
Artificial Neural Networks for Quantum Sensing:
Metrologically Resourceful State Detection

1st Uman Khalid
Department of Electronics and

Information Convergence Engineering
Kyung Hee University

Yongin, Korea
umankhalid@khu.ac.kr

2nd Trung Q. Duong
Department of Electrical and

Computer Engineering
Memorial University of Newfoundland

St. John’s, NL A1B 3X5, Canada
tduong@mun.ca

3rd Hyundong Shin
Department of Electronics and

Information Convergence Engineering
Kyung Hee University

Yongin, Korea
hshin@khu.ac.kr

Abstract—The detection of fundamental quantum resources—
namely coherence, discord, and entanglement—benchmarks
the metrological power of quantum sensing networks. Tra-
ditional methods for certifying these resources, like exhaus-
tive optimization-based tomographic procedures, are resource-
intensive and vary significantly. This paper proposes a framework
for identifying metrologically useful quantum sensing probes
by detecting fundamental quantum resources. Herein, we intro-
duce a witness-based certification method that is experimentally
accessible and efficient, though it has limitations in reliability
and universality. To address these, we employ artificial neural
networks (ANNs) to classify quantum states into resourceful
and resourceless states, enhancing the scope and reliability of
proposed framework. The performance of ANN-based quantum
state classification is also analyzed, positioning ANNs as effective
tools for data-driven detection of metrologically resourceful states
in quantum sensing tasks.

Index Terms—Quantum sensing networks, quantum metrology,
artificial neural networks, quantum state classification.

I. INTRODUCTION

Quantum sensing and metrology utilize the distinct prop-
erties of quantum systems for highly precise measurements,
exceeding classical limits [1]. By exploiting quantum re-
sources, these tasks aim for achieving the Heisenberg limit
through steps such as probe state preparation, sensing, readout,
and estimation [2]. This process benefits from the inherent
sensitivity of quantum systems to environmental changes,
marking a significant advancement in measurement accuracy
and efficiency.

Quantum resources such as coherence, discord, and entan-
glement are fundamental for enhancing the capabilities of
quantum metrology tasks performed over quantum sensing
networks [3]–[5]. These resources enable quantum probes to
perform measurements with greater accuracy and precision
than classical systems, finding applications in localization,
tracking, and monitoring [6]. Moreover, the quantum resources
provide distinct advantages, so seeking quantum states with
profound application-specific usefulness in quantum sensing
networks is critical. For instance, in quantum metrology
tasks, discord captures minimum phase estimation accuracy,
coherence impacts the unitary evolution speed limit for phase
encoding, and entanglement permits exceeding classical limits
of phase uncertainty [7]–[9]. This emphasizes how crucial it

is to discern between resourceful and resourceless quantum
states in order to take advantage of benefits peculiar to certain
applications in quantum sensing.

Identifying and classifying quantum states that exhibit quan-
tum advantage in sensing and metrology is vital [10], [11]. The
identification metrics detecting resourceful quantum states are
not only key indicators of metrological resourcefulness but
also quality metrics to benchmark the performance of quantum
sensing networks [12]. Traditional detection techniques like
quantum tomography face limitations due to the exponential
increase in required measurements as system size grows, while
the alternate methods like quantum witness lack in relia-
bility and universality [13]–[15]. Additionally, environmental
decoherence negatively impacts quantum resources, leading
to the preparation of noisy probe states. This necessitates
the exploration of new approaches, such as ANNs, for effi-
cient and accurate classification of prepared quantum sensing
probes, thereby facilitating the identification of metrologically
resourceful probe states for advanced quantum sensing appli-
cations [16].

In this paper, we address the metrologically resourceful state
detection problem by employing ANNs. First, we formulate
quantum witnesses mechanism to certify resourceful quantum
states. Then, we transform the certification task to classifi-
cation task by virtue of ANNs. The performance analysis
demonstrates that the proposed method significantly enhances
the detection of metrologically resourceful states, improving
both reliability and generality.

II. METROLOGICALLY RESOURCEFUL STATE DETECTION

In this section, we formulate metrologically resourceful state
detection mechanism by utilizing quantum resource witnesses
for coherence, discord, and entanglement. To enhance the
reliability, robustness, and generality, we transform quantum
resource witness task into quantum state classification by
virtue of ANNs (as depicted in Fig. 1).

