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Abstract—This study presents a dynamic UAV swarm
framework to support ground networks in disaster zones. The
framework leverages Generative AI (GenAI) for real-time hover
point generation to guide waypoint-based UAV navigation and
realistic task modeling, integrated with graph neural networks
(GNN) for safe navigation and obstacle avoidance. A multi-agent
graph reinforcement learning (MAGRL) mechanism optimizes
UAV coordination, enhancing energy efficiency, task completion,
and load balancing in response to environmental changes. The
framework’s graph attention mechanism further improves inter-
UAV communication, enabling adaptive task allocation and
efficient coverage of high-risk zones. Extensive simulations show
that the integrated GenAI-GNN and MAGRL approach achieves
superior performance in task completion, energy savings, and
system utility, outperforming benchmarks including MADDPG,
GCRL, PSO, and Greedy strategies in dynamic disaster scenarios.

Index Terms—Unmanned Aerial Vehicles (UAV), Generative AI
(GenAI), Multi-Agent Reinforcement Learning (MARL)

I. INTRODUCTION

NATURAL disasters, including earthquakes, floods, and
wildfires, often disrupt communication networks, making

it crucial to deploy resilient systems to aid in recovery.
UAVs, integrated with IoT, provide mobile edge computing,
sensing, and wide-area coverage, making them ideal for
disaster recovery. However, their deployment faces challenges
related to energy efficiency, adaptability, task allocation,
and navigation, especially in complex and rapidly changing
environments. Previous studies have focused on optimizing
UAV trajectories and energy [1], [2], but most assume static
conditions, which limit adaptability in dynamic scenarios.

Deep reinforcement learning (DRL) has shown promise
in UAV deployment and task management [3], [4], yet its
high convergence times and dataset requirements impede
real-time decision-making [5]. Multi-agent DRL (MADRL)
[6], [7] supports coordination but often results in slow
convergence as agent numbers grow. To overcome these
limitations, graph reinforcement learning (GRL) has emerged
as a more structured approach for handling multi-agent
coordination in complex environments [8] by modeling UAVs
and ground terminals as nodes in a graph, which enables better
communication [9]. While GRL supports dynamic adjustments,
its iterative nature still leads to slow convergence in disaster
environments.

Another approach gaining traction in UAV swarm
coordination is federated learning (FL), which enables
decentralized learning across UAV swarms without centralized
data collection [10]; however, it struggles with intermittent
connectivity and lacks real-world adaptability due to simulated
training data [11]. Generative AI (GenAI) has the potential
to address these gaps by producing realistic simulated data
that aids UAV navigation and model training [12], [13].
Although GenAI enhances prediction accuracy, it does not
independently support the real-time multi-agent coordination
needed in disaster scenarios.

This study addresses the limitations in UAV swarm
deployment for disaster recovery by introducing a framework
that combines GenAI for real-time hover point generation,
graph neural networks (GNN) for safe UAV coordination,
and a multi-agent graph reinforcement learning (MAGRL)
model to optimize task allocation, energy management,
and coverage. Our approach leverages a graph attention
mechanism to enhance inter-UAV communication, enabling
high task completion and energy efficiency under dynamic
conditions. By integrating GenAI with a graph-based model
for hover point and task generation and coupling it with
MAGRL, this framework achieves real-time adaptability,
efficient task offloading, and robust UAV communication. The
key contributions of this study are outlined below:

• We establish a comprehensive framework for UAV
swarm deployment in disaster recovery scenarios to assist
ground terminals, formulating an optimization problem
that maximizes an overall utility function. This utility
function integrates key factors such as task offloading,
energy efficiency, coverage, and load balancing, while
also accounting for critical constraints like task deadlines
and the dynamic, unpredictable nature of disaster zones.

• We develop a UAV swarm framework for disaster
response, optimizing a dynamic utility function that
incorporates task offloading, energy efficiency, coverage,
and load balancing while addressing the dynamic
constraints of disaster zones.

• We integrate a GenAI model with GNN to dynamically
generate energy-efficient hover points that avoid NFZs,
enable collision avoidance, and produce realistic tasks,
ensuring safe and effective UAV navigation and task
handling in complex scenarios.



• We design a multi-agent graph reinforcement learning
(MAGRL) model that leverages GenAI-GNN and includes
a graph attention mechanism to refine hover point
selection, task allocation, and UAV coordination, adapting
dynamically to real-time environmental changes and
optimizing communication efficiency.

