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Abstract—Semantic communication in wireless image trans-
mission leverages the meaning embedded in the image data,
aiming to compress, transmit, and reconstruct images based
on their semantic content rather than purely pixel data. This
paradigm shift allows more efficient utilization of bandwidth
and computational resources, focusing on extracting key features
and contextual information that is critical for ensuring that
the essential content of the image is preserved and accurately
conveyed. In this study, we present a novel Stable Diffusion-based
semantic communication (SDSC) framework that demonstrates
high performance, characterized by an elevated bandwidth
compression ratio (BCR) and robust noise tolerance achieved
by diffusion mechanism integrating supplementary prompts.
Our approach utilizes pre-trained modules of a Variational
autoencoder (VAE) and a modified U-shaped network (UNet) to
enable robust semantic encoding, decoding, and effective channel
denoising. This scheme significantly enhances the system’s ability
to preserve data integrity and meaning in noisy environments.
By introducing additional context-aware prompts during trans-
mission, we improve the accuracy of received information and
mitigate the adverse effects of interference and noise. Extensive
simulations show that our framework outperforms previous in-
novative models, demonstrating superior communication fidelity
and efficiency under various challenging conditions.

I. INTRODUCTION

Wireless image transmission plays a crucial role in di-
verse applications, from surveillance and remote sensing to
telemedicine and autonomous vehicles. The traditional ap-
proaches to data transmission are being reconsidered to en-
hance efficiency, reliability, and relevance. They focus primar-
ily on the bit-level accuracy, often neglecting the semantic
content that is interpreted by end-users. Recently, semantic
communication (SemCom) [1] [2] has emerged as a promising
approach, aiming to improve meaning-oriented accuracy and
efficiency by prioritizing the semantic content of images. This
approach enables significant improvements in data compres-
sion by filtering out irrelevant information and selectively
transmitting essential semantic elements rather than the bit
symbols.

Joint source-channel coding (JSCC) has been an active
research area that combines source and channel coding to
improve the overall performance of communication systems.
This method has gained considerable attention in recent years
due to its potential to enhance the robustness and efficiency
of wireless communication systems over the separate approach
[3]. The primary goal of JSCC is to optimize the transmission
of information over noisy channels by jointly designing the
source coding and channel coding processes. This technique is

particularly crucial in wireless communication systems, where
channel errors and packet loss can significantly degrade the
quality of the transmitted data. However, developing these
techniques has not resulted in practical applications because
of their high complexity and restricted performance improve-
ments when utilized with genuine sources and channels [4].
Deep JSCC [5], an emerging alternative approach leveraging
deep neural networks, has shown promise in dealing with
low signal-to-noise ratio (SNR) and narrow channel bandwidth
under different channel conditions. In [6], the authors improve
deep JSCC by integrating the swin transformer architecture
[7] instead to achieve the WITT framework. Unlike con-
ventional CNN-based methods, which struggle with global
dependencies and high-resolution images, WITT harnesses the
superior ability of the transformer architecture to extract long-
range and high-level semantic features. This design results
in higher fidelity textures, fewer block artifacts, and better
overall performance. However, such transformer-based models
lack robustness due to their reliance on massive amounts of
data for large-scale training, making them sensitive to the
dataset quality and generalization ability. Through end-to-end
training, the above systems emphasize altering individual pix-
els or maintaining structural similarity rather than perceptual
similarity.

