
Aerial Reconfigurable Intelligent Surface-enabled SAGIN with
LSTM-enhanced DRL Model

Sasinda C. Prabhashana∗, Dang Van Huynh∗, Keshav Singh† Hans-Jürgen Zepernick§

Octavia A. Dobre∗, Hyundong Shin¶ , Trung Q. Duong∗‡
∗ Memorial University of Newfoundland, Canada, e-mails:{cwelhengodag, vdhuynh, odobre,tduong}@mun.ca

† National Sun Yat-sen University, Taiwan, e-mail: keshav.singh@mail.nsysu.edu.tw
‡ Queen’s University Belfast, UK

§ Blekinge Institute of Technology, Sweden, e-mail: hans-jurgen.zepernick@bth.se
¶ Kyung Hee University, South Korea, e-mail: hshin@khu.ac.kr

Abstract—This paper introduces a network architecture that
integrates the space-air-ground integrated network with mobile
edge computing (MEC) and orbital edge computing to advance
sixth-generation (6G) communication systems. The proposed
system employs unmanned aerial vehicles (UAVs) equipped with
reconfigurable intelligent surfaces and satellite-based MEC to op-
timize resource management in complex, dynamic environments.
By efficiently managing resources such as bandwidth and compu-
tational power at both base stations and low Earth orbit satellites,
while making offloading decisions, the system aims to minimize
utility costs while meeting stringent performance requirements.
We utilize a long short-term memory (LSTM)-enhanced deep
deterministic policy gradient (DDPG) algorithm to solve the
formulated nonlinear programming problem, enabling dynamic
and adaptive resource management. The LSTM-enhanced DDPG
improves convergence speed by 44.44% compared to conventional
DDPG, significantly enhancing cost efficiency. Simulation results
validate the robustness of the proposed method against state-of-
the-art approaches.

I. INTRODUCTION

The deployment of sixth-generation (6G) networks by 2030
promises to transform global connectivity through compre-
hensive coverage, improved spectral efficiency, faster data
transmission rates, and lower energy consumption and latency
[1]. One of the key advancements in 6G is the incorporation
of artificial intelligence, which facilitates more intelligent
and efficient management of the vast amounts of data and
devices present in communication networks [2]. Furthermore,
6G aims to create a seamless integration of satellites and
unmanned aerial vehicles (UAVs) within the framework of
space-air-ground integrated networks (SAGIN) to ensure fully
optimized coverage. In contrast, the current fifth-generation
(5G) networks only provide coverage for a small percentage of
the world’s land area and an even lesser fraction of the Earth’s
surface, highlighting substantial limitations [3], [4]. To address
these obstacles, both innovative and existing technologies need
to be enhanced to accommodate the increasing demands.

One notable advancement in communication technology is
mobile edge computing (MEC), which provides significant
computational resources at the network edge, close to end
users. This proximity helps minimize energy consumption
in mobile devices, extend battery life, and maintain low
latency by offloading computationally intensive tasks to high-
performance edge servers [5]. Moreover, SAGIN has led
to a paradigm shift in edge-computing-enabled communi-

cation services. Terrestrial edge computing is transitioning
to non-terrestrial and orbital-edge computing (OEC), finding
widespread applications in remote areas [6]. These integrated
networks provide ubiquitous connectivity, supporting diverse
services such as remote area monitoring, high-speed internet
access, and disaster relief, while operating independently [7].

In scenarios involving natural disasters, when terrestrial
communication infrastructure may be compromised, un-
manned aerial vehicles (UAVs) can facilitate reconnections
between users and the nearest available communication sys-
tems [8]. Their altitude allows for line-of-sight (LoS) com-
munication with ground base stations, effectively mitigating
challenges posed by shadowing and signal obstruction. Ad-
ditionally, the agility of UAVs enables them to adjust their
positions in real time to accommodate fluctuating communi-
cation requirements, serving as aerial relays between senders
and receivers [9], [10]. Furthermore, reconfigurable intelligent
surfaces (RISs) are poised to revolutionize future communica-
tion technologies. These arrays consist of adjustable elements
that can precisely modify signal phases, thereby enhancing
overall communication efficiency [11]. However, many exist-
ing implementations of RISs are fixed to locations like walls or
rooftops, which can create challenges when obstacles obstruct
these surfaces, resulting in diminished system performance
[12], [13]. By integrating RISs with UAV technology, it
is possible to significantly enhance communication system
performance, ensuring a more secure and reliable exchange
of information [14].