• Finally, we conduct detailed simulations demonstrating
significant improvements in task completion rates,
energy efficiency, total utility, and UAV swarm
performance, showing the advantages of our framework
over benchmarks like MADDPG, GCRL, PSO, and
Greedy approaches.

II. SYSTEM MODEL

We examine a disaster-stricken area where traditional
communication infrastructure is unavailable. The area is a
Dx × Dy region with NGT ground terminals (GTs) that
support critical operations such as emergency response and
sensor data processing. A swarm of NUAV UAVs, each
equipped with communication and mobile edge computing
(MEC) capabilities, is deployed to provide coverage and
offloading support. Operating at a fixed altitude hu, UAVs
handle resource-intensive tasks like video processing and
sensor analysis. Fig. 1 illustrates a disaster scenario where
UAVs establish inter-UAV communication links and connect
with various ground terminals. UAV resources include CPU
power fi(t), energy budget Emax(t), and limited buffer capacity
to handle only a finite number of offloaded tasks from
GTs. The UAVs dynamically adjust positions, pu(t) =
(xu(t), yu(t), hu), to optimize task handling and avoid no-fly
zones (NFZs). UAVs move to from position pi(t) to pi(t+∆t)
optimize coverage, constrained by maximum speed vmax and
must avoid NFZs:

pi(t+∆t) = pi(t) + vi(t) ·∆t , (1)

where vi(t) is the velocity vector of UAV i at time t.
Tasks generated by GT k are processed locally or offloaded

to UAVs. A task Tk from GT k at time t requires Dk bits and
µk CPU cycles per bit, with a deadline τk. Local and offloading
processing times, Tlo,k(t) and Tcmp,k,i(t), are given by:

Tlo,k(t) =
Dk · µk

fk(t)
, (2)

Tcmp,k,i(t) = Ttr,i(t) +
Dk · µk

fi(t)
, (3)

where fk(t) is the available computational resources at GT k,
with transmission time at data rate ri,k(t) given as:

Ttr,i(t) =
Dk

ri,k(t)
. (4)

Each UAV i has a computational load Li(t) =
∑

k∈Ki(t)
Dk ·

µk, at time t, which is the cumulative processing demand
of tasks offloaded where Ki(t) represents the GTs offloading
tasks to UAV i at time t. To ensure timeliness, tasks—whether
processed locally or offloaded—must be completed before their
deadlines, i.e., Tlo,k(t) ≤ τk or Tcmp,k,i(t) ≤ τk.

Fig. 1: Illustration of a UAV swarm providing support to various ground
terminals in a disaster-stricken area.

A. UAV Operation Model

Each UAV i has a probabilistic sensing range Rs affected
by terrain and obstacles. The detection probability of UAV i
for GT k at time t depends on line-of-sight (LOS) conditions:

Pd(k, i, t) = PLOS(k, i) · exp
(
−∥pk − pi(t)∥

Rs

)
, (5)

where PLOS(k, i) is the LOS probability, affected by the
elevation angle θk,i. UAV-GT communication follows an air-
to-ground (ATG) channel model, incorporating LOS and non-
line-of-sight (NLOS) conditions. Channel gain Gi,k(t) and the
signal-to-interference-plus-noise ratio (SINR) γi,k(t) for GT k
are given by:

Gi,k(t) =
PLOS(k, i)

LLOS(k, i)
+

(1− PLOS(k, i))

LNLOS(k, i)
(6)

γi,k(t) =
Gi,k(t) · Pt

Ii,k(t) + σ2
, (7)

with data rate ri,k(t) = B log2(1 + γi,k(t)), where B is
bandwidth and Pt is UAV transmission power.

The total energy consumption for UAV i at time t includes
movement, computation, and communication energy. The
movement energy Emh,i(t) comprises the power for hovering,
Phov, and the power for movement, Pmov:

Emh,i(t) = Phov · Thov,i(t) + Pmov · ∥pi(t+∆t)− pi(t)∥ ,
(8)

where Thov,i(t) is the hovering time, and ∥pi(t+∆t)−pi(t)∥
is the distance traveled. The task computing energy is:

Ecomp,i(t) = κ(fi(t))
2 · Tprocess,i(t) , (9)

where κ is a processor efficiency factor, and Tprocess,i(t) is the
processing time. The communication energy is estimated as:

Ecom,i(t) = Pt · Ttr,i(t) . (10)

B. Utility Model

Our system optimizes UAV deployment in disaster
management by maximizing coverage, minimizing energy
consumption, and balancing computation offloading. The
utility model consists of coverage utility, energy utility, and
load balancing utility.



