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Abstract—The increasing complexity of Internet-of-Vehicles
(IoV) networks, driven by the need for real-time decision-making
and resource management, presents significant challenges, partic-
ularly in dynamic, time-varying environments. To address these
limitations, we propose a novel framework that integrates the
quantum-based deep deterministic policy gradient (Q-DDPG)
with digital twin networks (DTN) for distributed semantic opti-
mization in dynamic IoV environments. The framework leverages
quantum computing, such as superposition and annealing, to
enhance distributed semantic decisions. DTNs provide real-time
modeling for efficient task offloading and adaptive resource
allocation in decentralized IoV environments under varying
conditions and uncertainties. The numerical results validate the
robustness of the proposed approach, significantly reduce latency,
and improve energy efficiency.

Index Terms—Internet of Vehicles, Deep Deterministic Policy
Gradient, Digital Twin Networks, Quantum Machine Learning

I. INTRODUCTION

Internet of Vehicles (IoV) networks have transformed trans-
portation and mobility through the integration of vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-
to-cloud (V2C) communications [1], [2]. These networks
underpin advances such as autonomous vehicles, real-time
traffic management, and intelligent transportation systems,
but their expanding complexity presents challenges in re-
source optimization and task offloading. Efficient resource
management and low-latency communication are essential for
the seamless operation of decentralized IoV networks, where
unpredictability arises from fluctuating traffic patterns, incon-
sistent user behavior, and dynamic wireless channel conditions
[3]. Traditional optimization methods, often based on static as-
sumptions, falter under such uncertainties, and scaling them to
the demands of dynamic IoV networks introduces significant
computational bottlenecks [4]. In distributed environments,
this creates added pressure, as scalable solutions rely heavily
on decentralized decision-making.

Digital twin networks (DTNs) offer a promising solution to
these challenges, enabling real-time monitoring and optimiza-
tion by creating virtual representations of physical IoV systems
[5]. In this context, digital twins replicate and forecast network
states, paving the way for proactive resource management
tailored to semantic relevance. By shifting the focus from raw
data throughput to the semantic meaning and relevance of
information, semantic optimization refines data transmission
and resource allocation strategies [6]. This prioritization of
contextually significant information improves decision-making

efficiency, equipping IoV networks to adapt quickly and ef-
fectively in dynamic scenarios. DT technology is introduced
in [7] to enable task offloading in IoV, employing learning
algorithms to predict and optimize task assignments based on
real-time insights from DT models. Although effective, the
framework relies heavily on the accuracy of DT representa-
tions and faces scalability challenges in large IoV networks
with high volumes of vehicles and data. In [8], DT technology
is integrated with intelligent reflective surfaces to optimize
vehicle task absorption and resource allocation in 6G enabled
IoV networks. DT facilitates real-time simulations, while IRS
improves communication quality by improving signal propa-
gation. Despite these advancements, synchronization between
physical and digital twins poses significant challenges, and
the complexity of efficient IRS deployment strategies limits
the framework’s applicability in real-time scenarios.

In [9], a framework based on a deep deterministic policy
gradient (DDPG) of multiple agents is introduced to handle
the task in OV, improving mobile edge computing by im-
proving information exchange and resource coordination to
ensure optimal delivery of services in vehicular networks.
Scalability challenges emerge in large-scale IoV networks
due to increased computational complexity, with convergence
issues arising in highly dynamic environments. An adaptive
joint resource allocation scheme for the IoV framework is
presented, dividing resources into uplink, computing, and
downlink sub-strategies [10]. Twin-delayed DDPG is used to
dynamically optimize network capacity, reduce delay, and min-
imize energy consumption. The effectiveness of the algorithm
is limited by the complexity of the model in high-dimensional
problems, which can impact performance in highly unpre-
dictable scenarios. This work employs an algorithm based
on DDPG to optimize multi-user computation offloading and
caching strategies in vehicular edge computing systems, aim-
ing to minimize execution delay while improving caching
and resource utilization for variability in task sequence [11].
The framework’s reliance on accurate request modeling and
coupled optimization raises computational demands, reducing
its effectiveness in highly variable scenarios.

