
DRL-based Optimisation for Task Offloading in
Space-Air-Ground Integrated Networks:

A Reliability-Driven Approach

Dang Van Huynh∗, Saeed R. Khosravirad†, Simon L. Cotton‡ Octavia A. Dobre∗, Trung Q. Duong∗,‡
∗ Memorial University, Canada, e-mail:{vdhuynh, odobre, tduong}@mun.ca
† Nokia Bell Labs, USA, e-mail: saeed.khosravirad@nokia-bell-labs.com

‡ Queen’s University Belfast, UK e-mail:{simon.cotton, trung.q.duong}@qub.ac.uk

Abstract—This paper addresses the problem of reliable task
offloading in space-air-ground integrated network (SAGIN) based
edge computing systems. Specifically, we aim to maximise the
successful task offloading ratio for ground users communicating
with a satellite’s edge server. In our network topology, end-to-
end communications are facilitated by relay unmanned aerial
vehicles (UAVs). The formulated problem jointly optimises task
offloading portions and bandwidth allocations for both ground-
to-air and air-to-space links, subject to quality-of-service (QoS)
requirements, transmission rates, system bandwidth, and the
computing capacity of the satellite’s edge server. To solve the
formulated complex non-linear, non-convex, and mixed-integer
problem, we propose an efficient solution underpinned by a deep
reinforcement learning (DRL). Simulation results demonstrate
the effectiveness of the proposed method, which achieves stable
training performance and an optimised reliable offloading ratio
compared to benchmark schemes.

I. INTRODUCTION

Space-air-ground integrated networks (SAGIN) are emerg-
ing as a key technology for achieving ubiquitous connectivity
in 6G networks [1], [2]. By integrating space, aerial, and
terrestrial components, SAGIN can provide seamless wire-
less coverage across vast geographical areas, including hard-
to-reach locations, making it essential for critical services
such as remote surveillance, environmental monitoring, and
disaster management [2]. However, SAGIN presents several
challenges, which have attracted considerable attention from
the research community. One such challenge lies in optimising
resource management across both communication resources
(e.g., bandwidth allocation, transmission power) and comput-
ing resources (e.g., processing capacity, storage, energy) [3],
[4]. The high attenuation and long-distance nature of satellite
communications, combined with the resource limitations of
ground devices used for remote operation, make the design
of efficient solutions for SAGIN-assisted systems particularly
complex [2]. Addressing these challenges will be crucial for
fully realising the potential of SAGIN in real-world applica-
tions [5], [6].

Recently, the integration of SAGIN-based communication
with edge and cloud computing, driven by the need to support
emerging services that demand low latency and high com-
putational power, has gained significant attention [7]–[15].
The convergence of these key technologies will unlock the
full potential of next-generation wireless networks, providing
the ability to not only deliver global coverage but at the
same time enhance computational capacity to meet complex

service demands. Satellites equipped with edge servers to
process computational tasks offloaded from ground users are
a key element of this integration. These satellites, with their
powerful computing resources, are able to process complex
tasks and provide timely responses to users on the ground,
greatly reducing latency compared to routing from remote
locations via ground based telecommunications infrastructure,
which in some cases may not be available.

The benefits of using SAGIN assisted edge computing are
not open-ended. A major challenge here is long-distance trans-
missions between satellites and ground users which presents
considerable challenges in maintaining efficient communica-
tion, making joint optimisation of communication and com-
puting resources a difficult and multi-faceted problem. The
dynamic nature of user demands, network conditions, and
resource availability requires sophisticated strategies for bal-
ancing these resources. For example, service deployment and
task scheduling are essential to improving network service
capabilities while also reducing deployment and operational
costs [7]. Similarly, the joint selection of servers and services
plays a crucial role in achieving optimal configurations for
computing services across the SAGIN infrastructure [11].
Common objectives in this field include minimising energy
consumption [9], [14], reducing latency [15], and maximising
resource utilisation efficiency [10]. A range of optimisation
methods has been proposed to address these challenges, in-
cluding both traditional mathematical optimisation techniques
[8], [10], [11] and more modern machine learning approaches
[12], [15], [16]. Among these, machine learning methods,
particularly deep reinforcement learning (DRL), have been
widely adopted due to their ability to adapt to changing
network conditions and user demands in real time [7], [9],
[15]. DRL, for example, enables the system to learn optimal
policies for resource management by interacting with the
environment, offering a promising solution for addressing the
dynamic and complex nature of SAGIN systems.