To optimize resource usage in mobile edge computing
(MEC) networks, several methods have been proposed, such as
binary task offloading decisions, which reduce edge server idle
time and ensure timely responses [15], [16]. However, as user
numbers grow and system parameters change rapidly, conven-
tional techniques struggle with efficient decision-making [17].
Deep reinforcement learning (DRL) has shown promise in op-
timizing real-time decision-making in dynamic environments.
DRL agents can efficiently handle complex challenges without
prior system knowledge, and recent studies have applied
DRL to MEC task offloading, significantly reducing system
delays and energy consumption [3], [11], [17]. Integrating
DRL with existing technologies enhances resource allocation
and addresses growing network demands, warranting further
exploration for real-time applications.



In this paper, we present an optimization framework for joint
resource allocation, task offloading, and bandwidth manage-
ment in a MEC-aided SAGIN architecture. Our approach intro-
duces a nonlinear programming problem, aimed at minimizing
the total system cost. The formulated optimization problem
addresses the dynamic allocation of computational resources,
task offloading ratios, and bandwidth distribution across BS.
This solution effectively adapts to varying network conditions
and user demands, ensuring efficient resource utilization while
maintaining low latency. Simulation results demonstrate that
the proposed framework significantly enhances performance
and cost efficiency, validating its potential for real-world
MEC-aided SAGIN applications.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1: MEC-aided space-air-ground integrated network.

In this paper, we consider the system architecture for a
task offloading strategy aimed at accommodating the resource
allocation requirements of end-users through SAGIN, as il-
lustrated in Fig. 1. This model includes a set of 𝑀 users
denoted by M = {1, . . . , 𝑚, . . . , 𝑀}, which are registered
with a base station (BS). To overcome the limitations posed
by non-line-of-sight (NLoS) communication, these users uti-
lize an unmanned aerial vehicle (UAV) equipped with a
passive reflective intelligent surface (RIS) with 𝑁 passive
reflecting elements for facilitating make a LoS signal re-
flection towards the BS. The process of signal reflection
is mathematically expressed through the diagonal matrix 𝝓,
where 𝝓 = 𝑑𝑖𝑎𝑔(𝑒 𝑗 𝜙1 , 𝑒 𝑗 𝜙2 , . . . , 𝑒 𝑗 𝜙𝑁 ) represents the phase
shifts induced by each reflecting element. The BS, equipped
with 𝐾 antennas, incorporates a MEC node to enhance edge
computing services for users. Despite these provisions, the
BS faces significant challenges in managing the overflow in
task requests during peak times, primarily due to the rigorous
latency demands of users. To mitigate these challenges, the BS
hires L = {1, . . . , 𝑙, . . . , 𝐿} LEO satellites which are in the
same circular orbit. Each satellite consists of single antenna
and capable of delivering MEC services and guaranteeing the
delivery of seamless and dependable services. Moreover, we
assume that whenever offloading occurs, a LEO satellite is

always in the coverage area and the total coverage time is
sufficient to handle and execute the offloaded tasks.

A. Channel Modeling

1) User to BS via UAV-Carried RIS: In this study, we
quantify the channel vector of the link between the 𝑚-th user
and the UCR as h𝑚,𝑢𝑐𝑟 (𝑡) ∈ C𝑁×1 and the channel matrix
between the UCR and the BS as H𝑢𝑐𝑟,0 (𝑡) ∈ C𝐾×𝑁 . We
utilize the Rician fading model along with large-scale path
loss for channel behavior analysis. Given the dynamic nature
of UCR, the effects of the NLoS components are negligible.
Consequently, this allows for a simplified expression of the
channel gain vectors. Therefore, at time 𝑡, h𝑚,𝑢𝑐𝑟 (𝑡) and
H𝑢𝑐𝑟,0 (𝑡) can be expressed as in [8].

h𝑚,𝑢𝑐𝑟 (𝑡) =
√
𝜖0𝑑
−𝛿 (1)
𝑚,𝑢𝑐𝑟 (𝑡)

(
ΨLoS

1 hLoS
𝑚,𝑢𝑐𝑟 (𝑡)

)
, (1)

H𝑢𝑐𝑟,0 (𝑡) =
√
𝜖0𝑑
−𝛿 (1)
𝑢𝑐𝑟,0 (𝑡)

(
ΨLoS

1 HLoS
𝑢𝑐𝑟,0 (𝑡)

)
, (2)

where 𝜖0 represents the path loss at the reference distance. The
terms 𝑑𝑚,𝑢𝑐𝑟 (𝑡) and 𝑑𝑢𝑐𝑟,0 (𝑡) denote the distance between the
𝑚𝑡ℎ user and the UCR, and the distance between the UCR
and the BS, respectively. The path loss exponent is given
by 𝛿 (1) , and ΨLoS