Recent years have witnessed substantial advancements in
generative models that produce highly realistic images with
augmented perceptual quality. The intersection of generative
artificial intelligence (GenAI) and SemCom presents exciting
possibilities. Generative adversarial networks (GANs) [8] and
diffusion models [9] exemplify this innovation, achieving
state-of-the-art results in text, image, and video generation.
GANs have been increasingly applied in various fields, includ-
ing computer vision, natural language processing, and audio
processing. In the context of SemCom, GANs have been used
to generate original semantic signals from distorted semantic
signals, eliminating the need for channel state information
(CSI) [10]. Despite the promising results, the application of
GANs faces several challenges. For instance, GANs are prone
to mode collapse, where the generator produces a limited
variety of outputs despite the potential diversity in the training
data, and gradient disappearance, which can affect the diversity
and quality of generated samples. Additionally, the training
process of GANs can be unstable and require careful tuning
of hyperparameters. Diffusion models, instead, have become
a game-changer due to their ability to generate high-quality



multimedia content while preserving semantic features. For
example, a diffusion model is deployed as a decoder in [11]
to build a hybrid JSCC scheme. The works [12] and [13] adopt
the diffusion mechanism on the channel denoising process to
improve the constructed image. However, these approaches do
not directly employ the state-of-the-art generative model in the
JSCC-based wireless transmission system. Hence, they have
not fully exploited the strong prior knowledge of large pre-
trained models, leading to a missed opportunity for substantial
improvement in the perceptual quality of reconstructed images.
Moreover, the condional generation of genAI is not leveraged
to provide further semantic context in advancing the quality
of wireless transmission over noisy channels.

In this work, we introduce SDSC, a framework that inte-
grates the pretrained Stable Diffusion (SD) model [14] into
a semantic communication system to enhance the perceptual
quality of the constructed images. The key contributions of
this paper are outlined below:

• We directly adopt the generative model into the traditional
JSCC system to fully exploit the strong prior knowledge
of large pretrained models for efficient semantic commu-
nication.

• By leveraging the diffusion mechanism, we can diminish
the effects of channel noise from corrupted data to
facilitate image reconstruction.

• Our findings show that using additional context-aware
prompts during transmission can elevate the perceptional
quality of the reconstructed image, especially in low SNR
scenarios.

• Numerical tests on the Kodak dataset [15] demonstrate
that our system balances the trade-off between compres-
sion ratio and semantic preservation in image quality in
challenging communication environments.

II. SYSTEM MODEL AND EVALUATION METRICS

A. System Model

This section details the working principle of our semantic
communication system for wireless image transmission. As in
[5], we model the transmitter and receiver as neural networks
using pretrained components of the Stable Diffusion (SD)
model [14]. The SD-based wireless semantic image commu-
nication system model (SDSC) is illustrated in Fig. 1. An
RGB image x ∈ Rn, where n = 3 ·H ·W , is encoded by a
variational autoencoder (VAE) E into a low-dimensional latent
representation z = E(x). The complex latent vector z ∈ Ck

is normalized to satisfy the average power constraint Pavg and
obtain zn

zn =

√
kPavg

||z||22
z (1)

The bandwidth compression ratio (BCR) is defined as
p = k/n in JSCC literature, where n represents the source
bandwidth and k is the channel bandwidth. After that, the
achieved signal is transmitted over the noisy channel. In
this study, we consider the widely adopted channel model,
additive white Gaussian noise (AWGN) channel, denoted by

n ∼ CN (0, σ2Ik), where σ2 is the average noise power.
Therefore, the received signal z̃ at the receiver is indicated
as follows:

z̃ = zn + n (2)

We also define the SNR, which reflects the channel quality

SNR = 10 log10

(
Pavg

σ2

)
dB. (3)

To incorporate textual information, we adopt the BLIPv2
model [16] as an image captioner to extract further semantic
features in the form of text prompts corresponding with each
input image. These prompt is then validated thoroughly to
guarantee their alignment with the visual content in hard cases.
Due to the significantly higher bandwidth consumption of
wireless image transmission than text transmission, we focus
solely on the image, assuming that any additional text prompt
is transmitted without error over the noisy channel.