While various research objectives have been explored in
SAGIN-based systems, a critical challenge remains: the reli-
able offloading and processing of tasks, particularly in remote
areas and critical scenarios such as emergency responses and
disaster recovery. In these situations, timely and efficient
task execution can be vital, making the issue of reliable
task offloading a key priority. Motivated by these challenges,
this paper focuses on the problem of reliable task offloading

in SAGIN-assisted edge computing. We aim to maximise
the ratio of successfully offloaded tasks in SAGIN systems,
ensuring that tasks are completed with the required quality
of service (QoS) and within the resource limitations. The
proposed solution jointly optimises task offloading portions
and bandwidth allocation for transmissions between ground
users, relay UAVs, and the satellite, while considering QoS
requirements and resource constraints. By addressing these as-
pects, our approach provides a robust framework for improving
task reliability and overall system performance in critical and
remote scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a SAGIN model which consists
of N ground users (GUs), M relay UAVs, and one satellite
associated with an edge server to process offloaded tasks from
the GUs. Fig. 1 provides an illustration of the considered
system model. We assume that the formation of GU-UAV
networks is conducted in advanced, where the j-th UAV only
serves a finite number of GUs in its coverage. A computational
task generated from the i-th GU is characterised by a tuple
of three parameters (Si, Ci, Di), denoting the task size (bits),
required CPU cycles (cycles), and delay tolerance (seconds),
respectively. Due to limitation in the available computing
capacity, as well as energy budget, the GUs have to offload
the task to the satellite’s edge server to process.

Fig. 1. An illustration of SAGIN-enabled edge computing systems.

A. Wireless Transmission Model

In this paper, all devices considered in the system model
are single-antenna devices. Frequency division multiple access
(FDMA) method is utilised for wireless transmissions in the
system. We aim to develop an optimal design for bandwidth
allocations, which guarantees the transmission QoS, meets the
desired latency constraints, and improves the reliability of task
offloading.

1) Channel model for space-to-air transmissions: We adopt
the shadowed-Rician fading (SRF) model to describe the
channel of space-to-air transmissions [17]. The channel gain
hAS
j is expressed as hAS

j =
√
(d0/dj)

α
SR(ω, δ, ϵ). Here dj

is the distance between the j-th UAV and the satellite; d0 = 1

is a reference distance and α is the path loss exponent for
the space-to-air link; ω is the average power of the direct
LoS component; δ is the half average power of the scatter
portion; ϵ is the Nakagami m-parameter for the scattered NLoS
components.

2) Channel model for air-to-ground transmissions: In this
work, we consider light-of-sight (LOS) links between the i-th
GU and j-th UAVs so we can model the channel gain hGA

i,j

as hGA
i,j =

√
βi,j(di,j)gi,j [9]. Here, βi,j(di,j) = d0/d

α
i,j

represents the large-scale fading, including distance-based path
loss and shadowing, where α and d0 = 1 m are the path
loss exponent for the air-to-ground links and the reference
distance, respectively. gi,j ∼ Rician(K) is the small-scale
fading component, where K is the Rician factor defining the
ratio of power of the direct LoS path to the power contributed
by the scattered paths.