1 =

√︃
𝛽1
𝛽1+1 , where 𝛽1 is the Rician fading

factor. At time 𝑡, hLoS
𝑚,𝑢 (𝑡) ∈ C𝑁×1 is calculated as hLoS

𝑚,𝑢𝑐𝑟 (𝑡) =[
1, 𝑒− 𝑗 2𝜋

𝜆
𝑑𝑢 cos(𝜙AoA (𝑡 ) ) , . . . , 𝑒− 𝑗

2𝜋
𝜆
(𝑁−1)𝑑𝑢 cos(𝜙AoA (𝑡 ) )

]𝑇
,

where 𝜆 is the wavelength of the transmission
signal, 𝑑𝑢 is the uniform spacing between the
RIS elements, and 𝜙AoA (𝑡) is the angle of arrival
(AoA). Furthermore, HLoS

𝑢,bs (𝑡) ∈ C𝐾×𝑁 is given by
HLoS
𝑢,bs (𝑡) = abs (𝜙AoD (𝑡))a𝐻u (𝜙AoD (𝑡)). The steering vector for

the BS, abs (𝜙AoD (𝑡)) ∈ C𝐾×1, is calculated as: abs (𝜙AoD (𝑡)) =[
1, 𝑒− 𝑗 2𝜋

𝜆
𝑑bs cos(𝜙AoD (𝑡 ) ) , . . . , 𝑒− 𝑗

2𝜋
𝜆
(𝐾−1)𝑑bs cos(𝜙AoD (𝑡 ) )

]𝑇
, where

𝑑bs is the spacing between the BS antennas and 𝜙AoD (𝑡) is
the angle of departure (AoD). Similarly, the steering vector
for the UCR, au (𝜙AoD (𝑡)) ∈ C𝑁×1, represents the phase shifts
introduced by the 𝑁 elements of the RIS as the signal is
reflected towards the BS. It is calculated as: au (𝜙AoD (𝑡)) =[
1, 𝑒− 𝑗 2𝜋

𝜆
𝑑u cos(𝜙AoD (𝑡 ) ) , . . . , 𝑒− 𝑗

2𝜋
𝜆
(𝑁−1)𝑑u cos(𝜙AoD (𝑡 ) )

]𝑇
[11].

2) BS to LEO Satellite: The link between the BS and a
LEO satellite is modeled as a ground-to-air channel, where we
consider free space path loss as the path loss model. Therefore,
the channel vector h𝑘,𝑙 (𝑡) ∈ C1×𝐾 between the 𝑘-th antenna
and the 𝑙-th LEO satellite can be formulated as follows [10]:

h𝑘,𝑙 (𝑡 ) =
(
4𝜋 𝑓𝑐𝑑0,𝑙 (𝑡 )

𝑐

) −𝛿 (2)
2 (

ΨLoS
2 hLoS

𝑘,𝑙
(𝑡 ) + ΨNLoS

2 hNLoS
𝑘,𝑙
(𝑡 )

)
. (3)

In (3), the carrier frequency of the transmission signal is
denoted by 𝑓𝑐, and 𝑐 denotes the speed of light. The path
loss exponent is given by 𝛿 (2) . The terms ΨLoS

2 and ΨNLoS
2

are defined as
√︃

𝛽2
𝛽2+1 and

√︃
1

𝛽2+1 , respectively, where 𝛽2 is the

Rician factor for this link. The vectors hLoS
𝑘,𝑙
(𝑡) and hNLoS

𝑘,𝑙
(𝑡)

represent the LoS and NLoS components, respectively [11].



The distance 𝑑0,𝑙 (𝑡) between the BS and the 𝑙-th satellite varies
relative to the BS and can be calculated as [6]

𝑑0,𝑙 (𝑡) =
√︁
𝑅2 + (𝑅 + 𝑟)2 − 2𝑅(𝑅 + 𝑟) cos(𝜇(𝑡)), (4)

where 𝑅 represents the Earth’s radius and 𝑟 (𝑡) denotes the
height from the base station (BS) to the LEO satellite, 𝜇(𝑡)
is the geocentric angle, which can be formulated as 𝜇(𝑡) =
cos−1

(
𝑅

𝑅+𝑟 (𝑡 ) cos𝛼
)
− 𝛼 [6]. Here, 𝛼 is the elevation angle

between the BS and the 𝑙-th LEO satellite.