1) Coverage and Energy Utility: Coverage utility
maximizes the UAVs’ coverage over GTs, adjusted for
obstacles and redundant coverage. The coverage utility for
UAV i at time t is defined as:

Ucov,i(t) =
∑

k∈Ki(t)

(
1− 1

NUAV,k(t)

)
· P obs

d (k, i, t) (11)

where NUAV,k(t) is the number of UAVs covering GT k
at time t, and P obs

d (k, i, t) is the obstacle-adjusted detection
probability. The energy utility minimizes the total energy
consumption for UAV i, denoted as

Ueng,i(t) = −Ei(t) (12)

where Ei(t) is the total energy consumption calculated as

Ei(t) = Emh,i(t) + Ecom,i(t) + Ecomp,i(t) + Eswm,i(t) (13)

2) Load Balancing and Computation Offloading Utility:
This utility ensures that tasks generated by GTs are efficiently
processed, either locally or offloaded to UAVs, to balance the
computational load and meet task deadlines. For UAV i, the
load balancing utility is:

Uof,i(t) =
∑

k∈Ki(t)

1

Li(t)
· ⊮ (min (Tlo,k(t), Tcmp,k,i(t)) ≤ τk)

(14)

where τk is the task deadline for GT k.
3) Total Utility: The total utility for UAV i combines

coverage, energy, and load-balancing utilities:

Utotal,i(t) = Ucov,i(t) + Ueng,i(t) + Uof,i(t) (15)

The objective is to maximize Utotal,i(t), ensuring effective
UAV operation in the disaster area.

III. PROBLEM STATEMENT & SOLUTION APPROACH

This work aims to optimize UAV swarm deployment in
disaster recovery, focusing on maximizing GT coverage,
minimizing UAV energy consumption, and balancing
computational load for tasks offloaded from GTs.

1) Problem Statement: The main objective is to maximize
the total utility Utotal,i(t) for each UAV i at time t, which
includes coverage utility Ucov,i(t), energy utility Ueng,i(t), and
load balancing utility Uof,i(t). This is achieved through the
following optimization problem:

(P) : max
{pi(t),fi(t)}

NUAV∑
i=1

Utotal,i(t)

s.t. (C.1) ∥pi(t)− pi(t+∆t)∥ ≤ vmax ·∆t,

(C.2) pi(t) /∈ NFZ,
(C.3) Ei(t) ≤ Emax,i,

(C.4) Tlo,k(t) ≤ τk ||Tcmp,k,i(t) ≤ τk,

(C.5) fi(t) ≤ fmax,i,

(C.6)

N∑
i=1

ρi · f ′
m ≤ fm,

(C.7) Tcmp,k,i(t) + Ttr,i(t) ≤ τk. (16)

Here, (C.1) restricts UAV mobility to a maximum speed
vmax, (C.2) enforces avoidance of no-fly zones (NFZs), and
(C.3) ensures energy consumption does not exceed Emax,i.
Constraint (C.4) requires all tasks to meet deadlines, whether
processed locally or offloaded, while (C.5) limits CPU usage
to fmax,i. In (C.6), the UAV’s computational load, defined by
ρi (where ρi = 1 for offloading), must not exceed capacity fm.
Finally, (C.7) ensures offloaded tasks are completed within the
required deadline τk by limiting the combined transmission and
computation time.

2) Solution Approach: The solution framework optimizes
UAV deployment in disaster recovery by dynamically
prioritizing tasks based on risk and urgency, planning safe
movement, and adapting swarm behavior. Disaster areas are
divided into Emergency Response (ZER) and High Risk (ZHR)
zones, with tasks classified as Emergency (CE ), Priority (CP ),
or Routine (CR). UAVs allocate CPU resources by evaluating
each task’s size (Dk), deadline (τk), and available capacity,
prioritizing high-risk tasks and signaling neighboring UAVs
for assistance if needed. GenAI generates energy-efficient
hover points, with UAVs using A∗-based path planning to
avoid NFZs. A GNN-based collision-avoidance mechanism
facilitates shared position and path data, enabling UAVs to
adjust routes dynamically, prioritizing emergency tasks and
UAVs with higher energy levels.