Driven by the above-mentioned works, we design a quantum
DDPG (Q-DDPG) framework for semantic optimization in
DT-enabled IoV networks. By combining Q-DDPG with DT
technology, the approach minimizes latency, ensures semantic
accuracy, and enhances network reliability. Quantum features
like superposition and entanglement enable efficient real-time



decision-making, addressing network uncertainties and time-
varying conditions. This method also overcomes the limita-
tions of traditional machine learning algorithms, improving
scalability and adaptability in complex IoV environments.

The remainder of this paper is organized as follows. Sec-
tion II details the system model and the formulation of the
combinatorial optimization problem. Section III introduces the
Q-DDPG framework for designed dynamic IoV environment.
Extensive experimental results are presented in Section IV.
Finally, concluding remarks are made in Section V.

II. SYSTEM MODEL DESIGNED AND FORMULATED
COMBINATORIAL PROBLEM

We examine system models for semantic optimization in
digital twin IoV and offer a mathematical formulation of the
problem.

Vehicle to MEC server with QPU Communication

𝑑 i,j

MEC server with QPU 

Vehicle with semantic tasks

Fig. 1: IoV networks with QPU facilities

A. Semantic-Based Network Model

We consider the dynamic model of the digital twin IoV
network, which consists of a set of multiple vehicles and
edge servers equipped with quantum processing units (QPU)
as illustrated in Fig. 1. Let the IoV network consist of vehicles
V = {i1, i2, . . . , iN}, and edge servers E = {j1, j2, . . . , jM}.

B. Semantic-based Vehicular Mobility Model

We consider the position of the vehicle i in time frame τ ,
denoted as pi(τ) = (xi(τ), yi(τ)), and the position of the edge
server j located at pj = (xj , yj). The channel gain between
vehicle i and edge server j at time τ is given by:

hij(τ) =
g0

dij(τ)α
, (1)

where g0 is the channel power gain at the reference distance,

dij(τ) =
√
(xi(τ)− xj)2 + (yi(τ)− yj)2 is the distance

between vehicle i and edge serverj, and α is the path loss
exponent.

C. Stochastic Task Generation, Task Arrival, and Task Prior-
itization Models

1) Semantic-based Task Generation Model: Each semantic
task Sk generated by vehicle i at timeframe τ is described by:

Sk(τ) = {Di(τ), sc(τ), Ti,p(τ), LD(τ),P (Ai(τ))} , (2)

where Di(τ) denotes the task data size (in bits), sc(τ) is the se-
mantic task complexity, indicating its contextual information,
Ti,p(τ) is the priority of the task, LD(τ) is the task deadline
for completion, and P (Ai(τ)) is the stochastic arrival task
process.

2) Semantic-based Stochastic Task Arrival Model: Let
λi(τ) indicate the arrival rate of semantic tasks in vehicle
i, and µi(τ) represent the service rate of semantic tasks. The
number of semantic tasks in the queue at time frame τ follows
a queuing model:

Qi(τ + 1) = Qi(τ) + λi(τ)− µi(τ), (3)

where Qi(τ) is the number of semantic tasks in the queue at
time frame τ .

The semantic task generation by vehicle i is a stochastic
process modeled as a Poisson process with arrival rate λi(τ),
given as:

P (Ai(τ) = k) =
(λi(τ))

k
e−λi(τ)

k!
, (4)

where P (Ai(τ) = k) is the probability that k semantic tasks
arrive at vehicle i in time interval τ .

3) Semantic Task Prioritization Model: Semantic tasks are
prioritized by importance and urgency, determining their queue
position:

Sk,i = φ · sc(τ) + β · (LD(τ)− τ) , (5)

where φ and β are weighting factors, LD(τ) is the task
deadline for completion, and τ is the current time. Higher
values of Sk,i increase the priority of the task queue.