A. Metrologically Resourceful State Witnesses

Given a test quantum state, d × d density operator, the
associated generalized Gell-Mann operators (GGO) basis rep-
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[17]. The test state

undergoes quantum operation described as a trace preserving
map Φm and then subject to a quantum witness operator Wm.
Quantum witness is a functional that distinguishes any specific
quantum state from others. However, the optimal witness
operators require exhaustive optimization for fine tuning of
involved parameters [18]–[20]. Herein, without the loss of
generality, employed witness operators are d × d Hermitian
observable expressed in weighted standard GGO basis as
Wm = woI +wwwm · σσσ, where wm

i ∈ [−1, 1] [21], [22]. Thus,
ushering random rotations of basis observables with regards to
global measurements [23], [24]. The global measurement map
projects the mapped test state to yield an expectation value
which is a weighted sum of

bmi =

√
d

2(d− 1)
tr (Φm(ρ)σi) , (2)

where tr (·) is the trace function and m ∈ {C,D,E} indexes
for relevant quantum resource, i.e., coherence, discord, and
entanglement, respectively, under witness consideration. In
most situations, only d values of bmi are sufficient, instead of
d2 − 1, to reliably detect the presence of quantum resources
in unknown quantum states [25]. In other words, these funda-
mental resources are evaluated as a function of the expectation
values bmi of a set of observables {σi} for a mapped test
state. These mathematical functions produce real values that
depend on the presence of relevant quantum resource in the
test state, enabling the construction of corresponding quantum
resource witness inequality. The detection rules set for these
inequalities certify inherent quantum resource. The detection
mechanisms for coherence, discord, and entanglement are
detailed as follows.

a) Coherence Witness: For a test state, coherence wit-
ness operators are traceless Hermitian operators given by
WC = wwwC · σσσ, where wwwC = ({wj,k

sym}, {wj,k
asym}, {0}) [26].

The vectors wwwC, (j,k) = (wj,k
sym, w

j,k
asym) satisfy normalization

condition ∥wwwC, (j,k)∥ = 1. Herein, ΦC denotes an incoherent
unitary completely positive trace preserving map. In terms of
operator-sum representation, the transformation is described
as ΦC(ρ) =

∑
i KiρK

†
i , provided

∑
i K

†
iKi = I . For an

incoherent test state, there exists an additional requirement as
KiρK

†
i /tr(KiρK

†
i ) ∈ I, whereas the set I consists of all

incoherent states. The quantum coherence witness inequality
based coherence detection criteria is presented as

CW = tr(ΦC(ρ)WC) ̸= 0, (3)
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Fig. 1. A Venn diagram illustration for the proposed formalism of metrologi-
cally resourceful state detection (MRSD): A test state ρ undergoes a trace pre-
serving map Φm and witness measurement Wm to obtain linear combination
of expectation values bmi to instantiate corresponding metrological resource
witness inequality (MRWI). The detection rules set for such inequalities
imply whether test state is coherent/discordant/entangled or not. On one hand,
expectation values in MW ∈ {CW , DW , EW } are processed to quantify
corresponding quantum resource. On the other hand, these values are fed
into ANNs to build coherent-incoherent/discordant-non discordant/entangled-
separable state classifiers.

for a coherent state where the equality is attained only for an
incoherent state. Any nonzero value in bbbC manifests coherence.
Therefore, atleast one measurement is necessary to detect
coherence while detection accuracy can be further enhanced by
incorporating all d2−d expectation values. So, arbitrary choice
of witness coefficients already provides a partial solution to
the coherence witness. This approach outclasses standard state
tomography wherein d2 observables are critical in detecting
coherence in an unknown state, after reconstructing the d× d
density matrix.

b) Discord Witness: For a test state, discord witness
operators are traceless Hermitian operators realized via lin-
ear combination of symmetric and anti-symmetric GGO as
WD = wwwD · σσσ, where wwwD = ({wD, (j,k)

sym }, {wD, (j,k)
asym }, {0})

satisfying ∥wwwD∥ ≤ 1. Herein, ΦD is a local incoherent unitary
transformation map. Therefore, symmetric discord detection
criteria based on discord witness inequality is formulated as