Adaptive swarm optimization is further achieved through
a GenAI-based graph model for realistic hover point and
task generation, while GNN supports real-time sharing of
energy levels, task loads, and paths. A multi-agent graph
reinforcement learning framework with attention mechanisms
enables UAVs to update policies dynamically, prioritize
tasks, conserve energy, and adapt to environmental changes,
enhancing disaster response efficiency.

IV. PROPOSED SOLUTION FRAMEWORK

Our framework combines a Generative Adversarial Network
with Graph Neural Network (GAN-GNN) model and a Multi-
Agent Graph Reinforcement Learning (MAGRL) framework
to optimize UAV deployment, task allocation, and adaptive
decision-making in disaster recovery. This integrated approach
enables UAVs to efficiently select hover points, manage tasks
in real-time, and coordinate to maximize coverage, balance
loads, and minimize energy consumption.

1) GAN-GNN for Hover Point and Task Generation: The
GAN-GNN model initiates hover points and task assignments
dynamically. The GAN’s Generator (G) produces hover points
phover
i = G(zi,G) for UAVs and task parameters Tk =

G(zk,G) at ground terminals (GTs), based on UAV and GT
states encoded in latent vectors zi, zk, and communication
links in graph G. The Discriminator (D) ensures that generated
points avoid NFZs, prevent collisions, and meet energy
constraints.

DNFZ(p
hover
i ) =

{
1, if phover

i /∈ NFZ,
0, if phover

i ∈ NFZ,
(17)



Algorithm 1 GAN-GNN based MAGRL Framework

1: Input: UAV/GT states si(t), sk(t); graph G; policies
πi(ai|si), values Vi(si); Emax, phover

i .
2: Output: Optimized UAV actions and hover points.
3: Initialize G, D, and GNN-based message passing.
4: for each UAV i and GT k do
5: Encode UAV and GT state as latent vectors zi and zk.
6: Update UAV embeddings with GNN message passing

on G as in (25).
7: end for
8: for each hover point phover

i do
9: Verify DNFZ, Dc, and Den from (19).

10: Minimize generator and discriminator losses (20), (21).
11: end for
12: for each UAV i do
13: Gather neighboring states via GNN-based message

passing (27).
14: Update UAV state embeddings hi with GAT (25).
15: Integrate Tk and τk from neighbors.
16: end for
17: for each UAV i do
18: Select amove

i (t) based on πi(ai|si) using hover point
phover
i and A* path planning to avoid NFZ.

19: Compute and communication actions acomp
i (t) and

acomm
i (t) based on Li(t) and link requirements.

20: end for
21: for each UAV i do
22: Calculate ri(t) (22) and TD error δi(t) (23).
23: Update policy gradient and minimize Lvalue,i (29).
24: Update total loss Li with entropy regularization (30).
25: end for
26: for each UAV i and j ∈ N (i) do
27: Adjust paths based on ptarget

j (t) and collision indicator
⊮collide(i, j) (27).

28: end for
29: Repeat until convergence.

Dc(p
hover
i ) =

{
1, if UAV i avoids collisions,
0, otherwise,

(18)

Den(p
hover
i ) =

{
1, Emove,i ≤ Emax,i,

0, Emove,i > Emax,i.
(19)

The generator optimizes constraint through a loss function:

LG = E [1−DNFZ] + E [1−Den] + E [1−Dts] + E [1−Dc] ,
(20)

The discriminator loss is defined as:

LD = E
[
logD

(
phover
i , Tk

)]
+ E [log (1−D (G(zi,G)))] ,

(21)

2) Multi-Agent Graph Reinforcement Learning (MAGRL):
The MAGRL framework optimizes UAV swarm coordination
by refining hover points and task allocations from GAN-GNN,
using a graph attention actor-critic mechanism (MAGAC)
that balances UAV-GT interactions and adapts decisions based
on real-time feedback. The key components of the MAGRL
framework are:

State: Each UAV i’s state si(t) includes local data like
pi(t), Emax(t), fi(t), Li(t), and phover

i . GNN-based message
passing incorporates information on neighbors N (i) and GT
task details (Tk, τk for k ∈ Ki(t)).