3) Transmission schemes: The transmission rate of the i-th
GU to the j-th UAV is given by

rGAi,j
(
bGAi,j
)
= bGAi,j log2

(
1 +

Pih
GA
i,j

N0bGAi,j

)
. (1)

Similarly, the transmission rate of the j-th UAV to the
satellite is expressed as

rASj
(
bASj
)
= bASj log2

(
1 +

Pjh
AS
j

N0bASj

)
. (2)

where rGAi,j denotes the transmission rate of the i-th GU to the
j-th UAV, while rASj is the transmission rate from the j-th
UAV to the satellite. Here, bGAi,j is bandwidth allocated for the
link from the i-th GU to the j-th UAV, and bASj is bandwidth
allocated for the link from the j-th UAV to the satellite. Pi

and Pj are the transmission power of the i-th GU and the j-th
UAV, respectively. hGA

i,j is channel gain between the i-th GU
and the j-th UAV, and hAS

j is the channel gain between the
UAV and the satellite. N0 is the noise spectral density.

B. Latency Model

As illustrated in Fig. 1, the i-th GU offloads a portion of xi,j

of the computational task to the j-th UAV, then the UAV for-
wards it to the satellite’s edge server for processing. Therefore,
the latency of the i-th task consists of four components: local
processing latency

(
LGU
i

)
, GU-to-UAV transmission latency(

LGA
i,j

)
, UAV-to-satellite transmission latency

(
LAS
j

)
, and edge

processing latency
(
LES
i

)
, which calculated as follows.

LGU
i (xi,j) =

(1− xi,j)Ci

fGU
i

,

LGA
i,j (xi,j , b

GA
i,j) =

xi,jSi

rGAi,j
(
bGAi,j
) ,

LAS
i,j(xi,j , b

AS
j) =

xi,jSi

rASj
(
bASj
) ,

LES
i (xi,j) =

xi,jCi

fES
i

.

(3)

(4)

(5)

(6)

As a result, the total latency for a task completely offloaded

and processed is given by

Li = LGU
i + LGA

i,j + LAS
i,j + LES

i . (7)

C. Energy Consumption Model
To handle the limitation on the energy budget of the GUs,

we model the energy consumption of the i-th GU as follows

Ei

(
xi,j , b

GA
i,j

)
= θ(1− xi,j)Ci

(
fGU
i

)2
+

xi,jSiPi

rGAi,j
, (8)

which includes two components: energy consumption for local
processing and energy consumption for the transmission. Since
the task is partially offloaded a portion of xi,j to the UAVs, the
i-th GU only processes the remaining portion of (1 − xi,j).
Here, θ is the parameter used to calculate the computation
energy of GUs, which varies according to the CPU used [18].

D. Reliable Task Offloading Definition
In this paper, we propose a reliability-driven approach

for optimal design of joint task offloading and bandwidth
allocations in SAGIN-assisted edge computing. The reliable
metric is developed based on a binary indicator ϕi,j = {0, 1}.
Specifically, a task is considered reliably offloaded if the total
latency Li is less than or equal to its delay tolerance Di,
mathematically expressed as

ϕi,j

(
xi,j , b

GA
i,j , b

AS
j

)
=

{
1, if Li,j ≤ Di,

0, otherwise.
(9)

E. Problem Formulation
Based on the above representation of the system model, the

optimisation problem formulated in this paper is given by (10).
Here, the objective of the problem is to maximise the average
reliable task offloading ratio, ensuring the tasks are completely
offloaded and processed within their delay tolerances by opti-
mising the variables of offloading portions, i.e., x ≜ {xi,j}∀i,j
and bandwidth allocations, i.e., b ≜ {bGAi,j , bASj }∀i,j .

P1: maximise
x,b

1

N

N∑
i=1

M∑
j=1

ϕi,j

(
xi,j , b

GA
i,j , b

AS
j

)
xi,j ,

s.t. Ei

(
xi,j , b

GA
i,j

)
≤ Emax

i ,∀i,
N∑
i=1

bi,j ≤ Bmax
j ,∀j,

M∑
j=1

bj ≤ BSAT,

rGAi,j ≥ rmin
i,j ,∀i, j,

rASj ≥ rmin
j ,∀j,

N∑
i=1

M∑
j=1

xi,jf
ES
i ≤ Fmax.

