
Understanding the Security Implications in
O-RAN with Abusive Adversaries

Mark Megarry1[0009−0004−4176−9251], Antonino
Masaracchia1[0000−0002−2299−8487], Muhammad Fahim1[0000−0001−6259−5458],

Vishal Sharma*1[0000−0001−7470−6506], and Trung Q.
Duong1[0000−0002−4703−4836]

School of Electronics, Electrical Engineering and Computer Science (EEECS)
Queen’s University Belfast (QUB), NI, UK

{mmegarry04, a.masaracchia, m.fahim, v.sharma, trung.q.duong}@qub.ac.uk

Abstract. Open-Radio Access Network (O-RAN) is considered the next
scalable solution, which aims to devolve the network into Near-real-
time RIC and Non-real-time RIC to have far more flexibility in ser-
vices with adaptable components. This disaggregation, however, will have
broader security implications, primarily arising because of the use of
legacy systems in the new architecture. Current threat models take a
lighter tone towards the evaluation of security measures. Thus, strict
adversarial methods must be adopted, which can consider scenarios of
cyber-vandalism in such networks. Based on this ideology, the article
presents security implications posed by abusive adversaries in the of-
floading procedures. This methodology provides a viewpoint on how an
adversary forms predictive methods on when to attack the system, which
is followed by mitigation mechanisms for the network to avoid it from
happening. The work is based on the Markov Decision Process (MDP)
and a Fuzzy Inference System (FIS), which uses Synthetic Data Augmen-
tation for Tabular Data (SMOTE) to generate a set of metrics that can
offer a high probability of attack in the transition mode to the adversary.
The implications are presented using a synthetic dataset created on the
backbone of the simulated scenario in NS3 and followed by mitigation
strategies.

Keywords: Security · O-RAN · Abusive Adversary · Simulations

1 Introduction

Open Radio Access Network (O-RAN) is a radio access network (RAN) architec-
ture specified by the O-RAN Alliance, which emphasises disaggregation, virtual-
ization, open interfaces, and interoperability between vendors [1]. The potential
benefits of O-RAN include provisions for a multivendor ecosystem, reduced cost,
use of commercial off-the-shelf (COTS) hardware, improved scaling flexibility,
energy efficiency, and enhanced security [2, 3]. It is expected that O-RAN will
considerably impact the capital expenditures (CapEx) and operating expenses
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(OpEx) due to the multi-vendor environment, open-source software and hard-
ware designs/implementation, and scalability enabled by the architecture and
offered services via xApps. [3]. The O-RAN architecture is built on the princi-
ples of disaggregation, intelligent/closed-loop control, virtualization, and open
interfaces [1]. An overview of the network architecture, as detailed in [4, 5], is
illustrated in Fig. 1 along with the security functions of the 5G core network [6–
8]. The following points summarise the operation of key components of O-RAN
architecture [1, 4]:

– O-RU: The O-RAN Radio Unit (O-RU) is a physical node which carries out
low physical layer functions of the radio interface with the user equipment
(UE) and connects to the Open Fronthaul interface [4].

– O-DU: The O-RAN Distributed Unit (O-DU) is a logical node (implemented
either by virtualized or non-virtualized means) which may be connected to
one or more O-RUs, and is compatible with the functions of a gNB Dis-
tributed Unit (gNB-DU) [4]. The O-DU may also support the management
of O-RUs [4].

– O-CU: The O-RAN Central Unit (O-CU) comprises two logical nodes/planes:
The O-CU Control Plane (O-CU-CP) and the O-CU User Plane (O-CU-UP)
[4]. This unit implements high 3GPP layers, including the Radio Resource
Control (RRC), Service Data Adaptation Protocol (SDAP), and Packet Data
Convergence Protocol (PDCP) layers [1].

– Near-RT RIC: The Near-Real-Time RAN Intelligent Controller (Near-RT
RIC) is a network function which allows for the control and optimisation of
E2 nodes through the use of control loops with periods between 10ms and
1s [4]. A vital component of the Near-RT RIC is a number of microservice-
based applications known as xApps, which may process data generated by
the RAN and generate control actions for the E2 nodes connected to the
Near-RT RIC [1, 4].

– Non-RT RIC: The Non-Real-Time RAN Intelligent Controller (Non-RT RIC)
is part of the Service Management and Orchestration (SMO) framework,
and it is responsible for optimizing RAN operation via control loops lasting
longer than 1s [1]. A key component of the Non-RT RIC is a collection of
applications known as rApps, which provide added value services for RAN
optimization and operations support [1]. rApps may generate policy guidance
for the Near-RT RIC, provide enrichment information to the Non-RT RIC,
and carry out configuration management and data analytics [1].

– SMO: The SMO contains the Non-RT RIC, and enables RAN support ser-
vices such as a fault, configuration, accounting, performance, security (FCAPS)
interface, and O-RAN Cloud (O-Cloud) management [4].

– O-Cloud: The O-Cloud is a cloud computing platform which hosts O-RAN
functions, supporting software components, and management and orchestra-
tion functions [4].