We consider the transmission process over the AWGN
channel at the transmitter as a forward process of the SD model
at timestep t. Similarly, reconstruction of the noisy image is
employed at the receiver as a reverse diffusion process in the
latent space, which iteratively samples z̃t−1 from p(z̃t−1|z̃t)
to obtain a noise-free latent representation z̃0 ∼ q(z) through
a sequence of denoising steps. As mentioned in [9], this
denoising process can be expressed as

z̃t−1 =
1

√
αt

(
z̃t −

1− αt√
1− ᾱt

ϵθ(z̃t, t)

)
+ σtϵ (4)

where αt ∈ (0, 1), ᾱt =
∏t

i=0 αi, and ϵ ∼ N (0, 1). ϵθ(z̃t, t)
is an estimation of added noise. To sample z̃0, the added
noise is predicted by the pretrained UNet model [17], which is
augmented with cross-attention module mechanism [18]. For
the inclusion of semantic information as the text prompt y,
the CLIP encoder model is leveraged to project y to prompt
embedding τθ(y), which is mapped via a cross-attention layer
to the intermediate layers of the UNet. This conditions the
prediction to produce the desired output. The network ϵθ can
be learned through the loss function

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (z̃t, t, τθ(y))∥22

]
(5)

The loss function is minimized gradually until the training
process converges. Ultimately, the denoising scheduler can
subtract the predicted noises successfully to obtain the pure
latent representation z̃0 after t denoising steps. Subsequently,
the noise-free latent signal z̃0 is forward through the VAE
decoder D to reconstruct the original image x̃

x̃ = D(z̃0) (6)

B. Evaluation metrics

In our evaluation, we utilize widely recognised distortion
metrics such as peak signal-to-noise ratio (PSNR) and multi-
scale structural similarity index (MS-SSIM). We also consider
learned perceptual image patch similarity (LPIPS) [19] and
Fréchet inception distance (FID) scores [20], which have been



Fig. 1: Illustration of the wireless image transmission system with Stable Diffusion (SDSC) in semantic communication. The
pretrained components are leveraged to encode and decode the transmitted data within latent space, optimizing the trade-off
between compression ratio and semantic preservation. Channel noise is iteratively refined through a diffusion mechanism, while
context-aware prompts are incorporated to provide additional semantic features for the reconstruction process.

shown to enhance the perceptual quality of constructed images.
The models exhibit improved performance with higher PSNR
and MS-SSIM values, while lower values are better for the
latter two metrics.

To prevent randomness and maintain objectivity, each image
is transmitted ten times, and the evaluation scores are averaged
to determine the final results.

III. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setting

To illustrate the advanced performance of the proposed
system, we compare our method SDSC with two recent in-
novative methods: Deep JSCC [5] and WITT [6]. As previous
research has already demonstrated the superior performance of
DeepJSCC over traditional separation-based methods, we do
not include those approaches as baselines for comparison in
this study. The SDSC with the textual prompt input (SDSC
+ Prompt) is also provided as a baseline to examine the
efficiency of additional semantic context.

For the introduced models, we implement the pretrained
Stable Diffusion model version 1.5, which was trained on
512x512 images from the vast database LAION-5B [21]. The
Deep JSCC and WITT models are trained on the DIV2K
dataset [22] with 800 high-resolution images, and the Kodak
dataset [15] containing 24 images of 768 × 512 dimensions
is utilized for evaluation. During the training process, all the
images are randomly cropped in the same input dimension of
the proposed model. Experiments are conducted on channel
SNRs of {1, 4, 7, 10, 13} dB, the power constraint Pavg = 1,
and the compression ratio p = 1/48, corresponding to compli-
cated communication situations. The SNR values for training
are uniformly sampled within this range. Through empirical

experimentation, we set the strength noise hyperparameter at
0.4 for SNR = 1 dB, 0.2 for SNR = 4 dB, and 0.1 for all
remaining SNR values. Since we use wireless channel noise
instead, the strength noise hyperparameters are adopted in this
case to control the magnitude of the sampling timestep t. We
apply the DDPM sampling method to the denoising process.
The number of sampling steps is important in determining
the visual quality of reconstructed output images. To opt for
the proper steps, our choices are based on the LPIPS score
with pretrained neural network VGG to capture high-level
perceptual features at various layers of the compared images.
We investigate multiple values of sampling steps for different
SNRs at p = 1/48 to balance realism and distortion, as shown
in Fig. 2. The optimal steps selected are {25, 25, 125, 25, 25}
steps for each corresponding SNR value.