D. Digital Twin for Predict the Task Arrival Process

We simulate the DT layer, mirroring the IoV and edge
quantum server with real-time updates of state information,
historical data, and task arrival processes. The DT layer
predicts the arrival rates of tasks, adjusting for uncertainties, to
determine optimal offloading strategies for the physical layer.
The DT at time step τ is expressed as

DT (τ) =
(
DTV

i (τ), DT E
j (τ)

)
. (6)

Considering the uncertain and unpredictable errors between
the physical entities and the DT, we model the task arrival
rate λi(τ) of vehicle i with an uncertain deviation δiλ(τ) as

λi(τ) = λ̂i(τ) + δiλ(τ), |δiλ(τ)| ≤ ϵλ, (7)

where λ̂i(τ) is the estimated arrival rate predicted by the DT,
and ϵλ is the maximum range of deviations.



E. Semantic-Based Communication Model

Each vehicle i communicates with edge server j to exe-
cute semantic tasks. The achievable transmission rate Ri,j(τ)
between vehiclei and edge server j at time frame τ is given
by:

Ri,j(τ) = Bi,j(τ)σi,j log2

(
1 +

pi,j(τ)gi,j(τ)

I +No

)
, (8)

where Bi,j(τ) represents the system bandwidth at time frame
τ , pi,j(τ) is the transmission power, gi,j(τ) is the channel
gain, σi,j is the semantic efficiency metric, No is the noise
power, and I is the interference.

F. Semantic-Based Computation Models

Let Ci(τ) represent the local computational capacity of
vehicle i, and Cj(τ) be the computational capacity of the edge
server j. Let αi,j(τ) represent the binary offloading decision
variable denoting whether semantic task Sk is processed lo-
cally or offloaded from vehicle i to edge server j at timeframe
τ , defined as:

αi,j(τ) =

{
1, if semantic task Sk is offloaded to server j,
0, if processed locally at vehicle i.

(9)
1) Local Computation Model: The computation delay

Lcomp
i (τ) for processing the semantic task Sk in the time frame

τ is:

Lcomp
i (τ) =

sc(τ)

Ci(τ)
× σi, (10)

where σi is the semantic accuracy factor for local computation.
2) Offloading Computation Model: To offload the semantic

task to the edge server, the computation delay is given by:

Loff
i (τ) =

Di(τ)

Ri,j(τ)
+ Lcomp

j (τ), (11)

where Lcomp
j (τ) =

sc(τ)

Cj(τ)
× σj is the computation delay at

the edge server, and σj is the semantic accuracy factor for the
edge server.

The total delay for processing and offloading a semantic
task is:

Ltotal(τ) =


Di(τ)
Ri,j(τ)

+ Lcomp
j (τ), if αi,j(τ) = 1,

Lcomp
i (τ), if αi,j(τ) = 0.

(12)

G. Semantic-based Energy Consumption Model

The energy consumption to transmit the semantic task Sk

from vehicle i to server j is:

Eoff
i,j(τ) = pi,j(τ) ·

Di(τ)

Ri,j(τ)
. (13)

The local processing energy consumption at vehicle i is:

Eloc
i (τ) = κi (Ci(τ))

2
sc(τ), (14)

where κi is the energy efficiency coefficient of vehicle i. The
total energy consumption for semantic task Sk is:

Etotal(τ) =

{
Eoff

i,j(τ), if αi,j(τ) = 1,

Eloc
i (τ), if αi,j(τ) = 0.