– O-eNB: The O-RAN eNB (O-eNB) hosts functions of an O-DU and an O-
RU, which are connected by an Open Fronthaul interface [4].
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Fig. 1. An overview of the O-RAN architecture with 5G core security functions [4, 6–8]

Despite the benefits of O-RAN discussed previously, making it an attractive
RAN architecture for network operators, the specifications of O-RAN present
new security challenges. Previous work has identified the following categories of
technology-related threats to O-RAN networks [9–11]:

– Architecture openness: The open nature of O-RAN potentially creates threats
relating to human error, supply chain software, supply chain hardware, vul-
nerable open source software and API exploitation [11].

– Radio/open interface: Threats related to the fronthaul, the CU/DU, and the
5G radio network [9].

– Intelligence: As artificial intelligence (AI)/machine learning (ML)-enabled
control loops are to be an integral part of O-RAN architecture, there are
threats specific to O-RAN due to this provision which do not affect existing
RAN architectures such as V-RAN or C-RAN [9].

– Virtualisation: This category describes threats related to network functions
virtualisation (NFV). As functions in the RAN are increasingly implemented
as virtual network functions (VNFs) or cloud network functions (CNFs)
rather than physical network functions (PNFs), the security of the compo-
nents hosting these functions, e.g., the virtual machines (VMs), containers
(CNs), and hypervisors, becomes more prevalent than in previous RAN archi-
tectures [9]. A notable exception is that most of the threats in this category
also apply to V-RAN and/or C-RAN [9].

– Threats against O-RAN system: Threats related to the O-RAN system ar-
chitecture, including implementation of insufficient security features on the
interfaces between components [10].

– Threats against O-Cloud: Threats against the O-Cloud platform are largely
derived from previous studies on virtualization and containerization security,
mostly falling under the previously-mentioned virtualisation category [10].
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– Physical threats: These threats are related to the use of hardware, and in-
clude a user with physical access to a site accessing O-RAN components, or
accessing the fronthaul cable network [10].

– REST protocol stack threats: These threats relate to the use of the rep-
resentational state transfer (REST) protocol stack (which includes JSON,
HTTP, TLS, TCP, IP) over the A1 and R1 interfaces [10]. According to O-
RAN Alliance Work Group 11 (WG11), each of these protocols has known
vulnerabilities [10]

The O-RAN architecture specification allows for the CU of the O-RAN network
to be connected to the 5G core network via the NG-c and NG-u interfaces,
which connect to the Access and Mobility Management Function (AMF), and
User Plane Function (UPF) of the 5G core network respectively [4]. Specifica-
tions in [6–8] and [12] describe the Authentication Server Function (AUSF), Au-
thentication credential Repository and Processing Function (ARPF) − which
is a component of the Unified Data Management (UDM), Inter-Public-Land-
Mobile-Network User Plane Security (IPUPS), Security Context Management
Function (SCMF) − which is a component of the AMF, Subscription Identifier
De-concealing Function (SIDF) − which is a component of the UDM, Security
Anchor Function (SEAF) − a component of the AMF, Security Edge Protec-
tion Proxy (SEPP), and Security Policy Control Function (SPCF) as the critical
security entities in the 5G Core network.

In this domain, the impact of adversaries increases as the number of attack
surfaces in O-RAN’s architecture is high. Furthermore, it becomes critical to
evaluate the security of the networks using stronger non-simulated adversarial
models, which can help realise the true potential of the security solutions. One
of the adversarial models in this direction would be abusive adversaries, which
is a model of an adversarial agent who aims to cause damage to a target system
without any reward, regardless of the resources they must expend to achieve this
goal [13]. The threat model of an abusive adversary considers network entities
coming under the control of the adversary randomly [14]. An abusive adver-
sary may use their resources to attempt to evade detection by the system under
attack [13], or influence misbehaviour detection rules to ensure that network en-
tities under their control remain undetected [14]. In the context of the 5G and
beyond IoT network discussed in [14], an abusive adversary is capable of carry-
ing out a broad range of attacks, including host-impersonation, replay attacks,
denial of service, distributed denial of service, and hidden-terminal attacks [14].
When targeting O-RAN networks, an abusive adversary may attack the Quality
of Service (QoS) management functions, xApps, AI/ML models, and mobility
management functions hosted in the Near-RT RIC as illustrated in Fig. 2.

To categorise the threats posed by an abusive adversary towards O-RAN,
six threat agent models identified by WG11 of the O-RAN Alliance in [10] are
considered:

– Cyber-criminals: These threat agents use computers to commit crimes and/or
criminally target computer systems [10]. A cyber-criminal may have the goal
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Fig. 2. An exemplary illustration of abusive adversary’s region of interest in Near-RT
RIC in O-RAN.

of short-term personal gain from attacking a system, e.g., selling compro-
mised user data.

– Insiders: These threat agents are trusted individuals who abuse privileged
access to a system to carry out attacks related to the system [10].