B. Communication Model
Users are enabled to offload their computationally heavy

tasks to the base station through UCR. At the BS, the instan-
taneous signal-to-interference-plus-noise ratio (SINR) for 𝑚-th
user can be expressed as [8]

Γbs
𝑚 (𝑡) =

𝑝𝑢𝑚

��H𝑢𝑐𝑟,0 (𝑡)𝝓(𝑡)h𝑚,𝑢𝑐𝑟 (𝑡)
��2∑𝑀

𝑗=1, 𝑗≠𝑚 𝑝
𝑢
𝑗

��H𝑢𝑐𝑟,0 (𝑡)𝝓(𝑡)h 𝑗 ,𝑢𝑐𝑟 (𝑡)
��2 + 𝑧2 (𝑡) , (5)

where 𝑝u
𝑚 represents the total transmit power, and 𝑧(𝑡) is

the instantaneous noise power characterized by the Gaussian
complex normal distribution ∼ CN

(
0, 𝜎2) . Therefore, the

achievable data rate of the 𝑚-th user can be calculated as [8]

𝑅bs
𝑚 (𝑡) = 𝑏(𝑡)𝐵𝑤1 log2

(
1 + Γbs

𝑚 (𝑡)
)
, (6)

where 𝑏𝑚 (𝑡) ∈ [0, 1] is the allocated bandwidth coefficient of
the 𝑚-th user, and 𝐵𝑤1 is the total bandwidth. We assume that
for offloading tasks to a LEO satellite, all 𝐾 antennas jointly
transmit the task. This approach is necessary due to the long
distance to the LEO satellite, which requires more power to
transmit the tasks. Therefore, the signal-to-noise ratio (SNR)
at the 𝑙-th LEO satellite for an offloaded task of the 𝑚-th user
can be formulated as [12]

Γl (𝑡) =
𝑝0 |

∑𝐾
𝑘=1 h𝑘,𝑙 (𝑡) |2

𝐵𝑤1𝑁0
, (7)

where 𝑝0 is the total transmit power of the BS, and 𝑁0 is the
single-sided noise spectral density. Therefore, the data rate at
the 𝑙-th LEO satellite for an offloaded task of the 𝑚-th user
can be expressed as [12]

𝑅l
𝑚 (𝑡) = 𝐵𝑤1 log2

(
1 + Γl (𝑡)

)
, (8)

C. Task Offloading Model
We propose the following task offloading model to handle

task overflow at the BS during peak times. Let the task from
the 𝑚-th user be denoted as a 3-tuple 𝑥𝑚 = {𝑔𝑚, 𝑝𝑚, 𝑇max

𝑚 },
where 𝑔𝑚 is the size of the task in bits, 𝑝𝑚 represents the
computational requirement, and 𝑇max

𝑚 is the maximum thresh-
old latency. The transmission delay 𝑇bs

𝑚,𝑡 𝑥 and transmission
energy 𝐸𝑏𝑠𝑚,𝑡 𝑥 of the 𝑚-th user can be formulated as [8]

𝑇bs
𝑚,𝑡 𝑥 =

𝑔𝑚

𝑅bs
𝑚 (𝑡)

, 𝐸bs
𝑚,𝑡 𝑥 (𝑡) = 𝑝𝑢𝑚𝑇bs

𝑚,𝑡 𝑥 , (9)

Therefore, the total transmission utility cost 𝑈𝑏𝑠𝑚,𝑡 𝑥 of the 𝑚-th
user can be expressed as [16]

𝑈bs
𝑚,𝑡 𝑥 (𝑡) = 𝜓(𝑡)𝑇bs

𝑚,𝑡 𝑥 + (1 − 𝜓(𝑡))𝐸bs
𝑚,𝑡 𝑥 (𝑡), (10)

where 𝜓(𝑡) ∈ [0, 1] is the weighting factor between delay and
energy. When a task arrives at the BS, the processing time
𝑇bs
𝑚,𝑝𝑟 at the BS can be denoted as [12]

𝑇bs
𝑚,𝑝𝑟 =

𝑝𝑚

𝜂
(1)
𝑚 (𝑡)𝐹bs

, (11)

where 𝜂 (1)𝑚 (𝑡) ∈ [0, 1] is the allocated computational power
coefficient at the BS for the 𝑚-th user’s task, and 𝐹bs is the
total computational power at the BS. Moreover, the energy
consumption 𝐸bs

𝑚,𝑝𝑟 at the BS for the 𝑚-th user’s task can be
formulated as [12]