(15)

H. Stochastic Combinatorial Offloading Problem Formulation

We aim to minimize the total cost while considering energy
consumption, latency constraints, semantic accuracy, and ar-
rival rate uncertainties. The total cost Φ at time step τ is given
by:

Φ(τ) =
∑
i∈V

∑
j∈E

(
w1L

(i,j)
total (τ) + (1− w1)E

(i,j)
total (τ)

)
, (16)

where w1 represents the weight factor for latency and energy
consumption. Mathematically, the combinatorial optimization
problem can be formulated as follows:

min
Bi,j(τ),αi,j(τ),pi,j(τ)

Φ(τ) (17a)

s.t.: L
(i)
total(τ) ≤ Lmax, ∀i ∈ V,∀j ∈ E (17b)

E
(i)
total(τ) ≤ E

max
i , ∀i ∈ V (17c)

sc(τ) ≤ Ci(τ)× τ, if αi,j(τ) = 0, ∀i ∈ V (17d)∑
i∈V

αi,j(τ)sc(τ) ≤ Cj(τ)× τ, ∀j ∈ E (17e)

σi,j ≥ σmin, σi,j(τ) ∈ {0, 1},∀i ∈ V,∀j ∈ E (17f)
pi,j(τ) ≤ Pmax

i , ∀i ∈ V,∀j ∈ E (17g)
µi(τ) ≥ λmax

i (τ), ∀i ∈ V (17h)

λmax
i (τ) = λ̂i(τ) + ϵλ, ∀i ∈ V (17i)
αi,j(τ) ∈ {0, 1}, ∀i ∈ V,∀j ∈ E (17j)∑
i∈V

∑
j∈V

Bi,j(τ) ≤ Bmax, ∀i ∈ E ,∀j ∈ E (17k)

where (17b) ensures that the total latency must not exceed
the task deadline for each semantic task, (17c) guarantees that
the total energy consumption of a vehicle must not exceed
its available energy budget, (17d) and (17e) ensure that the
computational capacities of the vehicles and edge servers are
not exceeded, (17f) verify that semantic tasks meet a minimum
semantic accuracy threshold for local and offloaded process-
ing, respectively, (17g) indicates the power transmission limit
with the maximum transmit power Pmax

i for vehicle i, (17i)
and (17j) confirm the service rate is sufficient to handle
the maximum possible arrival rate considering uncertainties,
(17h)establishes the offloading decision variables, and (17k)
ensures bandwidth does not surpass the system’s maximum
limit.

III. PROPOSED QUANTUM-BASED DDPG DESIGN

The combinatorial optimization problem in (17a) for se-
mantic optimization in digital twin IoV networks is compu-
tationally intractable and impractical with increasing vehicle
numbers. We design a quantum-inspired DDPG framework for
efficient exploration in high-dimensional environments, ideal



for dynamic and stochastic offloading in IoV. This section
elaborates on the designed framework.

A. MDP Problem Formulation

We reformulated P1 as a Markov decision process
(MDP) and modeled it as a tuple (S,A, P,R, γ) where
S represents the set of states, A is the set of continuous
action space, P (s′|s, a) is the probability of transition, where
P (sτ+1 | sτ , aτ ) represents the probability of transitioning
from state sτ to sτ+1 after taking action aτ at time frame
τ , R(s, a) denotes the reward function and γ ∈ [0, 1) is the
discount factor. The state, action, and reward functions are
defined as follows.

1) State space: offers essential information on the current
state of the environment for decision making. The state Si for
agent i (vehicle in loV) at each time step τ can be represented
as:

si(τ) = [Ltotal (τ), Etotal (τ), Sk(τ), Ri,j(τ)] . (18)

2) Action space: defines the set of possible decisions that
the agent can make at each time step τ . The agent learns and
observes the dynamic IoV environments as:

ai (τ) = [Bi,j (τ) , pi,j (τ) , αi,j (τ)] . (19)

3) Reward function: provides feedback to the agent towards
optimal performance. The reward function seeks to minimize
a weighted combination of latency and energy as:

r(τ) = − (w1Ltotal (τ) + w2Etotal (τ))−
∑
i,j

U (20)

where
∑

i,j U represents the penalties for constraint violations.
The negative sign ensures that the agent minimizes the overall
cost.

