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Abstract—In this paper, we address the complex mixed-integer
nonlinear programming problem associated with channel assign-
ment and joint power-energy allocation in urban platoon-based
cellular-vehicle-to-everything (C-V2X) networks. In this context,
the potential advantages of integrating quantum neural networks
(QNNs) with classical multi-agent deep reinforcement learning
(MADRL) approaches are investigated. Specifically, we combine
a variational quantum circuit (VQC) with traditional neural
networks to develop a hybrid quantum-classical neural network
for the MADRL training process. Our goal is to employ this
hybrid quantum-classical approach to simultaneously minimise
the average age of information (AoI) which quantifies the freshness
of information exchange between vehicle platoons and the roadside
unit (RSU), maximise the cooperative awareness message (CAM)
exchange probability among vehicles within the same platoon,
and foster sustainable, green communication strategies through
efficient management for both power and energy. We introduce
the innovative decomposed multi-agent deep deterministic policy
gradient (DE-MADDPG) algorithm, which is integrated with the
twin delayed deep deterministic policy gradient (TD3) technique
and advanced quantum computing technologies, resulting in our
proposed hybrid quantum-classical decomposed multi-agent TD3
(DE-MATD3) algorithm. Compared with classical approaches, our
numerical results reveal that the proposed algorithm achieves
exceptional energy efficiency performance, while maintaining the
algorithm convergence rate and AoI levels.

I. INTRODUCTION

Intelligent transportation systems (ITS) have been exten-
sively studied [1]–[17]. They are considered pivotal compo-
nents in any smart city design [1]–[3] due to their potential
to mitigate traffic congestion, reduce accident risks, enhance
urban air quality, and make work and life more efficient for
both city authorities and citizens [3]. Vehicle-to-everything
(V2X) communications [4]–[7] play a critical role in ITS by
enabling vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P),
vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N)
communications, facilitating near real-time updates on traffic
conditions and hazards.

V2X communications will be essential for enabling platoon-
based control strategies [2], [6]–[12], which groups closely
aligned autonomous vehicles into platoons to enhance traffic
flow and control efficiency. Within each platoon, the lead
vehicle, or platoon leader (PL), communicates with the roadside
unit (RSU) and its same-platoon vehicles, i.e., platoon members
(PMs), by sending platoon state messages, receiving control
commands, and exchanging cooperative awareness messages
(CAMs) [4]–[6] with other platoon members via V2I and V2V
links. Frequent updates from PLs to the RSU and PMs to PLs

are essential for maintaining time-sensitive information, such as
safety alerts, within the whole system. The concept of the age
of information (AoI) is introduced to quantify update frequency,
with AoI increasing whenever PLs fail to communicate with the
RSU. Due to the importance of AoI within vehicular networks,
a number of studies have focused on minimising it [10]–[13].

Quantum technology has revolutionized computing by utiliz-
ing parameterised quantum gates that can be trained by clas-
sical optimisation methods, advancing the quantum machine
learning (QML) framework [14]–[19]. QML embeds classical
data into quantum bits (qubits) and leverages superposition
and entanglement to streamline neural networks (i.e. quantum
neural networks, QNNs [18], [19]) to accelerate training. This
approach offers substantial computational benefits, especially
in 6G wireless communications, where QML can address real-
time tasks such as signal processing, channel estimation, and re-
source allocation effectively. However, the application of QML
in vehicular networks remains relatively underexplored, with
current research primarily focusing on traditional optimisation
tools or classical machine learning (ML) techniques. Quantum
technology has been investigated for use in ITS [14]–[17]. Chal-
lenges like quantum noise, qubit decoherence, and the limited
number of qubits in existing hardware impede the practical
deployment of QML algorithms. Therefore the development
of efficient quantum algorithms that operate within inherent
constraints associated with V2X networks, while maintaining
performance, is essential.

