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Abstract—With the rapid development of communication ap-
plications, the integration of reconfigurable intelligent surface
(RIS) and non-orthogonal multiple access (NOMA) techniques
has emerged as a promising approach to enhance connectivity
and data transmission rate in future wireless networks. To
successfully deploy RIS-NOMA aided 6G network, an accurate
channel estimation is a crucial task. Quantum machine learning
(QML) is a novel approach showing potential computational
advantages in various problems of 6G wireless communications.
However, its application, particularly in channel estimation,
remains largely theoretical rather than adopted in practice. We
propose a hybrid quantum-classical neural network model based
on convolutional neural network (CNN) and quantum long short-
term memory (QLSTM) for channel estimation in RIS-aided 6G
NOMA system. Our results show that the proposed CNN-QLSTM
model has a better channel prediction compared to its classical
counterpart with regard to root mean square error (RMSE) and
mean absolute error (MAE).

Index Terms—Channel estimation, CNN-QLSTM, QLSTM,
NOMA, RIS, 6G.

I. INTRODUCTION

The sixth-generation (6G) wireless communication net-
works are attracting global attention from researchers and
industries with an aim to overcoming the challenges faced
by the previous communication networks (e.g. 5G and xG).
It is expected that 6G will significantly enhance the network
performance in terms of reliability, coverage, latency, speed,
and sensing accuracy compared to 5G and beyond [1]. With
these potential capabilities, 6G can be utilized to realize a wide
range of mission-critical applications, e.g., augmented reality
(AR), extended reality (XR), virtual reality (VR), robotics and
autonomous systems, connected health, holographic or tactile
communications, among others.

To realize these heterogeneous applications, traditional or-
thogonal multiple access (OMA) approaches do not provide an
optimal strategy since they can not support the huge number
of users or devices owing to inflexible resource allocation [2].
As a result, non-orthogonal multiple access (NOMA) is widely
explored in various recent research studies as mobile users can
simultaneously share the radio resources, e.g., frequency in the
power or code domains [3]. There are considerable benefits
which have been achieved using NOMA, such as high spectral

and energy efficiencies, supporting massive connectivity and
maintaining fairness among users [4]. Since 6G will combine
different emerging technologies, there is still a need to ex-
amine the combination between NOMA and other emerging
technologies to fully realize the 6G vision and expectations.

Very recently, the use of reconfigurable intelligent surface
(RIS) has gained huge attention in the research community
as a promising technique to improve the network coverage
and connectivity. As such, RIS has been considered as one
of potential technologies, together with orthogonal time fre-
quency space (OTFS), for 6G [5]. By adaptive changing the
phase and the amplitude of RIS elements, we can achieve
the favourable propagation characteristics of wireless channels,
thus enhancing the efficiency and throughput of wireless net-
works [6]. As a result, the combination of NOMA and RIS can
naturally increase the network performance. In particular, the
channel disparity among users can be enlarged by thoroughly
optimizing the placement and reflection coefficients of the RIS
so that a higher NOMA gain can be achieved [3].

A wireless channel is a physical medium through which
wireless signals propagate between a transmitter and a receiver
[71, [8]. Accurate estimation of channel state information (CSI)
is crucial in a 6G system, especially in a RIS-NOMA system
where scattering, multi-path propagation, power decay, and
shadowing effects are highly unpredictable, to mitigate the
effects of channel fading, multi-path propagation, and manage
interference, hence improving signal quality and data transmis-
sion rates [9]. For NOMA systems, achieving a precise CSI is
necessary to execute successive interference cancellation (SIC)
at each receiver [10]. Moreover, in practice, normally RIS
contains a large number of elements, there will be a multitude
of channel parameters needed to be estimated, which makes
it even more challenging [11].

Quantum technology has given rise to a transformative
change in the realm of computing. Quantum computations
consist of circuits of parameterized quantum gates that can
be trained or optimized by classical optimization methods.
Therefore, the quantum machine learning (QML) framework
has gained growing attention in many fields, where classical
data embedded in quantum bits (qubits) can benefit from
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Fig. 1: An illustration of RIS-NOMA assisted 6G downlink
communication system.

quantum phenomena to reduce the network size and speed up
training time [12]. It is a new paradigm, which can provide
considerable computational benefits for many domains, espe-
cially in addressing problems of 6G wireless communication,
such as signal processing, resource allocation, network traffic
optimization, channel estimation, etc [13]. While QML algo-
rithms hold significant potential, their practical application in
channel estimation is yet to be explored and is not well-studied
in the existing work.