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

(10g)

In (10), (10b) represents the constraint of the energy budget
of the GUs. Constraints (10c) and (10d) are constraints for
the bandwidth allocations of GU-to-UAV links and UAV-to-
satellite links, respectively. Constraints (10e) and (10f) are the

QoS requirements for the transmission rates. Lastly, constraint
(10g) guarantees the computing capacity of the satellite’s edge
server against exceeding maximum setting.

III. PROPOSED SOLUTION

It is obvious that the problem given in (10) comprises of
non-linearities, non-convexity, coupled constraints, and binary
indicators in the objective function, which make the problem
challenging for classical optimisation methods to find opti-
mal solutions effectively. In contrast, DRL offers a flexible,
scaleable, and adaptive approach to learning optimal policies
in dynamic environments, making it an attractive solution for
solving the presented problem. By leveraging exploration and
function approximation, DRL can find near-optimal solutions
that meet the problem’s constraints while maximising the
task offloading ratio. Therefore, we propose a DRL-based
optimisation solution to tackle the formulated problem. More
specifically, the optimisation variables of the problem include
the task offloading portions and the bandwidth allocations,
which are all continuous variables. Consequently, the deep
deterministic policy gradient (DDPG) algorithm is selected to
develop the solution for this paper.

A. Reinforcement Learning Representation

We are in the position of transforming the original prob-
lem (10) into a problem that can be solved by DRL-based
algorithms. To solve a problem with DRL algorithms, the
optimisation problem needs to be reformulated as a Markov
decision process (MDP) formulation, including state space (S),
action space (A), and the reward function (R). We first start
with the design of the state space.

1) State space: The state space S is composed of necessary
information of the system at the state t, observed by the
agent to select next action, including the following system
parameters:

• Task size Si(t): The size of the computational task
generated by the i-th GU, measured in bits.

• Required CPU cycles Ci(t): The number of CPU cycles
required to process the task generated by the i-th GU,
measured in cycles/second.

• Delay tolerance Di(t): The maximum allowable latency
for the task generated by the i-th GU, measured in
seconds.

• Bandwidth allocations bGAi,j (t) and bASj (t): The bandwidth
allocated to the i-th GU for communication with the j-th
UAV and for the communication of the j-th UAV with
the satellite, respectively.

• Channel conditions hGA
i,j (t) and hAS

j (t) :The wireless
channel gains from the i-th GU to the j-th UAV, and
from the j-th UAV and the satellite, respectively.

• Energy consumption Ei(t): The current energy consump-
tion of the i-th GU, measured in joules.

It is important to note that the DDPG agent can learn
more effectively with a concentrated state space, instead of
discrete information. The concentrated state space can incor-
porate constraint violations as part of the state, making it

easier for the agent to learn feasible solutions, focusing on
optimising the key metrics that matter. Therefore, we propose
the concentrated expression of the state space S as follows

st = {Roff(t), Vcon(t), Uutil(t)}, (11)

where:
• Roff(t) is the task completion ratio at time t, indicating

the percentage of tasks completed within the allowed
delay;

• Vcon(t) represents the number of system constraint viola-
tions up to time t, with penalties applied according to λ
for each violation;

• Uproc(t) is the utilisation of the computing capacity at the
satellite’s edge server, calculated as:

Uproc(t) =

∑N
i=1 xi,jf

ES
i

Fmax
, (12)

where xi,j is the offloading portion, fES
i is the allocated

processing rate for task offloaded from the i-th GU,
and Fmax is the maximum computing capacity of the
satellite’s edge server.

2) Action space: The action space A consists of the fol-
lowing decisions made by the agent:

• Offloading portion xi,j(t): The portion of the task of-
floaded from the i-th GU to the j-th UAV;

• Bandwidth allocation bGAi,j (t): The bandwidth allocated to
the i-th GU for communication with the j-th UAV;

• Satellite bandwidth allocation bASj (t): The bandwidth al-
located to the j-th UAV for air-to-space communications.

Thus, the action space A is represented as

A = {xi,j(t), b
GA
i,j (t), b

AS
j (t)}∀i,j . (13)

where xi,j ∈ [0, 1] represents the offloading portion, and
bi,j ∈ [0, Bmax

j], bj ∈ [0, BSAT] represents the bandwidth
allocations.