Action: UAV actions Ai(t) include movement amove
i (t) to

update pi(t + 1), computation acomp
i (t) for processing or

offloading, and communication acomm
i (t) for link management.

Reward: The reward ri(t) balances utility and penalizes
rule violations, estimated as:

ri(t) = Utotal,i(t) + λplty · ⊮NFZ

+ λdln · (⊮miss(τk)− ⊮comp(τk)) + ηH(πi(t)) , (22)

where Utotal,i(t) measures utility, ⊮NFZ penalizes NFZ
violations, λdln controls task completion penalties/rewards, and
H(πi(t)) encourages exploration.

Each UAV updates its policy πi(ai|si) and value function
Vi(si), represented by neural networks. Policy gradients
optimize action probabilities:

∇θiπi(ai|si) = E [∇θi log πi(ai|si) · δi(t)] , (23)

where δi(t) = ri(t)+βVi(si(t+1))−Vi(si(t)) represents the
temporal difference (TD) error, with discount factor β. Stability
mechanisms include gradient clipping and learning rate decay:

∇clip = clip (∇θi ,−cclip, cclip) , ηnew = γdecay · ηold. (24)

3) Graph Attention for Efficient Decision-Making: A graph
attention mechanism (GAT) in MAGRL enables focused
information aggregation from relevant neighbors:

hi = ϕ(
∑

j∈N (i)

αijWhj), (25)

where αij is an attention coefficient based on the importance
of UAV j to UAV i. Task loads and deadlines aid reallocation,
while embeddings are updated for collision management:

htask
i (t+ 1) = σ(

∑
j∈N (i)

W taskTj(t) +W dlnτj(t) + b), (26)

hpath
i (t+ 1) = σ(

∑
j∈N (i)

Wptarget
j (t) + Ŵ⊮collide(i, j) + b),

(27)

where task deadlines and paths assist in reallocation and
collision avoidance.

A. MAGAC for Policy Optimization

MAGAC optimizes UAV policies and value functions with
an advantage function Ai(si, ai) = Qi(si, ai) − Vi(si) where
Qi(si, ai) approximates action-value. The policy loss is:

Lpolicy,i = −E [log πi(ai|si)Ai(si, ai)] , (28)
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Fig. 2: Task completion rate vs. Episodes.
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Fig. 4: Total utility vs. Episode.

TABLE I: Parameters

Parameter Value Parameter Value
NGT 100 NUAV 20
hu 100 m NFZbuf 10 m
vmax 25 m/s Rs 500 m
PUAV
comp 4× 10−9 J/cycle PGT

comp 4× 10−9 J/cycle
Pcomm 8× 10−9 J/bit Pmove 30 W/m
Phover 180 W EUAV

max 1× 106 J
B 2× 107 Hz Pt 5 W
σ2 1× 10−9 W tasks/GT 100
Dk (1−5)×105 bits fk (1− 10)× 105

τk 5 to 30 seconds κ 1× 10−10

Batch 64 LRgenerator 0.001
LRdisc. 0.001 LRactor 0.0005
LRcritic 0.0005 zi 100
cv 0.5 ce 0.01
β 0.99 ϵ 0.01
λplty 1.0 λdln 2.0
η 0.1 Tmax 100let0
cclip 0.5 γdecay 0.95

while the value network minimizes the squared TD error:

Lvalue,i = E
[
(Vi(si(t))− (ri(t) + βVi(si(t+ 1))))

2
]
. (29)

The total loss includes entropy regularization to encourage
exploration:

Li = Lpolicy,i + cvLvalue,i − ceH(πi), (30)

where H(πi) = −
∑

ai
πi(ai|si) log πi(ai|si), and cv , ce

control the weight of value loss and entropy regularization.
1) Integrated Operation with GAN-GNN and MAGRL:

Initially, GAN-generated hover points phover
i provide optimized

starting locations, which are refined through GNN updates. At
each step, embeddings hi(t) guide policy πi(ai|si) and value
networks Vi(si) for movement actions:

amove
i (t) = argmax

ai

πi(ai|si), (31)

adjusting UAV positions to optimize energy, task allocation,
and NFZ compliance,,ensuring effective disaster response.