In this work, we propose a QML-based channel estimation
method using a convolutional quantum long-short term mem-
ory (CNN-QLSTM) model, which takes advantage of CNN
and QLSTM, for RIS-NOMA assisted 6G communication
system. One of the most significant advantages of the CNN
model is its ability to perform automatic feature extraction
or feature learning [14]. On the other hand, the vanishing
gradient issue in conventional RNN models is addressed by the
recurrent neural network (RNN) architecture known as LSTM
[15]. The LSTM has shown their ability to capture long-
term dependencies in the sequential or time series data [16].
Quantum LSTM (QLSTM), where LSTM is implemented
with variational quantum circuits (VQCs), is a framework that
has been shown to have faster learning ability and stable
convergence than classical counterpart [17]. In this work,
We have investigated the performance of the proposed CNN-
QLSTM model using root mean square error (RMSE) and
mean absolute error (MAE) in a RIS-NOMA aided 6G system.

II. PROBLEM FORMULATION

In this section, firstly we present a RIS-NOMA aided 6G
system model. Then we define the problem in estimating the
channel of this system and describe the data preparation for
the CNN-QLSTM model. Inspired by the work in [18], we are
considering a scenario of the downlink in RIS-aided NOMA
system as shown in Fig. 1, where we are considering K users
with M -antenna are receiving signal from a N-antenna BS and
a RIS with L reflecting elements. The direct link between the
BS to users Uy, BS — Uy with k € {1,2,..., K}, is assumed
to be strongly attenuated by obstacles. As a result, each Uy
only receives the signal from the BS with the assistance of

RIS through cascaded channel BS — RIS — Uj. At each
time step ¢, Uy, is assumed to gradually moving away from the
BS with the constant speed v. We assume that all path links
are following Rayleigh fading and the CSI of all cascaded
channels are available at the BS.

Given the BS transmit power P, and power allocation factor
assigned to Uy, denoted by (j,, where 25:1 (=1land ¢ <
(2 < ... < (i, the BS transmits to all users a superposed
signal z(t) = /P, >, (ki (t) and the received signal at Uy,
at time ¢ is

x(t)

yi(t) = /Li(tHE, (O (t)Hy (t)p 7 ).

In this equation, H;k(t)G(t)Hl(t) refers to the cas-
caded channel, BS — RIS — U, at time t and
can be denoted by Gg(t), where Hoy(t) € CEXM and
H;(t) € CL*¥ represent the channel matrices of the links
RIS — Uy and BS — RIS respectively. The ®(t) =
[k1e791 D) pped P2 kped?rM]T s the diagonal reflec-
tion coefficient matrix of RIS, where ¢, € [0,27] is the
phase shift and «; is the amplitude reflection coefficient.
Li(t) = LsL,x(t) is the path loss parameter at Uy, where
Lg and L,(t) is the path loss from BS to RIS and from
RIS to Uy, respectively. The path loss is a distance-dependent
parameter and is defined as L(d) = (d/dy)~" where d is
the path link distance, dy is reference distance, and the path
loss exponent of the environment is defined by 7 [19]. In
equation (1), ng(¢) is the zero mean complex additive white
Gaussian noise (AWGN) with variance Ny = 1 at Uy and
p = P;/Ny is the transmit signal-to-noise ratio (SNR) with
E[|nx(t)]?] = No. After receiving the signal, each user will
apply SIC in accordance with the NOMA principle, which
allows each user within the system to receive signals of other
users. Each user subsequently decodes unwanted signals to
attain its desired signal. User with index k directly decodes
its signal x, and the corresponding signal-to-interference-plus-
noise ratio (SINR) is defined as
[ |* Py (i)

k= ——= , 2)
S Ri2P(G)? + No

where hy, = VLG, with k = 1,2, ..., K [20].