In this paper, we tackle the resource allocation challenge
posed by interference, dynamic vehicular environments, and
constrained bandwidth and power, while advocating for sustain-
able, green communication strategies [20]. We formulate a joint
optimization problem for AoI, CAM delivery probability, and
power-energy consumption in platoon-based cellular-vehicle-
to-everything (C-V2X) networks at urban intersections [5]–
[7]. Our model integrates Mode 4 distributed resource alloca-
tion [7] employing a multi-agent deep reinforcement learning
(MADRL) framework with the multi-agent deep determinis-
tic policy gradient (MADDPG) algorithm. Some performance
enhancement techniques such as the decomposed MADDPG
(DE-MADDPG) [21] and twin delayed deep deterministic
policy gradient (TD3) [22] are used to support the MADRL
framework, forming the decomposed multi-agent TD3 (DE-
MATD3) algorithm. Additionally, we integrate QML into the
MADRL framework by employing a hybrid quantum-classical



Fig. 1: A single-antenna multi-platoon C-V2X network.

neural network with a variational quantum circuit (VQC) as
the QNN, leveraging the potential of quantum computing to
further enhance performance [23]. Consequently, our hybrid
quantum-classical DE-MATD3 scheme is proposed and eval-
uated through numerical results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A C-V2X communication network designed to manage mul-
tiple vehicle platoons at an intersection is depicted in Fig. 1.
The network features a centrally-located single-antenna RSU to
coordinate communications among multiple vehicle platoons
and RSU itself at this intersection. Let N = {1, 2, . . . , N}
represent the set of platoons, where N ∈ N+ denotes the total
number of platoons in the system. Within platoon n ∈ N , there
are vn ∈ N+ automated vehicles, sequentially numbered from
1 to vn. The vehicle numbered 1 in each platoon serves as
the PL, responsible for leading communications both within
its platoon and with the RSU, which are the V2V and V2I
communications, respectively.

The communication decision is governed by a binary vari-
able, µn,t ∈ {0, 1}, where 1 signifies the V2V mode is selected,
and 0 indicates the V2I mode is selected. Here, t represents
the index for discrete time slots of equal duration ∆t. ∆t also
represents the single coherence time for channel fading, where
the channel fading is assumed to be independent across different
subchannels and constant within each ∆t. In this work, we
consider orthogonal frequency division multiplexing (OFDM)
[24], which is known to handle frequency-selective wireless
channels effectively. The system bandwidth is partitioned into
K orthogonal subchannels with size W , forming the set K =
{1, 2, . . . ,K}. A Boolean variable, ξn,k,t ∈ {False, True}, is
defined for managing the channel assignment task. If ξn,k,t
is True (or equivalently, ξn,k,t = 1), subchannel k ∈ K
will be assigned to the nth platoon at time index t for either
V2V or V2I communication. Following from this, the received

instantaneous signal-to-interference-plus-noise ratio (SINR) on
subchannel k at time index t of these two kinds of communi-
cation can be expressed as

SINR
⟨V2Vn⟩
n,k,t =

µn,tξn,k,tPn,k,tH
⟨V2Vn⟩
n,k,t

σ2 +
∑

n′,n′ ̸=n
ξn′,k,tPn′,k,tH

⟨V2X⟩
n′,k,t

,

SINR
⟨V2I⟩
n,k,t =

(1− µn,t)ξn,k,tPn,k,tH
⟨V2I⟩
n,k,t

σ2 +
∑

n′,n′ ̸=n
ξn′,k,tPn′,k,tH

⟨V2X⟩
n′,k,t

,

(1)

(2)

which is calculated by considering the accumulated interference
of all other platoons as noise. ⟨V2X⟩ refers to either ⟨V2Vn⟩
or ⟨V2I⟩, SINR

⟨V2Vn⟩
n,k,t pertains to the V2V link between PLn

and its PM Vn ∈ [1, vn], SINR
⟨V2I⟩
n,k,t pertains to the V2I link

between PLn and the RSU, Pn,k,t is the power consumed by
PLn, σ2 is the noise level, and Hn,k,t represents the channel
gain that can be written as

Hn,k,t = gn,thn,k,t, (3)
where gn,t and hn,k,t are the large and small scale fading,
respectively. Based on the Shannon-Hartley theorem, the max-
imum achievable rates of the V2V and V2I links are

C⟨V2Vn⟩
n,k,t =W log2

(
1 + SINR

⟨V2Vn⟩
n,k,t

)
,

C⟨V2I⟩
n,k,t =W log2

(
1 + SINR

⟨V2I⟩
n,k,t

)
.