B. Quantum-DDPG (Q-DDPG) Framework

Q-DDPG integrates quantum computing with DDPG by
using a parametric quantum circuit (PQC) for the actor net-
work and higher-order encoding to translate the classical state
space into quantum space. The quantum state is encoded using
quantum circuits with a feature map, variational ansatz, and
quantum state preparation. Classical data x are encoded in
higher-order features Φ(x) for the parameters of the quantum
circuit. We apply Ux = exp

(
i
∑

j<k γxjxkZjZk

)
. Herein, x

is the classical input vector with elements xj and xk, which
correspond to individual features of the data, while γ is a
tunable parameter that scales the strength of these interactions.
The Pauli-Z operators Zj and Zk act on the j-th and k-
th qubits, inducing phase flips based on their states. The
tensor product ZjZk captures feature correlations, with the
exponential ensuring unitary quantum transformations.

C. PQC-based Actor Network

In our model, a hybrid action space in the Q-DDPG
framework enables the agent to handle both discrete strate-
gies and continuous control parameters. The actor network,

implemented as a Parameterized Quantum Circuit (PQC),
determines the optimal action a = µ(s | θµ), where s is the
state and θµ the PQC parameters. The PQC encodes com-
plex policies using parameterized single-qubit rotation gates
Ry(θ), which embed trainable parameters, and controlled-Z
(CZ) gates, which introduce entanglement to capture feature
correlations. This combination ensures the PQC can represent
expressive quantum states, optimizing the expected return as
evaluated by the critic, defined as:

J(θµ) = Es∼pπ [Q(s, µ(s|θµ) | θQ)]. (21)

The policy gradient with respect to the actor parameters is
computed as:

∇θµJ(θµ) ≈ Es∼pπ

[
∇aQ(s, a | θQ)∇θµµ(s | θµ)

]
, (22)

where ∇θµµ(s | θµ) is computed based on the PQC’s trainable
parameters and quantum gate structure.

D. Classical based Critic Network

The critic network, implemented as a classical neural net-
work, estimates the action-value function Q(s, a | θQ), where
θQ are the parameters of the critic network. The critic is
trained by minimizing the mean-squared error loss between
the predicted and target Q-values. The loss function, L(θQ),
is given as:

L(θQ) = E
[
(Q(sτ , aτ | θQ)− yτ )2

]
, (23)

where the target Q-value is defined as:

yτ = r + γQ′(sτ+1, µ
′(sτ+1 | θµ

′
) | θQ

′
). (24)

The gradient descent update for the critic parameters is:

∇θQL(θQ) = E
[
(Q(sτ , aτ | θQ)− yτ )∇θQQ(sτ , aτ | θQ)

]
.

(25)

E. Q-DDPG Target Networks Update

To stabilize training, target networks are used for both the
actor and critic. The target network for the actor uses the PQC,
while the critic’s target network remains classical. These target
networks are updated using Polyak averaging:

θµ
′
← ρθµ + (1− ρ)θµ

′
,

θQ
′
← ρθQ + (1− ρ)θQ

′
,

(26)

where ρ ∈ [0, 1] is the target update rate. The use of
target networks mitigates instability caused by rapid parameter
changes during training.

For the complexity analysis of the hybrid actor-critical
model enhanced with the quantum-inspired algorithm, let
ns denote the state dimension, nc as the continuous action
dimension, nq as the fixed count of qubits in the quantum
network, and r as the repetitions of the variational quantum
ansatz. The actor network comprises a quantum component,
with a feature map and a variational ansatz scaling as O(r·n2q).
The Critic network, a fully connected classical network, has a
forward pass complexity of O((ns+nc)). The total complexity
of the training per step is given by O(ns · nq + nc).