A. Problem Formulation and Data Preparation

In this RIS-NOMA network, we are considering that the
channel from BS — RIS remains unchanged, whereas the
channels from RIS — U, are slow time-varying channels due
to users moving at a constant speed. Prior knowledge of the
cascaded channel gains from BS — RIS — Uy is essential
for SIC implementation at the receiver side. In this work, we
are using received signals at Uy, to estimate the cascaded chan-
nel for each user. Employing the dataset generation algorithm
in [18], we generate our own dataset for the proposed QML
model. In the dataset, we have produced S samples where each
sample is equivalent to a time step ¢ in the RIS-NOMA system.
The received signal at Uy, denoted by Y € CS*KXMN apqd
the cascaded channel from BS — RIS — U denoted by
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Fig. 2: The structure of CNN-QLSTM model.

G ¢ C9XEXMN are generated and served as the input and
output respectively for the proposed QML model. The received
signal at Uy represented by yx(t) is a complex number. We
take its two components: magnitude and phase and merge them
into a single dimension. As a result, yi(t) € R?*M*N and
Y € RS*EX2MN The entire dataset of S samples for Y (¢)
and G(t) is converted into a time-series sequence with the
input time steps ¢; for the proposed CNN-QLSTM model to
produce a single-step output. After this conversion, the length
of the dataset is altered and is denoted by S’.

III. PROPOSED QML MODEL

In this section, a structure of CNN-QLSTM for channel
estimation in the RIS-NOMA system is proposed. CNN has
been used to capture spatial correlations of the input data.
After that, the CNN-derived features are inputted into the
QLSTM, which captures the sequential dependencies of the
data to predict the output (estimate the cascaded channels).
The structure of the proposed QML model is illustrated in
Fig. 2.

A. CNN Module

CNN is a kind of deep learning model that is commonly
used for visual data tasks such as image recognition and
classification [21]. Similar to an image, our matrix of the
received signal at users including the time steps, the number
of users, and the received signals can be regarded as a three-
dimensional (3D) image. The CNN module consists of two
2D convolutional (Conv2D) layers, a max pooling (MP) layer
and a flatten (FL) layer. The Conv2D layer functions as a
feature map, capturing the input data features with filters. The
number of filters is denoted by N;. Following the second
Conv2D, a MP layer with a dimension of (pxp) is employed to
reduce the dimensionality of the features extracted from CNN.
Subsequently, all features are converted to a vector using a FL
layer. Prior to inputting them into QLSTM, a reshape (RS)
function is applied to match the output size of CNN with the
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Fig. 3: A QLSTM cell.

input size of QLSTM, which contains the output time steps
to.

B. QLSTM Module

LSTM is a kind of RNN that has the ability to handle
sequences and time-series data. It has been developed to
overcome the vanishing gradient problem of RNNs. Inspired
by the work in [17], the construction of a QLSTM follows a
classical framework but classical neural networks in the LSTM
cells are replaced with VQCs, as shown in Fig. 3. The number
of the hidden units or QLSTM cells in a layer is denoted by
Npidden- Similar to LSTM, QLSTM consists of 3 main gates.
Firstly, the forget gate determines how much information in the
previous cell state should be retained or forgotten. Secondly,
the input gate decides what new information will be added to
the cell state. Thirdly, the output gate decides what information
from the cell state should be outputted as the hidden state. In
Fig. 3, x; is the input, h, is the hidden state and ¢; is the cell
state at time ¢. h;—; and c;—; are the hidden state and the
cell state at the previous time step t — 1. ® and & represent
element-wise multiplication and addition, respectively.

The structure of VQC used in this paper is shown in Fig. 4,
which consists of 3 layers: a) data embedding, b) variational
and c) measurement. To embed the classical data into quantum
states, we first transform the initial states |0) ® ... ® |0) into
unbiased states using Hadamard gates. For each element z;
in input vector 7 = (x1,s,...,xy), firstly we generate
angles ;1 = arctan(z;) and v; 2 = arctan(z?). Rotation
operators I, and R, are then respectively applied on ;
and v; 2. The purpose of taking z? is to create higher-order
terms before inputting the data into the variational layer. In the
variational layer, controlled NOT (CNOT) gates are applied to
create multi-qubit entanglement and single-qubit rotation gates
R(«;, Bi,y:) are applied to rotate angles «;, 5; and ~; along
axes x,y and z respectively. We use Pauli-Z gates to measure
the states of qubits. The output of the last QLSTM layer is
inputted into a Linear layer to map its hidden units to an output
of Ny, features.
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Fig. 4: VQC structure in the QLSTM cell.