– Hacktivists: These threat agents carry out attacks with the goal of some
political or social gain [10].

– Cyber-terrorists: These threat agents use computers with the aim to carry
out violence, cause fear, or cause financial damage [10, 15]. They may be
politically motivated and may target subnational groups [10, 15].

– Script kiddies: These threat agents lack computational resources and tech-
nical knowledge [10]. However, they may take advantage of existing tools to
probe for and exploit known vulnerabilities in a system.

– Nation-state: These are threat agents supported by a nation-state [10]. They
may seek to gain persistent access to networks, possibly in adversarial coun-
tries, to acquire, manipulate or destroy information [10]. As they are sup-
ported by a nation-state, they may have access to significant computational
resources and expertise [10].
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Due to their purely malicious goals (i.e., they are only trying to cause damage
to a system without any monetary reward) and large amounts of computing
resources available, the abusive adversary model could potentially be used as a
basis for modelling well-equipped hacktivists, cyber-terrorists, and nation-state
actors with the aim of harming network performance or infrastructure.

1.1 Our Contributions

This article helps understand the security implications in O-RAN with abusive
adversaries [16], thus helping to check the network’s security measures. The key
contributions are listed below:

– The understanding of the abusive adversary is enhanced specifically in an
offloading scenario where the number of attack surfaces increases, and the
probability of an attack is high.

– A combination of literature-based Markov Decision Process (MDP) [16–18],
Fuzzy Inference System (FIS) and Synthetic Data Augmentation for Tabu-
lar Data (SMOTE [19]) are considered to form intelligence mechanisms for
abusive adversaries to form the strategy of attack and further understand
the impact it may have on the network by forming synthetic dataset on the
backbone of the traffic modelled via NS3.

– The method utilised in the article can help form the threat models for O-
RAN as it can expose the network settings which are adversary-friendly and
must be avoided. Such mechanisms can be modelled for different scenarios
and not just offloading.

2 Related Works

This section presents some of the most recent works related to O-RAN security
and abusive adversaries. The works related to O-RAN security include broad
overviews of the topic, security analyses, investigations, and proposals for novel
technology implementations to support the security of future O-RAN networks.
In terms of work related to abusive adversaries/abusive modelling, it has been
investigated in terms of the impact in 5G-IoT networks [14], cyber-physical sys-
tems [13], and blockchain systems [16] with details compared in Table 1.

Liyanage et al. [9] provided an overview of Open RAN architecture and gave
a taxonomy of threats relating to O-RAN networks. At the highest level, they
divided these threats into the three categories of “Process”, “Technology”, and
“Global”. For each threat detailed, the authors also stated whether it is specific
to O-RAN or if it is applicable to other RAN architectures such as C-RAN or V-
RAN. Polese et al.[1] provided a broad overview of O-RAN. In terms of security,
their paper discussed the relevant stakeholders, the threat surface presented by
O-RAN, and security principles and opportunities.

Abdalla and Marojevic [20] split the O-RAN architecture into a number of
security domains, described the characteristics of each domain, and provided a
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table of O-RAN security risks identified by the O-RAN Alliance Security Work
Group (SWG). The paper then moves to focus on the Open Fronthaul security
threats. Soltani et al. [21] investigated an attack against bearer context migra-
tion in an O-RAN-based 5G network. This attack causes network anomalies,
resulting in a significant decrease in cell performance. These works are pivotal
in understanding the impact of adversaries in open network settings.

Klement et al. [22] presented the key stakeholders in the O-RAN system, and
discussed methods to mitigate the threats associated with each stakeholder. In
[23], Wen et al. proposed a solution which gathers telemetry data from network
entities to support security services running as xApps in the Near-RT RIC. In
a similar direction, Abdalla et al. [24] provided an overview of the use cases
and limitations of O-RAN, as well as a discussion of the results of a survey on
O-RAN distributed by the authors.

Ramezanpour and Jagannath [25] introduced intelligent zero-trust architec-
ture for use in next-generation communications networks, allowing for the im-
plementation of AI engines to provide security functions in untrusted networks.
Groen et al. [26] provided an investigation into the impact of implementing
encryption on the E2 interface on delay and throughput. In [27], Shen et al. pro-
posed a security threat analysis and treatment strategy system, and provided
an example test to verify whether or not the SMO correctly authenticates a
Near-RT RIC node.

Mimran et al. [11] proposed an ontology for security evaluation of O-RAN,
and discussed the current state of O-RAN security, providing a taxonomy and
a map of relevant cybersecurity threats. Soltani et al. [28] discussed a risk as-
sessment carried out by the O-RAN Alliance Security Focus Group (SFG), AI
threats against O-RAN including data poisoning, evasion attacks, and attacks
on API-based AI models. This article also discussed the potential for security
countermeasures in O-RAN.