3) Reward function: The reward rt at time step t is de-
signed to encourage efficient task offloading, minimise latency,
and reduce energy consumption. The reward is calculated as

rt =
N∑
i=1

M∑
j=1

(δi,jxi,j − λEΨE − λBΨB − λrΨr − λFΨF) , (14)

where:
• δi,j is an indicator function that equals 1 if the total task

latency Li,j ≤ Di, and 0 otherwise, defined in (9);
• xi,j is the offloaded portion generated by the i-th GU;
• λE, λB, λr and λF are introduced weighting factors for

penalising energy consumption, bandwidth budget, min-
imum transmission rates, and the satellite’s computing
budget, respectively;

• ΨE, ΨB, Ψr, ΨE present how much the constraints in (10)
are violated.

By designing the reward function in this way, the agent
is encouraged to maximise the reliable task offloading por-
tion while penalising high energy consumption, task latency,

exceeding bandwidth budget and computing capacity, thereby
efficiently finding the optimal solution for the original problem
(10).

B. Implementation of the Proposed DDPG-based Solution

The proposed solution is constructed from the DDPG
algorithm, implemented with the framework of actor-critic
networks. The actor network is responsible for mapping the
current state of the environment to a continuous action, which
is fully connected and consists of three layers: the input layer,
hidden layer, and output layer. The hidden layer in this network
works as an approximator for the policy function. On the other
hand, the critic network evaluates how good a particular action
is for a given state by estimating the Q-value (i.e., the expected
cumulative reward), expressed as (15) [19]. It takes both the
current state and the action as input, and outputs a scalar value.

Qπ(st, at) = E

[∞∑
k=0

γkrt+k

∣∣∣∣∣ st = s, at = a

]
. (15)

Thus, the Q-value Q(st, at) represents the expected cumula-
tive reward for taking action at in state st, considering the
agent’s future states and actions under the current policy.

During the training process, the Q-value is updated in
DDPG using the Bellman equation:

yt = rt + γQ′(st+1, π
′(st+1)|θQ

′
), (16)

where yt is the target Q-value, the discount factor; γ is the
discount factor, and Q′(st+1, π

′(st+1)|θQ
′
) is the Q-value

predicted by the target critic network for the next state st+1

and action π′(st+1), using the target actor network π′. The
critic network is trained by minimising the loss between the
predicted Q-value Q(st, at|θQ) and the target Q-value yt:

L(θQ) = E
[(
yt −Q(st, at|θQ)

)2]
. (17)

It is important to note that, in the implementation of DDPG
algorithm, the replay buffer is a crucial component. The replay
buffer works as a memory buffer that stores the agent’s experi-
ences from interacting with the environment. Each experience
is stored in the relay buffer as a tuple (st, at, rt, st+1). By
sampling random mini-batches from the buffer, DDPG trains
more effectively, reusing valuable experiences from previous
interactions. In summary, the proposed DDPG-based algorithm
for solving the problem formulated in (10) is provided in
Algorithm 1.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Parameter Settings

For simulations, we consider a system model that consists
of M = 3 UAVs, N = {15, 21} GUs. We assume that the
assignments of UAVs and GUs are conducted in advance,
with each UAV serving the same number of GUs, e.g., each
UAV serves 5 GUs within its coverage area for the scenario
where there are N = 15 GUs. The simulations are conducted
in Python, making use of packages such as Pytorch,

Algorithm 1 : Proposed DDPG-based Algorithm for Solving
P1 (10).