𝐸bs
𝑚,𝑝𝑟 (𝑡) = 𝑘bs𝑝𝑚 (𝜂 (1)𝑚 (𝑡)𝐹bs)2, (12)

where 𝑘bs is the energy coefficient of the BS processor,
which depends on the capacitance of the integrated chip.
Consequently, the total utility cost 𝑈bs

𝑚,𝑝𝑟 for processing the
𝑚-th user’s task at the BS is expressed as

𝑈bs
𝑚,𝑝𝑟 (𝑡) = 𝜓(𝑡)𝑇bs

𝑚,𝑝𝑟 + (1 − 𝜓(𝑡))𝐸bs
𝑚,𝑝𝑟 (𝑡). (13)

When offloading the entire tasks to the 𝑙-th LEO satellite
without processing at the BS, the total transmission time 𝑇 𝑡𝑒𝑥𝑡𝑙𝑚,𝑡 𝑥

and energy consumption 𝐸 l
𝑚,𝑡 𝑥 of the 𝑚-th user’s task can be

denoted as

𝑇 l
𝑚,𝑡 𝑥 =

𝑔𝑚

𝑅𝑙𝑚 (𝑡)
, 𝐸 l

𝑚,𝑡 𝑥 (𝑡) = 𝑝0𝑇
l
𝑚,𝑡 𝑥 . (14)

Therefore, total utility cost𝑈l
𝑚,𝑡 𝑥 for offloading the 𝑚-th user’s

task can be expressed as

𝑈l
𝑚,𝑡 𝑥 (𝑡) = 𝜓(𝑡)𝑇 l

𝑚,𝑡 𝑥 + (1 − 𝜓(𝑡))𝐸 l
𝑚,𝑡 𝑥 (𝑡). (15)

When the task from the 𝑚-th user arrives at the 𝑙-th LEO
satellite for processing, the total processing time 𝑇 𝑙𝑚,𝑝𝑟 at the
𝑙-th LEO satellite can be expressed as

𝑇 l
𝑚,𝑝𝑟 =

𝑝𝑚

𝜂
(2)
𝑚 (𝑡)𝐹 l

, (16)

where 𝜂 (2)𝑚 (𝑡) ∈ [0, 1] is the allocated computational power
coefficient at 𝑙-th LEO satellite for the 𝑚-th user’s task. 𝐹 l

is the total computation power of the 𝑙-th LEO satellite. We
consider that all the 𝐿 satellites have the same computational
powers. Moreover, the energy consumption for the execution
of the 𝑚-th user’s task at the 𝑙-th satellite can be expressed as

𝐸 l
𝑚,𝑝𝑟 (𝑡) = 𝑘 l𝑝𝑚 (𝜂 (2)𝑚 (𝑡)𝐹 l)2, (17)

where 𝑘 l is the energy coefficient at the 𝑙-th LEO satellite
processor, which depends on the capacitance of the integrated
chip. We consider 𝑘 l to be the same for the processors at
each LEO satellite. Consequently, the total utility cost for
processing the 𝑚-th user’s task at the 𝑙-th satellite can be
expressed as

𝑈l
𝑚,𝑝𝑟 (𝑡) = 𝜓(𝑡)𝑇 l

𝑚,𝑝𝑟 + (1 − 𝜓(𝑡))𝐸 l
𝑚,𝑝𝑟 (𝑡). (18)



The offloading decision from the BS depends on the total
utility cost for each user’s task. Therefore, the total utility
cost for the 𝑚-th user’s task can be calculated as

𝑈tot
𝑚 (𝑡) = 𝜓(𝑡)𝑇bs

𝑚,𝑡 𝑥 + (1 − 𝜓(𝑡))𝐸bs
𝑚,𝑡 𝑥 (𝑡)

+ 𝜒(𝑡)
(
𝜓(𝑡)𝑇𝑏𝑠𝑚,𝑝𝑟 + (1 − 𝜓(𝑡))𝐸bs

𝑚,𝑝𝑟 (𝑡)
)

+ (1 − 𝜒(𝑡))
(
𝜓(𝑡)𝑇 l

𝑚,𝑡 𝑥 + (1 − 𝜓(𝑡))𝐸 l
𝑚,𝑡 𝑥 (𝑡)

+𝜓(𝑡)𝑇 l
𝑚,𝑝𝑟 + (1 − 𝜓(𝑡))𝐸 l

𝑚,𝑝𝑟 (𝑡)
)
.