V. PERFORMANCE EVALUATION

The disaster area for simulation was modeled as a 1000 ×
1000 square meter grid, with tasks generated dynamically
at a rate of 10 to 40 tasks per minute, using the GenAI
model for realistic task dynamics. The Telecom Italia Big Data
Challenge dataset was employed to emulate ground terminal
task generation under urban disaster recovery conditions [14].
Fixed no-fly zones (NFZs) were modeled in circular, square,

and rectangular patterns, with a buffer distance NFZbuf to
prevent UAV entry. The GAN model generated hover points
dynamically, ensuring these points avoid NFZs and high-risk
zones to optimize UAV positioning and task allocation. The
primary goals for the UAV swarm included maximizing task
completion, minimizing energy consumption, and avoiding
NFZs, with real-time adaptive reallocation based on changing
conditions. Simulation parameters are summarized in Table I.

A. Benchmark Comparisons

The proposed framework is accessed against following:

• Multi-Agent Deep Deterministic Policy Gradient
(MADDPG): UAVs use MADDPG for task allocation
and movement, beginning from grid-based hover points
and adapting positions through continuous-action policies.

• Graph Convolutional Reinforcement Learning (GCRL):
GCRL employs graph-based Q-learning for task
allocation. UAVs start with grid-based hover points,
refined through graph convolution layers.

• Particle Swarm Optimization (PSO): UAVs adjust
positions iteratively using PSO to balance task completion
and energy efficiency, updating hover points based on
particle positions.

• Greedy Approach: UAVs make local, short-term decisions
to minimize immediate energy use or maximize coverage,
starting from grid-based hover points.

B. Results

1) Task Completion Rate Analysis: In Fig. 2, the task
completion rates over time are shown, highlighting the
effectiveness of the proposed MAGAC framework, which
achieves a 98% completion rate by 100 episodes. This
is due to GenAI’s dynamic hover point optimization
and GNN-driven inter-agent coordination, enabling real-
time task adaptability. MADDPG reaches 93% completion
with effective decentralized learning, though it lacks GNN-
based coordination, limiting adaptability. GCRL attains 80.3%
completion, benefiting from Q-learning’s convergence over
time. PSO achieves 74% with quick heuristic optimization but
plateaus early. The Greedy approach performs lowest, at 51%,
due to inefficient task allocation and minimal optimization.
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2) Energy Consumption through episodes: Fig. 3 illustrates
the overall energy consumption for different approaches
across episodes. The MAGAC framework demonstrates
superior energy efficiency, consuming the least energy due
to the minimization of unnecessary movements and energy
expenditures. MADDPG, while also energy-conscious, has
slightly higher consumption as it lacks MAGAC’s advanced
inter-agent coordination, which leads to suboptimal energy
allocation. GCRL initially shows moderate energy use
but escalates in later episodes, reflecting slower learning
convergence and less effective adaptation. PSO and Greedy
approaches exhibit the highest energy consumption, with
Greedy showing erratic increases due to its lack of a structured
task allocation strategy.

3) Total Utility through episodes: Fig. 4 illustrates utility
performance across approaches. MAGAC achieves superior
utility by effectively balancing energy use, coverage, and task
allocation, aided by GenAI-generated hover points and tasks
that enable dynamic adaptation. MADDPG, although stable,
lags due to its local optimization focus, lacking inter-agent
coordination. GCRL improves in later episodes as graph-
based information sharing reduces redundant actions, though
its slower convergence initially limits performance. PSO’s
heuristic approach results in erratic utility growth, unable to
adapt to complex task demands. Greedy prioritizes immediate
rewards, leading to high energy consumption and poor long-
term efficiency.

4) UAV Coverage Analysis: Fig. 5 and 6 analyze the
coverage efficiency of the MAGAC framework under energy
and UAV constraints. Fig. 5 shows that sustaining high
coverage becomes challenging as tasks progress as UAV energy
depletes. Initially, coverage remains robust, but it declines
sharply after 300 and 800 task completions, reaching around
0.68 due to energy limitations that force UAVs to prioritize
critical tasks in high-risk zones, thus limiting broad coverage.
Fig. 6 demonstrates that MAGAC achieves the highest
coverage utility by leveraging GenAI-generated hover points
and GNN-based coordination, reaching 1.45 with 25 UAVs by
reducing redundant paths and enhancing communication. Other
approaches, such as MADDPG and GCRL, achieve moderate
performance but lack robust inter-agent coordination, leading
to slightly reduced and less efficient coverage.