1: Initialise actor network µ(s|θµ) and critic network
Q(s, a|θQ) with random weights θµ and θQ;

2: Initialise target networks µ′ and Q′ with weights θµ
′ ←

θµ, θQ
′ ← θQ;

3: Initialise replay buffer R;
4: Initialise Ornstein-Uhlenbeck noise O for exploration;
5: for episode = 1 to E do
6: Initialise a random process O for action exploration;
7: Receive initial state s1;
8: for t = 1 to T do
9: Select action at = µ(st|θµ) + Ot (with noise for

exploration);
10: Execute action at and observe reward rt and next

state st+1;
11: Store transition (st, at, rt, st+1) in replay buffer R;
12: Sample a random mini-batch of Nb transitions

(sℓ, aℓ, rℓ, sℓ+1) from R;
13: Set yℓ = rℓ + γQ′(sℓ+1, µ

′(sℓ+1|θµ
′
)|θQ′

);
14: Update critic by minimising the loss:

L =
1

Nb

∑
∀ℓ

(
yℓ −Q(sℓ, aℓ|θQ)

)2
;

15: Update the actor using the sampled policy gradient:

∇θµJ ≈ 1

Nb

∑
∀i

∇aQ(s, a|θQ)|a=µ(s)∇θµµ(s|θµ);

16: Update target networks:

θQ
′
← τθQ + (1− τ)θQ

′
;

θµ
′
← τθµ + (1− τ)θµ

′
.

17: end for
18: end for

gymnasium, pandas, and matplotlib to implement
the proposed solution and visualise numerical results.

For training the DDPG model, we set the learning rate of
the actor to 10−5 while the learning rate of critic is 10−4.
The discount factor is set to γ = 0.99 and the factor for target
network update is τ = 0.05. The batch size for sampling in
the training is set to 256 and the maximum size of the reply
buffer is 106. Other communication and computing parameters
are provided in Table I.

B. Numerical Results

1) Training performance: The training performance of the
proposed algorithm is displayed in Fig. 2, where the episode
reward is plotted against the training episodes for two different
scenarios N = 15 GUs and N = 21 GUs, both with M = 3
UAVs. The results show that in both scenarios, the algorithm
demonstrates an upward trend in rewards as the training
progresses, indicating successful learning. For N = 15 GUs,
the algorithm converges faster, reaching a stable reward by
around episode 100, with minimal fluctuations. In contrast,
the case with N = 21 GUs exhibits a slower convergence

TABLE I
SIMULATION PARAMETERS [17], [18], [20].

Parameters Value
Distance from UAVs to GUs di,j ∼ U(400, 500) m
Satellites’ altitude 780 km
SRF model (ω, δ, ϵ) = (5e−4, 0.063, 2)

Noise spectral density N0 = −174 dBm/Hz
Path-loss exponent α = 2

Rician K-factor K = 5

Task size Si ∼ U(100, 500) KB
Required CPU cycles of tasks Ci ∼ U(1000, 1200) megacycles.
Delay tolerance Di ∼ U(2, 5) s
Maximum energy consumption of GU Emax

i ∼ U(1, 1.5) J
Energy consumption parameter θ = 10−27 Watt.s3/cycle3

Transmission power of GU Pi = 20 dBm
Transmission power of UAV Pj = 37 dBm
Maximum bandwidth for each UAV Bmax

j = 20 MHz
Maximum bandwidth for the satellite BSAT = 100 MHz.

0 100 200 300 400 500
Episode

250

200

150

100

50

0

Sc
al

ed
 E

pi
so

de
 R

ew
ar

d

N = 15 GUs
N = 21 GUs

Fig. 2. Training performance over time of Algorithm 1 for the scenarios of
M = 3 UAVs with N = {15, 25} GUs.

rate, stabilising around episode 250. This difference in con-
vergence speed can be attributed to the increased complexity
of managing more users, which adds to the challenge of
reliable task offloading. However, in both cases, the algo-
rithm achieves stable and consistent rewards as the training
progresses, highlighting its robustness and effectiveness in
handling varying numbers of ground users. The shaded regions
around the curves represent the standard deviation, showing
that the variability in performance decreases as the number of
episodes increases, further indicating stable learning outcomes.