(4)

(5)
At each single coherence time ∆t, the RSU determines

the allocation of subchannels, and PLs select their appropriate
communication modes based on the current network conditions
and communication requirements. The primary objectives are
to optimize system performance by maximizing data rates and
ensuring reliable and timely communications for both safety
and coordination purposes, which are affected by the achievable
V2V and V2I communication rates as follows:

• V2V communication: Same-platoon vehicles, the PL and
its PMs, exchange CAMs periodically through the as-
signed subchannel via V2V links. This communication is
essential for maintaining platoon string stability, allowing
vehicles to keep restrained distances and be aware of the
movements and decisions of the PL and other PMs. Based
on [4], [5], the CAM generation interval should be kept
between 100 ms and 1000 ms, hence an update interval
T ∈ [100, 1000] ms is considered. Within the interval T ,
a successful CAM exchange is defined as

T/∆t∑
t=1

∑
k

min
Vn

{
C⟨V2Vn⟩
n,k,t

}
∆t ≥Mn, (6)

where T/∆t is designed to be an integer and Mn is the
CAM message size. This constraint sets a minimum limit
to the communication rate between PLn and each of its
PMs in order to transmit the message of size Mn within
the given time period T .

• V2I communication: PLs communicate with the RSU via
V2I links to update platoon state information and receive
control commands. This mode is crucial for PLs to be
informed about the statuses of other platoons and the
overall traffic conditions at the intersection. The concept



Fig. 2: Architecture of the VQC.

of AoI is formulated here to quantify the frequency of the
information exchange between PLs and the RSU:

An,t+1 =

{
An,t +∆t, if C⟨V2I⟩

n,k,t < C⟨V2I⟩
min ,

∆t, otherwise,
(7)

where C⟨V2I⟩
min is the minimum required V2I communication

rate, and AoI is modelled as a discrete variable with
∆t representing the smallest increment. This formulation
accounts for the V2I communication rate. If the rate is
lower than the minimum requirement or the V2I mode is
not chosen, the transmission is aborted, resulting in the
AoI being incremented by ∆t. Conversely, a successful
transmission resets the AoI to ∆t.

Drawing on the discussions described in the preceding parts,
the optimisation problem for platoon n can be formulated as

min
µ,ξ,P,E

P

T/∆t∑
t=1

∑
k

min
Vn

{
C⟨V2Vn⟩
n,k,t

}
∆t < Mn

 ,

∆t

T

T/∆t∑
t=1

An,t,
∆t

T

T/∆t∑
t=1

∑
k

Pn,k,t,

T/∆t∑
t=1

∑
k

En,k,t

 ,

s.t. Pn,k,t ∈ [0, Pmax] ,∀n, k, t,∑
k

ξn,k,t ≤ 1,∀n, t,∑
n

∑
k

ξn,k,t ≤ K,∀t,

(8)

(8a)

(8b)

(8c)

where P(·) represents probability, En,k,t = Pn,k,t∆t is the
energy consumed by PLn for communications at time index
t on subchannel k, constraint (8a) guarantees that the power
consumption of each PL does not exceed the maximum avail-
able power Pmax, and constraints (8b) and (8c) restrict each
PL to utilise at most one subchannel per time slot and ensure
the total number of assigned subchannels to be less than K,
respectively. This optimisation problem focuses on minimising
the probability of a failed CAM exchange (i.e., maximising the
successful exchange probability), average AoI, average power
consumption, and overall energy consumption for platoon n
within a single CAM generation interval T .

In the following sections, the hybrid quantum-classical
MADRL approach is introduced to solve this complex mixed-
integer nonlinear programming problem for N platoons.

III. HYBRID QUANTUM-CLASSICAL MADRL APPROACH

A. Preliminaries of the MADRL Algorithm

A Markov Decision Process (MDP) [25] is used to model
the interaction between the agents and the environment in the
MADRL problem, which is composed of the state space S ,
action space A, transition probability P , reward function R,
and discount factor γ.

1) State Space: The state space Sn,t observed by PLn at time
index t is defined as

Sn,t =
[
SINR

⟨V2Vn⟩
n,k,t ,SINR

⟨V2I⟩
n,k,t , An,t,M

′
n, Posn, t

]
, (9)

where the two SINRs contain information regarding channel
gains, noise levels, and interference levels, M ′

n ∈ [0,Mn]
denotes the size of the remaining CAM message waiting for
exchange, Posn is the position of platoon n, and the current
time index t enables the PLn to know the remaining time budget
T − t.

2) Action Space: Four actions constitute the action space An,t

for platoon n:

An,t = [µn,t, ξn,k,t, Pn,k,t, En,k,t] . (10)
PLs and the RSU affect the overall system performance by
strategically selecting wireless subchannels and choosing ap-
propriate communication modes, power levels, and energy
levels. These actions comply with constraints (8a)–(8c).