Dik and Berger [29] provided an analysis of the vulnerabilities of each data
plane of the Open Fronthaul interface under a Man-in-the-Middle attack, and
discussed the suitability of MACsec to secure each plane of this interface. Liao
et al. [30] described a tool they developed to carry out denial-of-service attacks
on the C-Plane of the Open Fronthaul interface for testing purposes in line
with guidance from the O-RAN Alliance Test and Integration Focus Group. In
[31], Haas et al. have proposed hardware-enforced capabilities as an enabling
technology of security in future O-RAN networks, and presented an approach
for hardware/operating system co-design to implement these capabilities. In [32],
Groen et al. utilised the Colosseum radio frequency (RF) emulator to investigate
the performance cost of implementing security features on the E2 interface.

Rahman et al. [33] described potential artificial intelligence attacks against
future 6G networks, and discussed enabling technologies for 6G (including O-
RAN) and security threats. Giupponi and Wilhelmi [34] proposed integrating
blockchain technologies in O-RAN for RAN-sharing, and provided an example
O-RAN-based architecture for utilising this technology. Huang et al. [35] inves-
tigated the detection of rogue base stations in a software-defined radio (SDR)-
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enabled O-RAN environment using data generated by the UE, and an xApp
carrying out machine-learning techniques on this data. Motalleb et al. [36] pro-
posed a method for energy-efficient service admission control in O-RAN using
deep reinforcement learning techniques, and a moving target defence strategy
to secure this service admission control. These works are instrumental in un-
derstanding the consequences of incorrectly configured networks as well as the
requirement of having security as a part of the architecture to ensure services
and users are secured from bad actors.

Furthermore, in the direction of the abusive adversary, the authors in [13]
modelled attacks carried out by an abusive adversary on a supervisory data and
control (SCADA) system consisting of an on-site system and a control server.
Four attack strategies were presented involving spoofing sensor values relayed to
the control server. In their work, the abusive adversary attacks stealthily and
attempts to evade detection, and is able to steer the corrective action taken by
the actuator. In another work by Sharma et al. [14], abusive adversaries in the
context of 5G-IoT networks were elaborated, in which an abusive adversary at-
tempts to compromise network nodes or the security functions of the 5G network.
These works were inspired by other work of Sharma et al. [16], where the authors
discussed the impact of self-defying adversaries utilizing zero expectation-based
reward abuse in the context of blockchain systems.

Table 1: A summary of related works.

Article Theme Parameters

Liyanage et al. (2023) [9] O-RAN security -
Polese et al. (2023) [1] O-RAN security and O-

RAN overview
-

Abdalla and Marojevic
(2023) [20]

O-RAN security Open Fronthaul de-
crypted packets, simula-
tion time

Soltani et al. (2023) [21] O-RAN security Signalling cost, average
bearer migration rate,
throughput, time, ARP
request, packet loss rate

Groen et al. (2023) [26] O-RAN security Delay, packet size, actual
throughput, attempted
transmission rate, en-
cryption algorithm,
throughput, ratio of
different outputs, noise
standard deviation,
euclidean distance
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Groen et al. (2023) [32] O-RAN security Probability, delay, packet
type, packet size, actual
throughput, attempted
transmission rate

Huang et al. (2023) [35] O-RAN security Signal strength, classifier,
accuracy, precision, recall,
F1-measure

Motalleb et al. (2023) [36] O-RAN security Mean reward, episode,
service admission rate,
normalized power con-
sumption, service arrival
rate, number of VNFs, ex-
tra power consumption

Gaur et al. (2023) [13] Abusive adversary Corrections to the sensor
readings, the time elapsed
for a successful attack, the
difference of spoofed val-
ues compared to the orig-
inal sensor readings, in-
stances over the attack
duration

Klement et al. (2022) [22] O-RAN security -
Wen et al. (2022) [23] O-RAN security -
Abdalla et al. (2022) [24] O-RAN security and O-

RAN overview
overview

Community survey results

Ramezanpour and Jagan-
nath (2022) [25]

O-RAN security -

Shen et al. (2022) [27] O-RAN security -
Mimran et al. (2022) [11] O-RAN security -
Soltani et al. (2022) [28] O-RAN security -
Liao et al. (2022) [30] O-RAN security Data rate of U-plane mes-

sage reception, attack rate
Haas et al. (2022) [31] O-RAN security Latency
Rahman et al. (2022) [33] O-RAN security -
Giupponi and Wilhelmi
(2022) [34]

O-RAN security Sharing mechanism per-
formance, UE request
rate, number of oper-
ators, overhead, block
size
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Sharma et al. (2022) [14] Abusive adversary Time required by an ad-
versary to replicate states
with brute-force, number
of behaviour rules, sig-
nalling overheads at unit
message size, number of
hops failed towards core

Sharma et al. (2022)[16] Abusive adversary Relative rewards to the
adversary, probability of
induced fork, probability
of delay, probability of
block generation by an
adversary, compliance de-
gree of a mining pool

Dik and Berger (2021)
[29]