With the experiments involving additional text prompts, we
define the classifier-free guidance scale, which denotes how
strongly the stable diffusion model should follow the guidance
of the input prompt, at the medium value of 7.5. The other
settings are the same as the SDSC model without prompts.

B. Numerical Results and Discussions

Fig. 3 presents the performance comparison between our
proposed methods and baseline schemes for varying SNR
values on the Kodak dataset with p = 1/48. Across four
evaluation metrics, Deep JSCC illustrates the worst perfor-
mance, indicating poorer reconstructed image quality given
the conditions. At low SNR values, our proposed models show
lower PSNR yet become superior to the WITT model at higher
SNR values from 7 dB. Regarding the MS-SSIM metric, WITT
performs better than our models in all cases. The reason is that
PSNR and MS-SSIM are two traditional metrics measuring
the quality of the reconstructed images based on structural



Fig. 2: Effect of sampling steps for various SNRs at p = 1/48.
The optimal steps are selected based on the lowest LPIPS score
for each SNR value.

information rather than perceptual similarity. At the same
time, our systems are designed to capture and maintain the
semantic features of the transmitted images. With the presence
of channel noise, preserving subtle structural information
does not necessarily ensure maintaining visual quality, which
is pivotal in semantic communication. Therefore, regarding
LPIPS and FID metrics, both SDSC and SDSC + Prompt
significantly surpass the baseline models by a large margin.
Especially, SDSC + Prompt consistently outperforms SDSC
in most scenarios in terms of both structural and perceptual
similarity, verifying the efficacy of additional prompts in
enhancing image fidelity.

Fig. 4 shows samples of reconstructed images for visual
comparison regarding perceptual quality. The Deep JSCC
method struggles to recover fine details, while WITT per-
forms better; however, the presence of noise artifacts remains
significant at p = 1/48. In contrast, our proposed SDSC
model, incorporating the diffusion model’s denoising mech-
anism, effectively restores key features of the original images.
Furthermore, leveraging the additional semantic context of
text prompt, SDSC + Prompt further enhances reconstruction
quality, producing results more faithful to the source images,
despite minor deviations. Notably, the final image sample
demonstrates the model’s ability to significantly improve the
reconstruction of parrots with more realistic body parts (beak
and eyes) given the additional text prompt “two colorful
parrots standing next to each other.” The similar experiment
in [23] strengthens further our approach.

IV. CONCLUSION

By leveraging the pretrained Stable Diffusion model, we
have created an innovative wireless semantic image trans-
mission system called SDSC to significantly improve the
perceptual quality of received images. Transmitted data is
compressed into latent space and reconstructed with VAE
blocks to balance the trade-off between compression ratio and
semantic preservation. The channel denoising process is facili-

tated by the diffusion mechanism. Specifically, adding context-
aware prompts to the given image improves the accuracy of the
reconstructed information and diminishes the negative impacts
of noise over the wireless channel. Through the experiments
on the Kodak dataset, our approaches show the superiority
in delivering a visually high-quality image with a low com-
pression ratio across various SNRs. We believe generative AI
in general, and the diffusion model in particular hold huge
potential in semantic communication to enable substantial
improvements regarding efficiency, relevance, and adaptability
in wireless networks. In the future, we will explore further
the adaptation of the diffusion model and the integration of
context-aware prompts to fully realize the potential of this
innovative approach. The synergy between semantic commu-
nication and generative AI could lead to revolutionary changes
in how we perceive and design communication systems.
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