decentralized execution phase, global information and
critics are not required; each agent bases its actions solely on
its local observations, thus reducing extraneous information
in decision-making step. In each iteration, the actors utilize
the trained decentralized policy to sample trajectories. These
trajectories are aggregated to compute advantage values and to
maximize the following objective function shown in Eq. (2):

LigiP +o ZZSm (sP)] ] )
i=1 k=1
CLIP

where Ly'5 €1+ e)), S is
the entropy function which encouraging exploration, and o is
entropy coefficient.

In cooperative multi-agent RL, agents can learn with sepa-
rate or shared parameters. While separate policies allow for in-
dividual learning, parameter sharing enhances efficiency when
agents are homogeneous [17]. By learning from collective
experiences, agents accelerate training and reduce the number
of parameters, leading to more effective outcomes [18]. This
study will confirm these benefits in IC sizing, demonstrating
improved training efficiency and parameter optimization.
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III. OPTIMIZATION PROCESS
A. Optimization framework overview

Figure 2 presents the LDO sizing optimization framework,
divided into the circuit and algorithm blocks. In the circuit

block, the LDO schematic with variable design parameters
is drawn in Cadence Virtuoso, generating a netlist file that is
then simulated using Spectre. The algorithm block implements
three reinforcement learning algorithms—PPO, parameter-
sharing MAPPO, and separated-parameter MAPPO—coded
in Python. Identical hyperparameters are applied across all
algorithms to ensure a fair comparison.

The LDO under examination is a circuit with 28 design
variables. Within the scope of MAPPO investigations, these
variables are organized into four sub-components. Each agent
is assigned a single sub-component, thus managing only seven
variables each.

The output actions generated by the agents, governed by
the activation function of the neural network, fall within a
normalized range of [-1, 1]. To translate these outputs into
practical sizing values for the IC components, denormalization
is applied following the regulation shown in Eq. (3), which is
introduced by [13]:

A= % A © (Ama:c - Amin) + (Amaz + Amin) 3 (3)
where A is the normalized action, A,,,, and A,,;, are the
upper bound and lower bound of the design space respectively.

After denormalization, elements of the action vector are
assigned to their corresponding design variable in the netllist
for the upcoming circuit performance simulation step. After
simulation, the FoM value is sent to the algorithm block for
evaluation.

B. Reward

Following the reward formulation in [19], in this work, the
reward associated with each performance metric is defined in

Eq. (4). .
0; — O;

i = mi =0 . 4

T Inln(l+ or > 4)

where o; is simulated performance metric and o] is the
target value of o;. This reward structure can encourage the
agent to achieve performance metrics that meet or exceed the
predefined targets.

Furthermore, certain performance metrics may require spe-
cial consideration due to their criticality in specific applica-
tions. In the design of BGR and LDO circuits, PSRR is of
paramount importance. Additionally, for LDOs, the stability
of the feedback loop, often characterized by phase margin, is
crucial. To prevent these critical metrics from degrading to un-
acceptable levels, specialized reward functions are introduced,
as shown in Eq. (5) and Eq. (6).

-1 it PSRR>0dB

TP \min (2525,0) if PSRR <0 dB ©)
1+ min (2525,0) if PM > 45 dB

S (©6)

else

. 0;—0;
min (O#O: ,O)

The overall reward for each agent is then calculated as a
weighted sum of the individual rewards associated with each
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Fig. 3. Average episode reward versus step result for PPO and parameter-
sharing MAPPO

performance metric: R = > w;r;. In the parameter-sharing
MAPPO scenario, all agents share the same reward function,
promoting cooperation towards a common objective. Con-
versely, in the separated-sharing scenario, each agent possesses
a unique reward function.

C. Observation

The study defines the observation space for each agent to
include the state of 24 MOSFETsS in the LDO circuit. The state
vector of each transistor S; is a vector with key electrical
characteristics: drain source current Ipg, transconductance
Jgm, drain source conductance gpg, drain source voltage Vpg,
threshold voltage V;j,, and saturation voltage Vys,¢. In MAPPO
scenarios, each RL agent observes the six transistors in the
state to efficiently capture the dynamics of the LDO system.
Before sneding to the agents, state vectors are normalized as
described in Eq. (7).

S; = ; (N

where © and o denote the mean and variance of the DC
operating point of MOSFETs, respectively.

After normalization, each observation is clipped to [-5,
5], ensuring values remain within a manageable range for
the neural network. This process prevents extreme values
from impacting training, fostering a more stable learning
environment.

IV. RESULT AND DISCUSSION

Fig. 3 compares average episode rewards for single-
agent PPO and parameter-sharing MAPPO. Parameter-sharing
MAPPO demonstrates stronger early exploration, with rewards
steadily increasing from -20 to about -4 within the first 5000
steps. Meanwhile, PPO’s rewards oscillate below -10 during
this period. Over time, MAPPO shows consistent progress,
surpassing a reward of O in the last 200 steps, At the same
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Fig. 4. Comparison of three algorithms in terms of maximum FoM value
reached

TABLE I
COMPARISON WITH STATE-OF-THE-ART
DAC’20 [12] | ICCAD’23 [13] | This work

. PPO
Algorithm DDPG DDPG MAPPO
Employed circuit LDO LDO LDO
Number of specifications | 6 6 13
Number of variables N/A 13 28

period, PPO fluctuates around -3, exhibiting two peaks at 3.49
and 2.18, and one sharp decline to -16.55 at step 14,450 before
stabilizing back around -3, indicating less stable learning.

Fig. 4 further compares algorithm performance through the
maximum FoM achieved during training. Parameter-sharing
MAPPO reaches the highest FoM value at 9 within 3147
steps, while PPO requires 7856 steps to reach the same
level. Separated-parameter MAPPO lags, only reaching a
maximum FoM of 0. These results confirm that parameter-
sharing MAPPO offers superior exploration and more efficient
convergence, benefiting from shared learning among agents,
which accelerates the discovery of an optimal design configu-
ration. Table II provides a comparative analysis of our findings
with conventional approaches, which reveals the fact that our
proposed scheme outperforms other benchmarks in terms of
larger number of handling variables and specifications.

V. CONCLUSION

This paper presents an implementation of MAPPO in
both separate-parameter and parameter-sharing configurations,
aimed at addressing the challenges in designing the LDO
circuit. Through our experimental analyses, we have demon-
strated that the parameter-sharing MAPPO configuration yields
superior optimization outcomes. We have also shown that
owing to the robust performance of multi-agent reinforcement
learning, our proposed scheme can efficiently handle a greater
number of specifications and variables compared with conven-
tional approaches.
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