3) Transition Probability: Originally, the transition proba-
bility P represents the probability that the current state s
transfers to the next state s′ when an agent takes action a. Here,
this probability accounts for two primary factors: firstly, the
subchannel, communication mode, and power/energy selections
lead to the change in interference levels; secondly, the random
platoon-turning decisions—whether to turn right/left or keep
straight—occur independently of the four actions.

4) Reward Function: The reward function R is built on the
principle that each PL should not only maintain frequent and
successful message exchanges with the RSU and its PMs while
minimising power and energy consumption, but also select
subchannels and power levels that will reduce the interference
to other platoons. Based on this principle, two reward functions,
a global reward that evaluates the collective performance of all
PLs and a local reward that provides immediate feedback for
each PL’s actions, are designed as

Rg
t =− 1

N

∑
n

∑
k

log10

(
ξn,k,tPn,k,tH

⟨V2X⟩
n,k,t

)
,

Rl
n,t =− ω1

M ′
n

Mn
− ω2An,t + ω31{C⟨V2I⟩

n,k,t −C⟨V2I⟩
min ≥0}

− g1 (Pn,k,t)− g2

(
t∑

y=t−τ
ρt−yEn,k,y

)
,

(11)

(12)

where ⟨V2X⟩ indicates that the communication mode selection
of each PL influences the global reward, the coefficients ω1–
ω3 and mapping functions g1 and g2 adjust and weight the
five terms appropriately, the stepwise function 1{·} provides
positive feedback whenever a successful V2I communication
is achieved, and the accumulated and discounted energy con-
sumption is considered, with up to τ previous time indexes



Fig. 3: Hybrid quantum-classical neural network.

and the discount factor ρ. The global reward considers the
average interference level within the environment to promote
the channel selections which decrease the disruption to other
PLs, while the local reward matches the objectives outlined in
problem (8), aiming to optimise the performance of each PL.

5) Discount Factor: The target of a reinforcement learning
(RL) problem is to maximise the expected value of the dis-
counted return, hence problem (8) is equivalent to

max
πn

{
V πn(s) = Eπn

[ ∞∑
y=0

γyRn,t+y+1

∣∣∣∣∣ sn,t = s

]}
, (13)

for ∀s ∈ Sn,t, where V πn(s) is the state-value function, policy
πn is a conditional probability πn(an,t|sn,t) that an,t will be
taken if sn,t is observed, and the discount factor γ ∈ [0, 1].

In the MDP formulated above, each PL functions as an agent
within the MADRL environment, observes the current state,
and selects actions based on its policy at each time index t.
Through these interactions, rewards are obtained, and the policy
is subsequently updated towards the direction of maximising the
state-value function.

In addition, based on the Bellman optimality equation [25],
the state-value function with the optimal policy is equivalent to
the expected return from the state with the best action, i.e., the
optimal action-value function. The action-value function—the
Q-function—is written as

Qπn(s, a) = Eπn

[ ∞∑
y=0

γyRt+y+1

∣∣∣∣∣ sn,t, an,t
]
. (14)

In the following sections, the deep deterministic policy gradient
(DDPG) based algorithm is introduced with the objective of
jointly optimising both the policy and the Q-function.

B. Decomposed MATD3 Algorithm

Building on the preliminaries of the MADRL algorithm, a
combination of the single-agent DDPG and MADDPG, namely
DE-MADDPG [21], is implemented. By combining it with
the TD3 algorithm [22] which utilises two critic networks
and delays the local network update by d loops to avoid the
overestimation of the Q-functions, the policy gradient of the
DE-MATD3 algorithm for the nth agent is written as

∇Jn(θn) =

MATD3︷ ︸︸ ︷
Es,a∼D

[
∇θnπn (an|sn)∇anQ

g
ψ1
(s, a)

]
+

DDPG︷ ︸︸ ︷
Esn,an∼D

[
∇θnπn (an|sn)∇anQ

πn

ϕn
(sn, an)

]
,

(15)

where Jn(θn) is the target function that comprises both the
global and local Q-functions, s = (s1, ..., sN ) and a =

(a1, ..., aN ) denote the states and actions of the N platoons,
D is the replay buffer, and θn, ψ1, and ϕn parameterise the
policy πn for agent n, Qgψ1

for global critic, and Qπn

ϕn
for local

critic, respectively. Additionally, one of the twin critics from
the TD3 algorithm, Qgψ1