IV. SIMULATIONS, RESULTS AND DISCUSSIONS

This section describes the simulation settings and discusses
the simulation results of channel estimation in RIS-NOMA
system using the proposed CNN-QLSTM model.

A. Simulation Settings

For the simulation setup, we are considering a single-
antenna BS, a RIS with 20 reflecting elements and 2 single-
antenna users. The reference distance dg is set to 20 m. The
distance from BS to RIS is 150 m. The distance from RIS to
U; and Uy are respectively 30 m and 40 m. The transmit signal
x(t) and H; (¢) follow the distribution CN" ~ (1,0.1). Ha (¢)
and Hos (¢) follow CN ~ (4,1) and CA ~ (3, 1), respectively.
The dataset is first normalized in the range between 0 and 1
and then divided into 0.8 : 0.2 for training and testing data,
respectively. In CNN module, two Conv2D layers have the
same hyperparameters: Ny = 4, kernel size is (3,3), and
padding is 1. The MP layer has p = 2. In the QLSTM module,
two QLSTM layers have Np;qdenn = 16. The output of the
Linear layer is Ny, = 2, which corresponds to the cascaded
channel gains of 2 users. The parameters of the proposed
model are updated via an Adaptive Gradient Optimizer with a
learning rate of 0.05 to minimize the mean square error (MSE)
loss function. The configuration of the simulation parameters
is provided in Tab. L.

TABLE I: Simulation Parameters.

Parameters | Values
S’ 2000
v 0.1 m
t; 20
to 1
L 20
P 20 dB
K] 1
) [0.017 : 0.027]
7 (BS to RIS) | 2.2
T (RIS to Ug) | 2.2
n 0.3

B. Results and Discussions

We have compared the performance of the proposed CNN-
QLSTM model with the equivalent classical version i.e. CNN-
LSTM using RMSE and MAE metrics. During the training,

both models are trained over 100 epochs using the training
dataset and loss curves are shown in Fig. 5. It is observed that
the proposed model has a faster convergence and obtained low
MSE.
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Fig. 5: Loss curve.

We evaluate the performance of our proposed model and
equivalent classical version using the test dataset. The CNN-
QLSTM model is able to produce better prediction by achiev-
ing the least error in terms of RMSE and MAE with the
values of 0.006 and 0.005, respectively, for user 1. A similar
trend can be observed for user 2. Tab. II shows that the
prediction performance of CNN-QLSTM is better than its
classical counterpart in terms of RMSE and MAE.

TABLE II: Performance comparison of models.

Model RMSE MAE
User 1 | User2 | User 1 | User 2
CNN-LSTM 0.008 0.011 0.007 0.009
CNN-QLSTM | 0.006 | 0.005 | 0.005 | 0.004

Fig. 6 and Fig. 7 present the prediction performance of
the CNN-QLSTM model on both the training and testing
datasets. Here, the dotted line provides a visual indication of
data split between training and testing datasets. Fig. 8 shows
the prediction performance on the test data for user 2. It is
shown that the proposed model keeps track of the target data
and variations.
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—— Target
Predicted

=3
o

Cascaded Channel at User 2

=)
i
=
=
-

Fig. 7: Prediction [T):::mance on user 2.
M — =
Ju M I
g}m v il d\ H“\J \w nH |~ ~
bl
‘ q ‘“w W w. WW‘W \'nyi

1600 1650 1700 1750 1800

Time Steps

1850 1900 1950 2000

Fig. 8: Prediction performance on user 2 using test data.

V. CONCLUSION

We propose a CNN-QLSTM model for channel prediction
in RIS RIS-aided 6G NOMA system. Our results demon-
strate that the proposed model has better ability to reduce
the error and obtain faster convergence during the training
phase. Moreover, the CNN-QLSTM model has a better pre-
diction on the testing data compared to CNN-LSTM based
on RMSE and MAE. Our paper demonstrates the potential
use of quantum machine learning in channel estimation tasks.
However, requires further investigation to optimize the model’s
performance. In future, different structures of variational quan-
tum circuits will be explored to exploit the advantages of
the quantum machine learning in the learning capability and
computational speed.
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