(19)

where 𝜒(𝑡) ∈ [0, 1] is the task offloading fraction determined
by the BS based on the utility cost 𝑈𝑡𝑜𝑡𝑚 of each user’s task.
Moreover, the total delay for the 𝑚-th user’s task can be
expressed as

𝑇 tot
𝑚 = 𝑇bs

𝑚,𝑡 𝑥 + 𝜒(𝑡)𝑇bs
𝑚,𝑝𝑟 + (1 − 𝜒(𝑡))

(
𝑇 l
𝑚,𝑡 𝑥 + 𝑇 l

𝑚,𝑝𝑟

)
. (20)

D. Problem Formulation

In this paper, we aim to minimize the total utility cost for
all M users during task offloading, which is expressed as

Ω(b, 𝝌, 𝜼) =
𝑀∑︁
𝑚=1

𝑈bs
𝑚,𝑡 𝑥 (𝑡) + 𝜒𝑚 (𝑡)

(
𝑈bs
𝑚,𝑝𝑟 (𝑡)

)
+ (1 − 𝜒𝑚 (𝑡))

(
𝑈l
𝑚,𝑡 𝑥 (𝑡) +𝑈l

𝑚,𝑝𝑟 (𝑡)
)
,

(21)

where b ≜ {𝑏𝑚 (𝑡)}∀𝑚, 𝝌 ≜ {𝜒𝑚 (𝑡)}∀𝑚, 𝜼 ≜
{𝜂 (1)𝑚 (𝑡), 𝜂 (2) (𝑡)}∀𝑚 are the optimization variables.

Then, the optimization problem is formulated as follows.

(P1): min
b,𝝌,𝜼

Ω(b, 𝝌, 𝜼), (22a)

s.t. 0 ≤ 𝑏(𝑡) ≤ 1,∀𝑚, (22b)
0 ≤ 𝜒(𝑡) ≤ 1,∀𝑚, (22c)

0 ≤ 𝜂 (1) (𝑡) ≤ 1,∀𝑚, (22d)
0 ≤ 𝜓(𝑡) ≤ 1,∀𝑚, (22e)

0 ≤ 𝜂 (2) (𝑡) ≤ 1, (22f)
𝑇 tot
𝑚 ≤ 𝑇max

𝑚 ,∀𝑚, (22g)

𝐹bs ≥ 𝜂 (1) (𝑡)𝐹bs, 𝐹𝑙 ≥ 𝜂 (2) (𝑡)𝐹 l, (22h)

As outlined in (22), constraint (22b) ensures that the band-
width allocation coefficient for each user 𝑏(𝑡) lies between 0
and 1 for all 𝑚 ∈ M. Constraint (22c) requires the offloading
fraction 𝜒(𝑡) to also be between 0 and 1 for all 𝑚 ∈ M.
Constraints (22d) and (22f) mandate that the computation
power allocation coefficients 𝜂 (1) (𝑡) at the BS and 𝜂 (2) (𝑡) at
the satellite, respectively, must be between 0 and 1 for all
𝑚 ∈ M. Moreover, constraint (22e) sets the weighting factor
𝜓(𝑡) between delay and energy to be between 0 and 1 for
all 𝑚 ∈ M. Furthermore, constraint (22g) ensures that the
delay for each user’s task does not exceed the maximum tol-
erable delay. Constraint (22h) ensures that the computational
resources at the BS and the 𝑙-th LEO satellite meet the required
allocation: 𝐹bs ≥ 𝜂 (1) (𝑡)𝐹bs and 𝐹 l ≥ 𝜂 (2) (𝑡)𝐹 l.

III. DEEP REINFORCEMENT LEARNING BASED SOLUTION

The formulated problem in (22a) is computationally com-
plex and intractable with no feasible solution. As the network
devices scale, using the traditional optimization methods are
technically impossible. We propose a novel LSTM-enhanced
DDPG algorithm to enhance the resource allocation in dy-
namic environment.

A. MDP Formulation

To apply the LSTM-enhanced DDPG framework for solving
(22), we first need to formulate it as a Markov decision process
(MDP), characterized by a 3-tuple {S,A,R}. S indicates state
space, A is the action space and R is the reward function.

1) State Space: The state space 𝑠(𝑡) represents the
environment’s information. In this scenario, the state
𝑠(𝑡) includes individual utility costs, defined as 𝑠(𝑡) =

{𝑈tot
1 , . . . ,𝑈

𝑡𝑜𝑡
𝑚 , . . . 𝑈tot

𝑀
}, where each 𝑈tot

𝑚 captures the cumu-
lative utility cost of user 𝑚 over time.