VI. CONCLUSION

In this paper, we proposed an advanced framework for
UAV swarm deployment in disaster recovery scenarios,

integrating GenAI, GNN, and a MAGRL framework. Our
approach addresses key challenges such as energy efficiency,
task offloading, real-time adaptability, and safe navigation
through dynamic hover point generation and GNN-based
collision avoidance. Including graph attention further enhanced
UAV coordination, leading to significant improvements
across metrics like task completion rates, energy efficiency,
and overall system utility. Through extensive simulations
and benchmark comparisons with MADDPG, GCRL, PSO,
and Greedy approaches, our proposed MAGAC framework
demonstrated superior performance, achieving a 98% task
completion rate while optimizing energy consumption. This
synergy between GenAI and MAGRL allowed for efficient
UAV swarm coordination and task allocation in dynamic and
resource-constrained disaster scenarios.

REFERENCES

[1] J. Dai, W. Pu, J. Yan, Q. Shi, and H. Liu, “Multi-UAV collaborative
trajectory optimization for asynchronous 3-D passive multitarget
tracking,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–16, 2023.

[2] H. Pan, Y. Liu, G. Sun, J. Fan, S. Liang, and C. Yuen, “Joint power
and 3D trajectory optimization for UAV-enabled wireless powered
communication networks with obstacles,” IEEE Trans. Commun., vol. 71,
no. 4, pp. 2364–2380, 2023.

[3] P. Hou, Y. Huang, H. Zhu, Z. Lu, S.-C. Huang, Y. Yang, and
H. Chai, “Distributed DRL-based intelligent over-the-air computation
in unmanned aerial vehicle swarm-assisted intelligent transportation
system,” IEEE Internet Things J., pp. 1–1, 2024.

[4] X. Mao, G. Wu, M. Fan, Z. Cao, and W. Pedrycz, “DL-DRL: A
double-level deep reinforcement learning approach for large-scale task
scheduling of multi-UAV,” IEEE Trans. Autom. Sci. Eng., pp. 1–17, 2024.

[5] P. Singh, B. Hazarika, K. Singh, C. Pan, W.-J. Huang, and C.-
P. Li, “DRL-based federated learning for efficient vehicular caching
management,” IEEE Internet Things J., pp. 1–1, 2024.

[6] Y. Hou, J. Zhao, R. Zhang, X. Cheng, and L. Yang, “UAV
swarm cooperative target search: A multi-agent reinforcement learning
approach,” IEEE Trans. Intell. Veh., vol. 9, no. 1, pp. 568–578, 2024.

[7] X. Dai, Z. Lu, X. Chen, X. Xu, and F. Tang, “Multiagent RL-based joint
trajectory scheduling and resource allocation in NOMA-assisted UAV
swarm network,” IEEE Internet Things J., vol. 11, no. 8, pp. 14 153–
14 167, 2024.

[8] M. Nie, D. Chen, and D. Wang, “Reinforcement learning on graphs:
A survey,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 4, pp.
1065–1082, 2023.

[9] Z. Liu, J. Zhang, E. Shi, Z. Liu, D. Niyato, B. Ai, and X. S. Shen, “Graph
neural network meets multi-agent reinforcement learning: Fundamentals,
applications, and future directions,” IEEE Wirel. Commun., pp. 1–9,
2024.

[10] B. Jiang, J. Du, C. Jiang, Z. Han, A. Alhammadi, and M. Debbah, “Over-
the-air federated learning in digital twins empowered UAV swarms,”
IEEE Trans. Wirel. Commun., pp. 1–1, 2024.

[11] B. Hazarika and K. Singh, “AFL-DMAAC: Integrated resource
management and cooperative caching for URLLC-IoV networks,” IEEE
Trans. Intell. Veh., vol. 9, no. 6, pp. 5101–5117, 2024.

[12] Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and
A. Jamalipour, “Deep generative model and its applications in efficient
wireless network management: A tutorial and case study,” IEEE Wirel.
Commun., vol. 31, no. 4, pp. 199–207, 2024.

[13] J. Wang, H. Du, D. Niyato, J. Kang, Z. Xiong, D. Rajan, S. Mao, and
X. Shen, “A unified framework for guiding generative AI with wireless
perception in resource constrained mobile edge networks,” IEEE Trans.
Mob. Comput., pp. 1–17, 2024.

[14] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of milan and the province of trentino,”
Sci. data, vol. 2, no. 1, pp. 1–15, 2015.