2) Effectiveness of the proposed solution: To demonstrate
the effectiveness of the proposed solution, we conducted
simulations with different settings for the UAV’s bandwidth
budget and the required CPU cycles of the tasks. The bar chart
in Fig. 3 illustrates the superior performance of the proposed
solution in maximising reliable task offloading portions under
various bandwidth allocation schemes and CPU requirements
for computational tasks, compared to the benchmark scheme.
The comparison is made between MaxCi = 900 megacycles
and MaxCi = 1200 megacycles. The results demonstrate

10-OPT 20-OPT 30-OPT 30-EBA
Bandwidth Allocation Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
lia

bl
e

Ta
sk

 O
ffl

oa
di

ng
 P

or
tio

n

Max Ci = 900
Max Ci = 1200

Fig. 3. The effectiveness of the proposed solution in maximising the reliable
task offloading portions with different settings of Bmax

j and maximum CPU
required by the computational tasks in the scenario of N = 15 GUs. Here,
“10-OPT” represents the optimal bandwidth allocation scheme with Bmax

j =
10 MHz and “30-EBA” represents the equal bandwidth allocation scheme
with Bmax

j = 30 MHz.

that the optimal allocation schemes outperform the equal
allocation strategy. For instance, the 30-OPT scheme achieves
the highest reliable offloading portion, reaching nearly 1.0
for MaxCi = 900, while 30-EBA shows significantly lower
performance in both cases. This highlights the efficiency of the
proposed solution in utilising resources to improve reliable
task offloading. In addition, Fig. 3 demonstrates how the
UAV’s bandwidth budget affects the offloading process. As
shown in the figure, increasing the bandwidth budget for GU-
to-UAV communication significantly enhances the reliability
of task offloading, allowing a higher portion of tasks to be
fully offloaded to complete the task within the delay tolerance.

V. CONCLUSION

In conclusion, we have investigated the optimal design of
task offloading and bandwidth allocation for reliability-driven
SAGIN-enabled edge computing. The proposed system model
takes into account the dynamic environment of computing
demands, the energy budgets of GUs, and the computing
capacity of the satellite’s edge server. Our DRL-based so-
lution provides an optimal approach to optimising offloaded
task portions and bandwidth allocations, thereby enhancing
the reliability of the offloading process within the system.
The effectiveness of the proposed solution has been clearly
demonstrated through simulation results, which show stable
training patterns and maximised reliability in task offloading.
Lastly, we have shown that, the development of real-time
optimisation for UAV deployment presents a promising future
direction to further enhance system efficiency and adaptability
in dynamic environments.

REFERENCES

[1] Y. Liu, L. Jiang, Q. Qi, K. Xie, and S. Xie, “Online computation
offloading for collaborative space/aerial-aided edge computing toward
6G system,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2495–2505,
Feb. 2024.

[2] T. Ma, H. Zhou, B. Qian, N. Cheng, X. Shen, X. Chen, and B. Bai,
“UAV-LEO integrated backbone: A ubiquitous data collection approach
for B5G Internet of remote things networks,” IEEE J. Sel. Areas
Commun., vol. 39, no. 11, pp. 3491–3505, Nov. 2021.

[3] Q. Chen, Z. Guo, W. Meng, S. Han, C. Li, and T. Q. S. Quek, “A
survey on resource management in joint communication and computing-
embedded SAGIN,” IEEE Commun. Surveys Tuts., 2024.

[4] T. Do-Duy, D. V. Huynh, E. Garcia-Palacios, T.-V. Cao, V. Sharma, and
T. Q. Duong, “Joint computation and communication resource allocation
for unmanned aerial vehicle NOMA systems,” in Proc. IEEE 28th
Int. Workshop Comput. Aided Modeling Design Commun. Links Netw.
(CAMAD), Edinburgh, United Kingdom, Nov. 2023, pp. 290–295.

[5] B. Shang, Y. Yi, and L. Liu, “Computing over space-air-ground inte-
grated networks: Challenges and opportunities,” IEEE Netw., vol. 35,
no. 4, pp. 302–309, Aug. 2021.

[6] J. He, N. Cheng, Z. Yin, C. Zhou, H. Zhou, W. Quan, and X.-H. Lin,
“Service-oriented network resource orchestration in space-air-ground
integrated network,” IEEE Trans. Veh. Technol., vol. 73, no. 1, pp. 1162–
1174, Jan. 2024.