2) Action Space: The action space 𝑎(𝑡) consists of key
decision variables that the agent controls to optimize system
performance. This action space is represented as 𝑎(𝑡) =

{𝑏(𝑡), 𝜒(𝑡), 𝜂 (1) (𝑡), 𝜂 (2) (𝑡)}.
3) Reward: The reward function can be formulated as the

inverse of the system’s total utility cost, as expressed in the
following equation:

𝑟 (𝑡) =
(
𝑀∑︁
𝑚=1

(
𝑈bs
𝑚,𝑡 𝑥 + 𝜒(𝑡)𝑈bs

𝑚,𝑝𝑟

+(1 − 𝜒(𝑡))
(
𝑈l
𝑚,𝑡 𝑥 +𝑈l

𝑚,𝑝𝑟

)))−1
. (23)

The utility cost for each user 𝑚 is adjusted by incorporating
a penalty 𝜖 if any of the constraints 𝐶1 through 𝐶8 are not
satisfied. This adjustment is represented by 𝑈tot

𝑚 = 𝑈tot
𝑚 +𝜖 . This

formulation ensures that a reduction in the total utility cost
of the system, while maintaining adherence to all constraints,
results in an increase in the reward 𝑟 (𝑡).

B. LSTM-enhanced DDPG Algorithm

To enhance the optimization capabilities within the for-
mulated MDP framework, we employ the DDPG algorithm,
a state-of-the-art model-free, actor-critic DRL technique. It
involves two primary networks: the actor network 𝜇(𝑠 |𝜃𝜇),
which generates actions given states, and the critic network
𝑄(𝑠, 𝑎 |𝜃𝑄), which evaluates these actions. The actor network
includes an LSTM layer that processes each state individu-
ally. The detailed algorithm of the proposed LSTM-enhanced
DDPG solution is in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Simulation Settings

This subsection presents the settings of parameters for
the implementation of the proposed solution and simulations.
Firstly, the replay buffer of the LSTM-enhanced DDPG al-
gorithm can store up to 100,000 experience transitions and
32 mini-batches at a time. The actor learning rate is set to



0.0001 and the critic learning rate to 0.001. The discount
factor 𝛾 is 0.99, and the soft update parameter 𝜏 is 0.001.
The temporal correlated noise adopts the ornstein uhlenbeck
process with mean reversion rate is 0.15 and volatility is 0.2.
We compare the total rewards over 1,000 testing episodes,
with each episode consisting of 100 time slots. Thus, the total
reward earned in an episode is the sum of the rewards earned
across all 100 time slots.

Algorithm 1 : Proposed LSTM-enhanced DDPG Algorithm
for solving (22).

1: Initialize the environment with its specified parameters.
2: Initialize the actor network 𝜇(𝑠 |𝜃𝜇) with an LSTM layer

and parameters 𝜃𝜇 and the critic network 𝑄(𝑠, 𝑎 |𝜃𝑄) with
parameters 𝜃𝑄.

3: Initialize the target networks 𝜇′ and 𝑄′ with 𝜃𝜇
′ ← 𝜃𝜇

and 𝜃𝑄
′ ← 𝜃𝑄.

4: Set up a replay buffer R .
5: for each episode do
6: for 𝑡 = 1, 2, . . . , 𝑇 do
7: Process the state 𝑠(𝑡) through the LSTM layer in the

actor network to generate the action 𝑎(𝑡);
8: Generate an action with added noise: 𝑎(𝑡) =

𝜇(𝑠(𝑡) |𝜃𝜇) + 𝑍 (𝑡);
9: Execute the action 𝑎(𝑡), then receive reward 𝑟 (𝑡) and

the next state 𝑠(𝑡 + 1);
10: Store {𝑠(𝑡), 𝑎(𝑡), 𝑟 (𝑡), 𝑠(𝑡 + 1)} in the replay buffer;
11: Randomly sample a batch 𝑆 from the replay buffer;
12: Compute target values using target networks and

store in 𝑦𝑖 using equation:
𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′ (𝑠𝑖+1, 𝜇′ (𝑠𝑖+1 |𝜃𝜇

′ ) |𝜃𝑄′ );
13: Update the critic network parameters 𝜃𝑄 by minimiz-

ing the loss 𝐿 using equation:
𝐿 = 1

𝑆

∑
𝑖

(
𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖 |𝜃𝑄)

)2;
14: Compute policy gradients and update the actor net-

work parameters 𝜃𝜇 using gradient ∇𝜃𝜇 𝐽 from equa-
tion:
∇𝜃𝜇 𝐽 = 1

𝑆

∑
𝑖

(
∇𝑎𝑄(𝑠𝑖 , 𝑎𝑖 |𝜃𝑄)