O-RAN security Payload overhead, pay-
load size

3 Network Modelling with Abusive Adversaries

This article considers O-RAN architecture, as discussed in the initial section,
with two critical components − Near-RT RIC and Non-RT RIC. The system
model considered is based on understanding the performance and adversarial
impact when the adversary is operating under an ‘Abusive’ ideology, as high-
lighted in [14, 16]. In this case, the adversary is considered to be operating as an
insider threat, specifically having insights into implementing the RIC. The sce-
nario targetted by the adversary is the resource utilisation and offloading where
the adversary intentionally starts a race condition to cause deadlocks, thereby
impacting the performance of the system as it increases the attack surface by
identifying the list of components that can be compromised when the traffic
is offloaded which could be between the near Near-RT RIC components or the
control messages at the Non-RT RIC. The article details the implementation
of MDP to let the adversary operate with this ideology as in [16–18], and then
utilise prediction to reverse engineer the state that could have led to the attack
on the network under the said scenario of resource allocation and data offload-
ing. This could be further supported by FIS to understand the probabilities and
their impact as expressed in Section 3.2.

To examine this further, consider a Near-RT RIC component with a CU that
manages several DUs, and each DU can handle RUs that manage several UEs.
To help understand the scenario1, consider a specific resource consumption case
where a setK of servers are supporting a setM of UEs depending on the capacity
and offloading rate along with the priority of the application. A specific network

1 The generic settings in the system model are used to understand the problem,
whereas, in real settings, the number of UEs can be determined based on the mea-
suring reports but cannot be fixed.
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implementation may allow a single RU to control multiple servers amongst the
given set K. Each server, k1, k2, · · ·, ki can handle mk number of UEs. Thus,
the total requests handled by the |K| servers will be given as,

RT,K =

|K|∑
i=1

(mk)i ≤ |M |, (1)

which implies each UE generates a single request; thus, the requests handled
by each server are, in general, equal to the number of UEs in its periphery or
zone as configured in the planning phase of the network. Thus, if the number
of UEs that the server can accommodate increases beyond mk, there is a need
to balance the load and check for resource utilisation - and this is where the
adversary can target the system and lead to an attack, such as denial of service
(DoS).

3.1 Resource Utilisation and Offloading

This work uses the resource utilisation and offloading model in [37] to decide how
to share the tasks amongst the network. Specifically, in this work, the mobility
of UEs is considered across the RUs. It is also considered that on-demand RUs
can be utilised when the number of UEs exceeds the desired limit. Alongside
this, the offloading will depend on the type of the application as it significantly
impacts resource utilisation, and over-utilisation may lead to network blackout,
which would be the intentional target for the abusive adversary. Thus, the work
considered offloading on fixed RUs and on-demand RUs by checking the capacity
along with the resource utilisation time as in [37], with resource utilisation time
expressed as:

TF,R =
η × α

β
, (2)

where η is the number of applications (can be at bit level as in [37]) to be
transferred, α is the cycles per application and β is the cycles per second. Here,
if the required utilisation time, TR,T ≥ TF,R, the UEs can be moved across the
RUs depending on the order of required computations.

Considering an adversarial scenario, an adversary will attempt to predict and
evaluate the requirements of offloading across the network and then identify the
RUs that are in maximum demand. The adversary can use this information to
generate multiple fake requests to launch a DoS attack across the Near-RT RIC.
To identify such an impact, we first need to understand if such a scenario is
encountered, what the associated implications are, and how the network would
respond to prevent malicious intent. To further understand this, we design an
abusive adversary inspired by [16], which has sufficient knowledge of the network
or has the examining ability of the following components:

– UEs’ joining and leaving rate (λ)
– Requests handled (RT,K)
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– Available servers (|K|)
– RU switching and deployment time (ϑ)
– Resource utilisation time (TF,R)

Based on these metrics, the adversary can calculate a reward and launch
an attack on the network without getting detected. These can be determined
as action and no action phases for the adversary that are denoted by α1 and
α2, respectively. The associated actions for these phases feed into the MDP and
include

– No offloading (No (N)): This action is for the scenario where the available
servers can handle the requests at the RU, and no switching of the requests
is needed. This action also represents the situations where requests can be
handled even after the new RUs are added to the network or additional
resources are made available, but offloading is not required.

– Offload (Off (Y)): This action represents the cases where services from the
UEs are offloaded to different servers or RUs. An exemplary case can be that
of handover or when the number of UEs increases more than the expected
number (such as during a sports event). All the available states drive this
action.