, is used to update the policy.
The fundamental concept of DE-MATD3 involves imple-

menting the single-agent DDPG algorithm locally for each
agent and integrating it with the centralised global critic to
optimise the overall performance of all agents with MATD3
algorithm. The twin global critics Qgψ1

and Qgψ2
and the local

critic Qπn

ϕn
are updated by minimising the loss functions:

L(ψi) = Es,a,rg,s′

[(
Qgψi

(s, a)− yg
)2]

, i = 1, 2,

Ln(ϕn) = Esn,an,rln,s′n

[(
Qπn

ϕn
(sn, an)− yln

)2]
,

yg = rg + γmin
i
Qgψ′

i
(s′, a′)

∣∣∣
a′n=π

′
n(s

′
n)
,

yln = rln + γQπn

ϕ′
n
(s′n, a

′
n)
∣∣∣
a′n=π

′
n(s

′
n)
,

(16)

(17)

(18)

(19)

where s′ = (s′1, ..., s
′
N ) and a′ = (a′1, ..., a

′
L) denote next sets

of states and actions, while Qgψ′
i
, Qπn

ϕ′
n

, and π′
n are the target

global critics, target local critic, and target policy, respectively.

C. Hybrid Quantum-Classical DE-MATD3 Algorithm

For each step of the MDP, a set of states, actions, and
rewards,

(
st, at, rlt, r

g
t , st+1

)
, is stored in the experience replay

buffer D. After that, B transitions,
(
sb, ab, rlb, r

g
b , s

′
b

)∣∣B
b=1

, are
randomly sampled from D for the training purposes, i.e., fed
into our hybrid quantum-classical neural network.

The quantum part of our neural network, the QNN, is imple-
mented using a VQC [23], the architecture of which is illus-
trated in Fig. 2. The VQC comprises three distinct layers: data
embedding, variational, and measurement. The initial states of
the quantum circuit are set to |0⟩ ⊗ · · · ⊗ |0⟩, consisting of Nq
qubits. The input classical data vector x = (x1, x2, . . . , xNq )
is embedded into quantum states through angle embedding,
using rotation gates Ry . Within the variational layer, single-
qubit rotation gates Rx are applied, each parameterised by a
unique angle that is updated during the training process. This
is followed by a ring of controlled-NOT (CNOT) gates, which
establishes multi-qubit entanglement by connecting each qubit
to its neighbouring qubit, with the final qubit linked back to
the first. Quantum measurements are performed using Pauli-Z
gates, and an array consisting of Nq values is output from this
quantum circuit.

Our hybrid quantum-classical neural network is shown in
Fig. 3. Classical data that contains state and action values is fed
into two classical neural networks separately. The outputs of the
two neural networks are added and fed into a fully connected
layer (FCL) that maps the hidden data size to the VQC input
dimension Nq . After the quantum computation, the resulting
measurement outcomes are fed into another FCL to match the
desired output size. The final hybrid quantum-classical DE-
MATD3 scheme is described in Algorithm 1.



Algorithm 1: Hybrid Quantum-Classical DE-MATD3
1 Initialise intersection environment & experience replay buffer D.
2 Initialise local and global actor-critic networks:
{πn, π′

n, Q
πn
ϕn
, Qπn

ϕ′
n
}, n = 1, 2, ..., N , {Qgψi

, Qg
ψ′
i
}, i = 1, 2.

3 Initialise the quantum circuit, reset qubits.
4 for episode = 1 to loop do
5 Update platoon position & channel information.
6 Reset time index & CAM size: {t,M ′

n} = {1,Mn}.
7 for t = 1 to T do
8 for agent 1 to N do
9 Observe state sn,t, select action an,t based on policy

πn(an,t|sn,t), receive rewards: {rln,t, r
g
t }.

10 Update interference & channel fast fading.
11 Each agent observes a new state sn,t+1.
12 Store

(
st, at, rlt, r

g
t , st+1

)
into the buffer D.

13 Randomly sample B transitions from D:(
sb, ab, rlb, r

g
b , s

′
b

)∣∣B
b=1

.
14 Pass through the hybrid quantum-classical neural network

for the global critic network:
15 1) Update global critics: minimising L(ψi) (16) by one-step

gradient descent,
16 2) Target soft update: ψ′

i ← ϵψi + (1− ϵ)ψ′
i.