[7] F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai,
“A deep reinforcement learning-based dynamic traffic offloading in
space-air-ground integrated networks (SAGIN),” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 276–289, Jan. 2022.

[8] B. Cao, J. Zhang, X. Liu, Z. Sun, W. Cao, R. M. Nowak, and
Z. Lv, “Edge–cloud resource scheduling in space–air–ground-integrated
networks for internet of vehicles,” IEEE Internet of Things J., vol. 9,
no. 8, pp. 5765–5772, Apr. 2022.

[9] C. Huang, G. Chen, P. Xiao, Y. Xiao, Z. Han, and J. A. Chambers, “Joint
offloading and resource allocation for hybrid cloud and edge computing
in SAGINs: A decision assisted hybrid action space deep reinforcement
learning approach,” IEEE J. Sel. Areas Commun., vol. 42, no. 5, pp.
1029–1043, May 2024.

[10] I. Leyva-Mayorga, M. Martinez-Gost, M. Moretti, A. Pérez-Neira,
M. Ángel Vázquez, P. Popovski, and B. Soret, “Satellite edge computing
for real-time and very-high resolution earth observation,” IEEE Trans.
Commun., vol. 71, no. 10, pp. 6180–6194, Oct. 2023.

[11] Y. Gao, Z. Yan, K. Zhao, T. de Cola, and W. Li, “Joint optimization
of server and service selection in satellite-terrestrial integrated edge
computing networks,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp.
2740–2754, Feb. 2024.

[12] T. Q. Duong, L. D. Nguyen, T. T. Bui, K. D. Pham, and G. K.
Karagiannidis, “Machine learning-aided real-time optimized multibeam
for 6G integrated satellite-terrestrial networks: Global coverage for
mobile services,” IEEE Netw., vol. 37, no. 2, pp. 86–93, Apr. 2023.

[13] Z. Song, Y. Hao, Y. Liu, and X. Sun, “Energy-efficient multiaccess edge
computing for terrestrial-satellite internet of things,” IEEE Internet of
Things J., vol. 8, no. 18, pp. 14 202–14 218, Sep. 2021.

[14] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Trans. Commun., vol. 21, no. 2,
pp. 1362–1377, Feb. 2022.

[15] F. Chai, Q. Zhang, H. Yao, X. Xin, R. Gao, and M. Guizani, “Joint
multi-task offloading and resource allocation for mobile edge computing
systems in satellite IoT,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp.
7783–7795, Jun. 2023.

[16] P. Zhang, N. Chen, S. Shen, S. Yu, N. Kumar, and C.-H. Hsu, “Ai-
enabled space-air-ground integrated networks: Management and opti-
mization,” IEEE Netw., vol. 38, no. 2, pp. 186–192, Apr. 2024.

[17] M.-H. T. Nguyen, T. T. Bui, L. D. Nguyen, E. Garcia-Palacios, H.-J.
Zepernick, H. Shin, and T. Q. Duong, “Real-time optimized clustering
and caching for 6G satellite-UAV-terrestrial networks,” IEEE Trans.
Intell. Transp. Syst., vol. 25, no. 3, pp. 3009–3019, Mar. 2024.

[18] D. V. Huynh, V.-D. Nguyen, S. Chatzinotas, S. R. Khosravirad, H. V.
Poor, and T. Q. Duong, “Joint communication and computation offload-
ing for ultra-reliable and low-latency with multi-tier computing,” IEEE
J. Sel. Areas Commun., vol. 41, no. 2, pp. 521–537, Feb. 2022.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, Oct. 2018.

[20] T. Q. Duong, D. V. Huynh, Y. Li, E. Garcia-Palacios, and K. Sun, “Dig-
ital twin-enabled 6G aerial edge computing with ultra-reliable and low-
latency communications,” in Proc. 2022 1st International Conference on
6G Networking (6GNet), Paris, France, Jul. 2022.