– Rollback (Roll (R)): There is a likelihood of having several on-demand RUs,
which will help RIC to make intelligent decisions on resource utilisation.
Now, this can lead to managing and saving a lot of resources during idle
time or when the demand drops considerably. In certain cases, some of the
RUs can be run to their capacity to manage network utilisation. In such
cases, the rollback of the offloaded services is considered. Rollback is the
specific action of the offload - where the decisions are not to be taken based
on the computations; rather, the previous state is attained and continued
until the desired configuration is hit

The adversarial system relies on MDP as expressed earlier, which can be
defined as MDP=⟨S,A,P,R⟩, denoting the space, action, probability and re-
ward, respectively. The state change is defined based on three out of five com-
ponents where ∆ refers to the adjustments for λ, RT,K , |K| and the final values
after the variations are denoted with λ′, R′

T,K , and |K|′. For the sake of sim-
plicity, the MDP, in our case, considers static for ϑ and TF,R, and transitions
are referred to as (λ,RT,K , |K|, ϑ, TF,R, .) −→ (λ ± ∆λ,RT,K ± ∆RT,K , |K| ±
∆|K|, ϑ, TF,R, ⟨α1|α2⟩). These can be examined by the following Action × Space
matrix in Table 2 using the MDP modelling in [16], [17] and [18]. The reward,
Ar<state>, for the adversary is calculated as the latency factor induced by the
adversary, and it would vary depending on the choice of attack by the abusive
adversary. For example, in the case of DoS, the adversary would be concerned
about not letting ACKs reach either party and allowing consistent traffic gener-
ation, thus choking the network channel. If O∫ is the service offloading denoted
by the triplet as O∫ (λ,RT,K , |K|), then the latency is defined in time to handle
the adversarial requests and general network requests, denoted by τA,R(O∫ ) and
τG,R(O∫ ), respectively. The adversary’s aim may be to predict service offloading
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(p) to identify the slots when the attacks would have the maximum impact. This
implies the time to handle the adversarial requests would offer more control on
the network and a higher probability of offloading and associated rewards, which
the adversary would aim to maximise and given as:

Ar<state> =

{
max

(
τG,R(O∫ )−τA,R(O∫ )

τG,R(O∫ )

)
, τG,R(O∫ ) > τA,R(O∫ )

0, otherwise

}
(3)

If the adversary is able to inject devices into the network and is able to receive
ACK from the RU, the requirements of prediction become negligible, and so as
the rewards would lean towards a minimisation problem of the time required to
handle the adversarial requests, given as min (τA,R(O∫ )). This can maximise the
chances for the adversary to launch the attack due to increased device time in
the network.

Table 2. An overview of the MDP process for the possible state x action space along
with transitions, probability and rewards along with fuzzy inference system. Here,
the probability considers attack (α1) or no-attack phase (α2), and rewards are for
adversarial actions associated with the attack phase (α1).

S × A Next State P R × F-Output

(λ,RT,K, |K|, ϑ, TF,R, .) × N

(λ − ∆λ,RT,K, |K|, ϑ, TF,R, α2)

(λ,RT,K + ∆RT,K, |K|, ϑ, TF,R, α2)

(λ − ∆λ,RT,K + ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ,RT,K + ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ,RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

P0(.)
P1(.)
P2(.)
P3(.)
P4(.)

0 x Low
0 x Low
0 x Low
0 x Low
0 x Low

(λ′, R′
T,K

, |K|′, ϑ, TF,R, α2) × N

(λ + ∆λ,RT,K − ∆RT,K, |K| − ∆|K|, ϑ, TF,R, α1)

(λ + ∆λ,RT,K, |K|, ϑ, TF,R, α1)

(λ + ∆λ,RT,K − ∆RT,K, |K|, ϑ, TF,R, α1)

(λ,RT,K − ∆RT,K, |K| − ∆|K|, ϑ, TF,R, α1)

(λ,RT,K, |K| − ∆|K|, ϑ, TF,R, α1)

P0(α1)
P1(α1)
P2(α1)
P3(α1)
P4(α1)

Ar0 x Very High
Ar1 x High
Ar2 x High
Ar3 x Very High
Ar4 x High

(λ′, R′
T,K

, |K|′, ϑ, TF,R, α1) × Y

(λ − ∆λ,RT,K + ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ − ∆λ,RT,K, |K|, ϑ, TF,R, α2)

(λ,RT,K + ∆RT,K, |K|, ϑ, TF,R, α2)

(λ,RT,K + ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ,RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

P0(α2)
P1(α2)
P2(α2)
P3(α2)
P4(α2)

0 x Low
0 x Low
0 x Low
0 x Low
0 x Low

(λ′, R′
T,K

, |K|′, ϑ, TF,R, α2) × R

(λ − ∆λ,RT,K − ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ − ∆λ,RT,K − ∆RT,K, |K|, ϑ, TF,R, α2)

(λ,RT,K − ∆RT,K, |K|, ϑ, TF,R, α2)

(λ,RT,K − ∆RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

(λ − ∆λ,RT,K, |K| + ∆|K|, ϑ, TF,R, α2)

P0(α2)
P1(α2)
P2(α2)
P3(α2)
P4(α2)

0 x Neutral
0 x Neutral
0 x Neutral
0 x Neutral
0 x Neutral

3.2 Probabilities and Impact Modelling

Now, considering the reverse engineering component, the adversary can have a
range of rewards and the probability to utilise the knowledge of the network to
identify state variables and vice versa to launch a DoS attack. This attack can
be done on several low-cost IoT, which will shift the paradigm of the network
services. An example is that a new device included over the xApps, which was
unplanned during the O-RAN configuration, now dominates the number of re-
quests over the network. Here, an adversary can predict the next state to enter
and launch a strategic attack.
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The expectation from such modelling is that once the network has a similar
threat model for Near-RT RIC, vendors can set a range for fluctuation in each
of the values of components to identify when the potential risk of an attack in
the network is, especially when the data is not acknowledged by the DU and CU
based on what is expected from the RUs.