17 if t mod d then
18 Pass through the hybrid quantum-classical neural

network for the local actor-critic networks:
19 for agent 1 to N do
20 1) Update local critic: minimising Ln(ϕn) (17) by

one-step gradient descent,
21 2) Update local actor: maximising ∇Jn(θn) (15)

by one-step gradient ascent,
22 3) Target soft update:

ϕ′n ← ϵϕn + (1− ϵ)ϕ′n
23 θ′n ← ϵθn + (1− ϵ)θ′n

IV. RESULTS AND DISCUSSION

We showcase the simulation outcomes and compare results
obtained with the hybrid quantum-classical DE-MATD3 al-
gorithm with results obtained using the classical DE-MATD3
algorithm in [10], [11]. The simulations consider a single-cell
urban C-V2X network operating at 2 GHz, utilizing 3 resource
blocks, and conforming to the 3GPP TR 36.885 urban specifica-
tion [5]. We use Python with PyTorch and PennyLane to build
the algorithm framework. Our hybrid quantum-classical neural
network consists of two and three layers for the local critics
and actors respectively, and four layers for the global critics.
We have selected the rectified linear unit as the activation
function and Adam as the optimiser. The other key simulation
parameters are provided in Table I.

Fig. 4 shows the reward convergence of our proposed hybrid
quantum-classical algorithm (Q-E-DE-MATD3) in comparison
with the classical energy-focused algorithm (E-DE-MATD3)
presented in [10] and the non-energy-focused algorithm (DE-
MATD3) presented in [10], [11]. All three algorithms exhibit
similar convergence speeds and reward levels, however, slight
variations in the final converged reward levels are observed
due to differing reward function designs. To ensure a fair
comparison, Fig. 5 evaluates the performance in terms of AoI.
The proposed hybrid quantum-classical algorithm maintains
comparable convergence speed and AoI level relative to the
two benchmark algorithms.

TABLE I: Simulation Parameters

Parameters Values

Number of platoons 4
Vehicles in each platoon 4
V2V distance 25 m
Resource block bandwidth 180 kHz
PL maximum power Pmax = 30 dBm
Noise power σ2 = −114 dBm
CAM message size Mn = 4 KB
Update interval T = 100 ms [4], [5]
Fast fading update period ∆t = 1 ms [5]
Slow fading update period 100 ms [5]
Number of episodes 500
Iterations in each episode 100
Actor learning rate 0.0001
Critic learning rate 0.001
Target soft update ϵ = 0.005
Discount factor γ = 0.99
Number of qubits Nq = 4

Fig. 4: Reward convergence.

Fig. 5: AoI convergence.

Table II presents the average values of AoI, reward, energy
consumption, and energy consumed per AoI reduction, which
is the cost metric calculated as E/(T − AoI), over the last
100 episodes. Our proposed hybrid quantum-classical algorithm



TABLE II: Performance Metrics

Metric Q-E-DE-MATD3 E-DE-MATD3 DE-MATD3

AoI (ms) 4.24 4.22 3.94
Increase (%) 7.55 7.01 N/A

Energy (mJ) 153.32 163.59 1064.42
Decrease (%) 85.60 84.63 N/A

Cost 1.60 1.71 11.08
Decrease (%) 85.55 84.59 N/A

achieves a comparable reduction in energy consumption to the
energy-focused algorithm, while attaining an 85.60% decrease
relative to the non-energy-focused counterpart. Although this
results in a 7.55% increase in the average AoI, the cost metric
demonstrates superior performance, achieving an 85.55% de-
crease, further highlighting the sustainability of our algorithm.

V. CONCLUSION

This paper introduced a hybrid quantum-classical DRL-based
optimal resource allocation strategy for a platoon-based C-
V2X network operating at an intersection. Our proposed hybrid
quantum-classical DE-MATD3 scheme was built based on the
DE-MADDPG algorithm, incorporating the TD3 technique and
the novel quantum computing technology VQC. It was designed
to jointly optimise the AoI, CAM exchange, and power-energy
consumption. The proposed algorithm was established within a
collaborative environment, enabling all the platoons to concur-
rently optimize both a shared global reward and their individual
local rewards. Furthermore, the local reward function design
incorporated accumulated and discounted energy consumption
to specifically enhance the long-term sustainability of the C-
V2X network. Simulation results demonstrated the remarkable
potential for quantum computing in dealing with complicated
resource allocation problems. Future research will explore more
practical scenarios, such as managing a dynamic number of
platoons at intersections, to better align the system model with
real-world conditions. Additionally, we aim to implement a
neural network consisting of only quantum circuits to further in-
vestigate the potential of quantum computing in next-generation
communication systems.
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