��
𝑎𝑖=𝜇 (𝑠𝑖 | 𝜃𝜇 )∇𝜃𝜇 𝜇(𝑠𝑖 |𝜃

𝜇)
)

15: Softly update the target networks using the soft
update rule with coefficient 𝜏 according to equations
𝜃𝜇
′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ and

𝜃𝑄
′ ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ ;

16: end for
17: end for

Moreover, for the other network parameters, the number of
users are 𝑀 = 10, the number of RIS elements are 𝑁 = 16,
and the number of antennas at the base station are 𝐾 = 8. The
Earth’s radius is 6371 km, and the distance to LEO satellites
is 𝑟 = 500 km. The distance from the 𝑚th user to the UAV
is 𝑑𝑚,𝑢𝑐𝑟 = 100 m, and the distance from the UAV to the
base station is 𝑑𝑢𝑐𝑟,0 = 100 m. The path loss exponent values
are 𝛿 (1) = 3.65 − 3.75 and 𝛿 (2) = 2. The base station MEC
computation power is 𝐹𝑏𝑠 = 4 GHz, while the satellite MEC
computation power is 𝐹𝑙 = 2 GHz. The transmission power
of each user is 𝑃𝑢𝑚 = 20 dBm, with a task size 𝑔𝑚 ∈ [5, 6]

Mbits, and task complexity 𝑝𝑚 ∈ [500, 600] Mcycles. The
transmit power of the base station is 𝑝0 = 40 dBm, and the
system bandwidth is 𝐵𝑤1 = 50 MHz. The noise power is −110
dBm/Hz, and the maximum delay for each task is 𝑇max

𝑘
=

[5, 6] s. The energy coefficients for the BS and satellites are
𝑘𝑏𝑠 = 1 × 10−27 and 𝑘 𝑙 = 1 × 10−27, respectively. The carrier
frequency is 𝑓𝑐 = 2 GHz, and the balancing factor is 𝜓 = 0.5
[16].

B. Numerical Results

Fig. 2: Convergence performance.

1) Performance of Convergence: The convergence of the
LSTM-enhanced DDPG and the standard DDPG algorithms
is depicted in Fig. 2. It is evident that the LSTM-enhanced
DDPG demonstrates significantly faster convergence com-
pared to the standard DDPG. Initially, both algorithms ex-
hibit low rewards, reflecting the exploration phase. How-
ever, the LSTM-enhanced DDPG quickly outperforms the
standard DDPG, reaching a stable and higher reward after
fewer episodes. The LSTM-enhanced DDPG maintains more
consistent rewards throughout the learning process, indicating
better overall performance and stability in learning optimal
policies over time.

2) Average utility cost for different system bandwidth: : The
relationship between system bandwidth and average utility cost
is depicted in Fig. 3. It is evident that as bandwidth increases,
the utility cost decreases for both DDPG and LSTM-enhanced
DDPG. However, the LSTM-enhanced DDPG consistently
achieves lower utility costs across all bandwidth levels, par-
ticularly under constrained bandwidth conditions.

3) Average utility cost for different task complexities: The
impact of task complexity on average utility cost is illustrated
in Fig. 4. As task complexity increases, the utility cost rises
for both algorithms. However, the LSTM-enhanced DDPG
consistently incurs lower utility costs compared to the standard
DDPG across all complexity levels. The difference in perfor-
mance becomes more pronounced with higher task complex-
ities, demonstrating the LSTM-enhanced DDPG’s ability to



Fig. 3: Average utility cost for different system bandwidth.

Fig. 4: Average utility cost for different task complexities.

handle more computationally intensive tasks while optimizing
resource allocation more effectively. This confirms that the
LSTM-enhanced approach is particularly robust in managing
complex scenarios, ensuring more efficient use of available
resources.

V. CONCLUSION

This paper introduced a novel architecture for the SAGIN,
leveraging MEC with UAV-carried RIS to optimize resource
management in dynamic 6G environments. The proposed
architecture minimizes total system utility costs through op-
timal allocation of bandwidth, computational power at BS
and satellites, and offloading decisions. We employed an
LSTM-enhanced DDPG algorithm to effectively manage the
distribution of computational tasks between terrestrial and
non-terrestrial components, ensuring efficient utilization of
resources while meeting stringent performance requirements.
Simulation results demonstrated that the LSTM-enhanced
DDPG significantly outperforms conventional method, lead-
ing to substantial improvements in system performance and
cost efficiency. These findings highlight the potential of the
proposed SAGIN architecture in advancing real-world appli-
cations of integrated networks.
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