Probabilities in MDP define the possibilities of the transition between the
states and earning rewards for the adversary, which will help it to decide the
most impactful attack strategy in O-RAN. This will depend on the prediction
rate, which means if the time to predict the next state is low, then the probabil-
ity of switching states will be high. In general, non-zero values for ∆λ, ∆RT,K

and ∆|K| would mean high attack surfaces if the adversary can learn about
these settings. In the current state, the probability is to be determined for three
actions, and the model considers a probability of dominance for the three ac-
countable parameters denoted by ζ1, ζ2 and ζ3, for λ, RT,K and |K|, respectively.
In the given settings, ζ1 ≥ ζ2 ≥ ζ3, which relates the request handling capac-
ity to the number of available servers, and ζ1 + ζ2 + ζ3 = 1. This defines the
order of probability in which the adversary can attain and launch a successful
attack by considering the present and next feasible state in the network. Us-
ing this, the probabilities in Table 2, for three sets of State × Action can be
put in an order for possible probabilities, which will be defined as P0 = ζ1,
P1 = ζ1.(1 − ζ3), P2 = ζ3.(1 − ζ1), P3 = ζ2.ζ3 and P4 = ζ3.ζ1. For example,
consider a scenario where ζ1 > ζ2 ≥ ζ3, based on which the probabilities will
follow P0(.) > P1(.) > P2(.) ≥ P4(.) > P3(.). Similarly, if ζ3 > ζ1 > ζ2, the
probability order will be be P2(.) > P0(.) > P4(.) > P3(.) > P1(.).

However, it is challenging to identify all such combinations − be it the adver-
sary or a mitigation approach, and inferencing needs to be as close as possible
to understand the impact of the adversary. Here, several approaches, like the
approximation techniques, can be applied. An alternative can be in the form of
a fuzzy-inference engine, which allows converting a possible range of inputs for
ζ1, ζ2, and ζ3, to be converted into a particular probability value based on the
rules obtained by converting the next state in Table 2. For the sake of simplicity
and general applicability to understand adversarial impact, this work considers
type-1 Mamdani FIS, which is built using MATLAB™considering Gaussian Dis-
tribution considering that discrete values of Poisson distribution for the users can
be translated into continuous data for adversary when it operates for a longer
duration in the network.

The FIS is shown in Fig. 3, and the associated rules generated using the
MDP modelling are illustrated in Fig. 4. This figure helps to understand the
probabilistic combinations that would allow an adversary to plan its next set of
actions, whether to attack or not, and understand the negative impact it can
create on the network. Understanding the abusive adversary rules allows network
operators to develop an intelligent intrusion detection system that can secure the
network against cyber vandalism. Further details on the impact and associated
probability of attack with transitions are shown in Figs. 5, 6 and 7. These graphs
help visualise the rules in Fig. 4 and understand the co-relations between the
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System "AA_O_RAN": 3 inputs, 1 output, and 20 rules

FIS Name:  AA_O_RAN FIS Type: mamdani

Current Variable

Name

Type  

Range  

And method  min      

Or method  max      

Implication  min      

Aggregation  max      

Defuzzification  centroid Help Close

Fig. 3. An illustration of the FIS for an abusive adversary with considered network
settings.

Fig. 4. An exemplary illustration of the attack phase with fuzzy rules for an abusive
adversary with considered network settings based on Table 2.

independent and dependent variables when plotted for ζ1, ζ3, and ζ3. It is worth
noting that the rules would change depending on the probability of dominance
for variables in state × action space. The model helps to associate probabilities
to available discrete values, which can then be extended into a continuous range
of values, which are then evaluated for scenarios and impact on the system.
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Fig. 5. A comparative view of the rules showcasing the probability of transition leading
to an attack using user joining and leaving rate (ζ1) vs requests handled (ζ2).

Fig. 6. A comparative view of the rules showcasing the probability of transition leading
to an attack using user joining and leaving rate (ζ1) vs available servers (ζ3).

3.3 Impact Evaluations

This section details the impact an abusive adversary can have specifically when
several attack surfaces are available in the O-RAN settings. The article expresses
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Fig. 7. A comparative view of the rules showcasing the probability of transition leading
to an attack using available servers (ζ3) vs requests handled (ζ2).

results by using near-identical traffic as expected over O-RAN without deploying
specific control sequences. Though implementing similar work using OpenRAN
Gym could be more informative, it is beyond the scope of this work in its current
form. Other details on traffic generation, adversarial scenarios with impacts and
mitigation strategies are expressed below:

- Traffic and Scenario Generation: The traffic is generated considering a set
of M UEs uniformly distributed over the simulated area. This area is served by
|K| = 4 BSs, each placed at the corner of that area. Without loss of generality,
we assumed that all the users within the are generating connection requests
toward the same server. For simplicity and without loss of generality, each user is
assumed to send a service request using the nearest BSs. The request inter-arrival
times (considered equivalent to the resource utilisation time) and the service time
at each BS are exponentially distributed. In addition, we assumed that each BS
can accept a certain number of connection requests between 10 and 25. Service
requests are denied to users when the queue is full. If so, users re-schedule service
requests after a back-off time, which follows the same distribution of the inter-
arrival times. Simulations have been carried out using the open-source discrete-
event network simulator NS3 [38] by varying the number of users and request
rate, as shown in Table 3.