DW = tr(ΦD(ρ)WD) ̸= 0, (4)

for a discordant state, whereas equality is obtained only
for a completely nondiscordant state. In short, any nonzero
significant value in bbbD hints at the presence of discord. The
detection confidence is increased by employing all nonzero
values from total d2 − d expectation values.

c) Entanglement Witness: For a test state, the cor-
responding normalized entanglement witness operator is
given as WE = ( Id + ζ

2www
E · σσσ), where wwwE =

({wj,k
sym}, {wj,k

asym}, {wl
diag}) and ζ =

√
2(d−1)

d . It is notewor-
thy that ∥wwwE∥ ≤ 1 corresponding to tr(WE) = 1. ΦE is non
completely positive trace preserving map. For entanglement
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Fig. 2. Performance evaluation of coherent-incoherent classifier: (a) Training and (b) validation accuracy/loss plotted as a functions of epochs for NC
h = 40.
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Fig. 3. Testing accuracy/loss plotted as a function of NC
h , i.e., the number

of neurons in the hidden layer.

detection, the entanglement witness inequality is constructed
as

EW = tr(ΦE(ρ)WE) < 0, (5)

wherein the inequality is violated only by separable state.
The effectiveness and reliability of tasks involving the

witnessing of metrologically useful states hinge on the ac-
quisition of optimal witness operators for the test states. The
process of finding these optimal quantum witness operators
for state discrimination is exhaustive. This difficulty stems
from the requirement to traverse a complex optimization space,
adhering to stringent mathematical and quantum mechanical
criteria, such as the Hermicity of operators and their ability
to discriminate distinct states. A key stipulation is that the
optimization encompasses the entirety of the state space, ex-
panding exponentially with the quantum system’s qubit count.
Consequently, there is a significant increase in the demand

for computational resources, spanning both classical compu-
tational means for the execution of optimization algorithms
and quantum mechanisms for the practical deployment and
evaluation of prospective witness operators.

B. Metrologically Resourceful State Classifiers

Herein, we utilize ANNs to establish binary classifiers to
distinguish metrologically resourceful quantum states from
metrologically resourceless quantum states.

1) ANN for Data-driven Detection: The vectors bbbm are
fed to ANN input layer as features. The model architec-
ture has one hidden layer having each hidden neuron acti-
vated via a nonlinear yet faster to compute, ReLu function.
This hidden layer transforms input feature vector to yield
hhhm =

(
[ηηη1bbb

m + ξ1]
+, · · · , [ηηηNm

h
bbbm + ξNm

h
]+
)
, where Nm

h is
the number of neurons in the hidden layer. The output layer is
fixed at one neuron activated via sigmoid function to produce

ŷm =
1

1 + exp{−(GGG.hhhm + g)} , (6)

such that the network parameters ηηηi,GGG, ξi, g are randomly
initialized and trained thoroughly. The implementation of
ANN architecture is carried out on neural network sequential
API keras. Binary cross-entropy is chosen as a loss function
for binary classification while optimizer is Adam with default
hyper parameters but varying learning rate Lm.

2) Labeled Dataset Generation: The quality, diversity, and
size of corresponding master data sets Dm are the main factors
in effective training, validation, and testing the generalization
performance of the model. The quality of data sets is main-
tained through noise-free witness measurements and correct
labeling. The binary labeling of data for coherence, discord,
and entanglement is achieved via their bonafide quantifiers
as robustness of coherence, local quantum uncertainty, and
negativity, respectively [3], [18], [27]. The cost of accurate
labeling of data is removed in unsupervised learning case, but
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Fig. 4. Performance evaluation of discordant-non discordant classifier: (a) Training and (b) validation accuracy/loss plotted as a functions of epochs.
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Fig. 5. Testing accuracy/loss plotted as a function of ND
h , i.e., the number

of neurons in the hidden layer.

at the expense of classification accuracy and increased size
of data sets [28]. To avoid bias, approximately equal ratio
of coherent and incoherent, discordant and non discordant,
and entangled and separable states are generated for master
datasets Dm having large sizes Nm. The datasets are formed
by incorporating a diverse range of resourceful-resourceless
quantum states. Such data diversity is faithfully reflected in
the ability of classifiers to generalize well to new unseen
quantum states. The generation of quantum states and the map
and measure operations are carried out using the functions of
the QETLAB package (MATLAB based toolbox to explore the
theory of quantum entanglement). The composition of datasets
are detailed as follows.