Algorithm 1: Proposed Q-DDPG Algorithm
Input: s(τ), a(τ), ψ
Output: r(τ)

1 Initialize target network Q′ and θQ with weights
θQ

′

Q ← θQ, θµ
′

Q ← θµQ
2 Initialize replay buffer
3 Initialize τ = 0
4 for 0 ≤ ψ ≤ ψmax; ψ == ψmax; ψ = ψ + 1 do
5 while τ > ψ do
6 Select from Hilbert space θli(0; d) from

U([−π, π])
7 Determine action using quantum
8 inspired actor network aτ = π (sτ | θπ)
9 if aτ and r(τ) are obtained, note the next

state sτ+1 then
10 Record transition (sτ , aτ , rτ , sτ+1) store in

replay buffer

11 Set yτ = r + γQ′(sτ+1, µ
′(sτ+1|θµ

′
)|θQ′

).
12 Update the critic network and minimize the

loss function using equation (25).
13 Update quantum-inspired actor policy via

equation (24)
14 else
15 Update the target network weights using

equation (26)
16 Assign semantic offloading resource Lτ ← r(τ)
17 Update τ .

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Extensive experiments were carried out to evaluate the
performance of Q-DDPG using an IBM qiskit on a 1,000 m
lane road. Vehicles are uniformly deployed at RSU locations,
allowing users to compute tasks locally or offload them to the
quantum server. The path loss model is illustrated in detail in
[12], [13]. We set the batch size to 4, actor and critic learning
rates as 1×10−4 and 2×10−4, respectively. Other simulation
parameters are given in table I.

A. Results Discussion

Fig. 2 shows the total reward over training episodes for a
Q-DDPG) algorithm with different learning rates. The learning
rate of 1 × 10−4 offers optimal performance, ensuring stable
policy optimization in dynamic IoV environments. Integrating
DT and quantum-inspired features allows Q-DDPG to manage
network uncertainty and varying conditions, leading to higher
rewards for semantic offloading. Moreover, a learning rate of
2×10−4 shows moderate performance but lacks the fine-tuned
optimization required for long-term stability, while a learning
rate of 4× 10−4 results in faster but less precise updates. Q-
DDPG with DT and a stable learning rate ensures efficient
resource management, adaptive task prioritization, and low-
cost operation under dynamic IoV conditions.

TABLE I: Simulation Parameters

Parameter Value
Path loss exponent 2
Number of vehicles 3
Number of edge servers 2
System bandwidth 20 MHz
Noise power density -70 dBm
Vehicle semantic data size 1× 104 − 2× 104 bits
Semantic task complexity 1× 106 − 2× 106 cycles
Weighting factor 0.5
Energy coefficient of processors 1× 1027

Maximum latency 50 ms
Maximum transmit power per vehicle 1 W
Minimum semantic accuracy 0.5
Number of episodes 500
Buffer size 1000000
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Fig. 2: Convergence performance

Fig. 3 illustrates the average cost over training episodes for
the proposed Q-DDPG algorithm. The DT provides an accu-
rate model of the IoV environment that helps Q-DDPG opti-
mize its offloading policies, while quantum-inspired features,
such as superposition and entanglement, enable faster learning
and adaptability in the face of network uncertainty and time-
varying conditions. Hence, Q-DDPG provides a scalable and
adaptable solution to manage computational resources, data
offloading, and communication in dynamic and uncertain IoV
environments.

Fig.4 shows that the integration of Q-DDPG with DT
significantly reduces latency in dynamic IoV environments.
Quantum-inspired features enable adaptive responses to net-
work uncertainty and time-variability, while the DT framework
effectively supports strategy evaluation and improvement.

V. CONCLUDING REMARKS

This study presents a Q-DDPG-based framework for seman-
tic optimization in digital twin-enabled IoV networks, focusing
on resource allocation and semantic efficiency in dynamic
vehicular settings. Utilizing quantum-inspired algorithm and
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Fig. 3: Average cost performance
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Fig. 4: Average latency performance

digital twin, it enhances semantic accuracy, energy efficiency,
and latency, ensuring scalability and robustness. By combining
quantum computing with semantic communication, the study
paves the way for hybrid optimization, security integration,
and real-world applications.
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