The traffic available from NS3 is then customised to a synthetic dataset to
match the requirements of running an MDP in Table 2 and identifying associated
attack probability from FIS as in Fig. 3, and deliberately induce an adversary.
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Table 3. Simulation parameters for generating the traffic scenario for impact evalua-
tion of abusive adversary.

Parameter Value

Distance between BS [m] 500
Number of UEs [20, 50, 100]
Average inter-arrival Times [s] [1, 2, 5]
Resource utilisation time [s] 60
Queue Size at BS [10; 25]

Here, τA,R(O∫ ) is calculated as a difference between the average of the request
start time and finish time for a general UE, considering that similar instances
would be required for an adversary to inject its device into the network. The to-
tal requests are calculated as (max(Queue size) + (max(Queue size)× (λ[1, 5]))).
The handled requests are calculated as the difference between max(Queue size)
and the average drop of requests, which is 11 in the case of scenario with 100
UEs, which leads to the calculation of ζ2 as the ratio between the handled re-
quests and the total requests, and ζ1 is calculated as the ratio of the leaving and
joining rate of UEs and the sum of the leaving and joining rate of UEs and cur-
rent UEs in the network; and injected five adversarial data. In the final readings
for the probability of transition from the FIS, the points of local maxima are
used for every membership function.

1 2 3 4 5

Instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

s
ti
c
 v

a
lu

e
s
 

1

2

3

High Attack Probability

based on expert's rules 

for FIS based on MDP

Fig. 8. An exemplary illustration of the attack scenarios selection based on expert’s
inputs as rules into the FIS.
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Fig. 9. An exemplary illustration of the attack scenarios selection available to adversary
after executing a SMOTE model and generating possible settings of ζ1, ζ2 and ζ3 that
can lead to reward.

Once the adversary has the preliminary set of values for the parameters it
is trying to utilise to identify attack scenarios, it can identify values which will
yield maximum reward and calculate the associated probability of transition.
Alternatively, an adversary can deploy the known probability of transition along
with partial instances from the network, which can obtained via measurement
reports to generate data via models such as SMOTE [19]. Fig. 8 shows the set-
tings that allow adversaries to have a high probability of attack on the network
based on expert inputs. Fig. 9 shows how an adversary can utilise partial knowl-
edge of the network and identify settings it needs to attain to have a scenario
most suited for an attack based on the combination of MDP, FIS and SMOTE.

- Mitigating abusive ideology: Executing the adversarial mode to regenerate
the associated set of values for ζ1, ζ2 or ζ3 for a set of probability can lead network
managers to identify potential scope of attack and develop mitigation strategies.
These modes must be run whenever major offloading activities are initiated in the
network and checked for security compromises and attack surfaces. These modes
can be executed in parallel or in the background system. Additional measures
to be adopted are listed below:

– Having a pre-determined offloading mechanism must be avoided, and deci-
sions must be taken by the entities involved in the offloading rather than the
centralised node.

– Controlling ϑ and TF,R to ensure that the switching time is lower than the
service time for the minimum application.
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– Intelligent systems can be implanted alongside the Near-RT RIC that can
run such strategic scenarios to identify the probability of attack based on
service classification.

– Servers must never be run to the maximum capacity, and the idle phase must
be planned using intelligent algorithms that can pick any misconfiguration
in the system.

– Stateless computing could be another potential avenue to consider to move
away from the threats posed by the legacy systems in the Near-RT RIC and
Non-RT RIC when interoperability between xApps is expected to impact
the network configurations significantly.

4 Conclusions

This article presented a background understanding of the O-RAN and its secu-
rity, followed by some prominent literature examining current security standards
and approaches. Following this, a particular case of abusive modelling is consid-
ered where an abusive adversary is designed to understand the impact of Near-
RT RIC. The idea of having such an adversary is to offer a strict threat model
which can check the security mechanisms of the network in the offloading sce-
nario. The article used Markov Decision Process (MDP) and a Fuzzy Inference
System (FIS), which uses SMOTE to generate a set of metrics that can offer a
high probability of attack in the transition mode to the adversary. This method-
ology provides a viewpoint on how an adversary forms predictive methods on
when to attack the system, which is followed by mitigation mechanisms for the
network to avoid it from happening. In future, we aim to consider parameters
from the live measurement report and formation of the MDP in real-time with
different traffic scenarios to examine security threats in O-RAN.
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