a) Coherence-Incoherence Dataset: For DC having
NC = 3 × 104, the data set comprises of 104 samples
of random density matrices (RDM) having arbitrary rank

r, 104 samples of RDM having r = 1 decohered under
global depolarizing noise, and 104 samples of RDM having
r = 4 decohered under global depolarizing noise with noise
parameter p < 0.1.

b) Discord-Non Discord Dataset: For DD having ND =
8 × 104, the data set comprises of 2 × 104 samples of RDM
having arbitrary r, 2×104 samples of depolarized RDM having
arbitrary r and p, 2 × 104 samples of product RDM, i.e.,
(ρA⊗ρB), and 2×104 samples of maximally discordant mixed
states.

c) Entanglement-Separability Dataset: For DE having
NE = 1.5×105, the data set comprises of 2×104 samples of
RDM for each r, 2× 104 samples of product RDM, 2× 104

samples of depolarized RDM having r = 1, and 104 samples
of depolarized RDM for each r = 2, 3, and 4 with arbitrary
noise strength p.

3) Classifiers Performance: The labeled master data sets
are divided into training, validation, and test sets in the ratio
(0.64, 0.16, 0.2). Accuracy and loss are employed as metrics to
evaluate the performance of resourceful-resourceless quantum
state classifier models during training, validation, and testing
process.

a) Coherence-Incoherence Classifier: Fig. 2(a) shows
the trainability of ANN model in quantum coherence classifi-
cation wherein train accuracy and loss smoothly converge to
approximately 99.5% and 1% for NC

h = 40. Fig. 2(b) validates
the aforementioned trained model wherein validation accuracy
is slightly less and validation loss is slightly more than the
corresponding training metrics for new and unseen coherent-
incoherent data instances. Testing metrics exhibit significant
performance enhancement upon increasing the number of
neurons in the hidden layer NC

h , as depicted in Fig. 3. Herein,
test accuracy and loss converge to approximately 98% and 2%
at around NC

h = 20.
b) Discord-Non Discord Classifier: Fig. 4(a) shows the

training results of simple ANN model in quantum discord
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Fig. 6. Performance evaluation of entangled-separable classifier: (a) Training and (b) validation accuracy/loss plotted as a functions of epochs for NE
h = 300.
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classification wherein train accuracy fast converges to approx-
imately 97% for LD = 5 × 10−4 employing only ND

h = 40
and 95% for LD = 5×10−5 employing ND

h = 100. Similarly,
train loss converges to approximately 8.5% for LD = 5×10−4

and 12.5% for LD = 5 × 10−5. Fig. 4(b) validates the
aforementioned trained model wherein validation accuracy is
slightly less and validation loss is slightly more than the corre-
sponding training metrics for new and unseen discordant-non
discordant data instances. Classification performance improves
by increasing the number of neurons in the hidden layer ND

h ,
as depicted in Fig. 5. Herein, test accuracy and loss converge
to approximately 96% and 10% at around ND

h = 20 for
LD = 5 × 10−4 whereas 94% and 14% at around ND

h = 40
for LD = 5× 10−5.

c) Entanglement-Separability Classifier: Fig. 6(a) shows
the training curves of ANN model in quantum entanglement

classification wherein train accuracy smoothly converges to
approximately 99% for NE

h = 300. Similarly, train loss
converges to approximately 2% for LE = 1 × 10−3 and 3%
for LE = 5 × 10−4. Fig. 6(b) validates the aforementioned
trained model wherein validation accuracy is slightly less and
validation loss is slightly more than the corresponding training
metrics for new and unseen entangled-separable data instances.
Testing metrics exhibit significant performance enhancement
upon increasing the number of neurons in the hidden layer
NE

h , as depicted in Fig. 7. However, test accuracy and loss
reach 98% and 4% for LE = 1× 10−3 and 96% and 11% for
LE = 5× 10−4 at NE

h = 300.

III. CONCLUSION

In this work, we established a simple, robust, and reli-
able framework for identifying metrologically useful quantum
sensing probes. By leveraging ANNs, we bridge supervised
learning with quantum information science, achieving high
accuracy in distinguishing resourceful from resourceless quan-
tum states. This indicates ANNs’ crucial role in quantum
sensing tasks, enhancing metrologically resourceful state de-
tection where traditional methods become inefficacious and
unreliable.
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