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Abstract—In this paper, we present an innovative approach to
spectrum management in cognitive radio networks (CRNs) aimed
at serving ultra-reliable low-latency communication (URLLC)
enabled secondary users (SUs). Unmanned aerial vehicles (UAVs)
are deployed for accurate and reliable spectrum sensing (SS),
enhancing cooperative spectrum sensing (CSS) effectiveness. A
distinctive aspect of our methodology is the integration of digital
twin (DT) technology, which, to our knowledge, has not been
explored previously in the context of CRNs for bandwidth assign-
ment to URLLC-enabled SUs. This integration facilitates more
sophisticated and adaptive management of spectrum resources.
Moreover, we propose a deep reinforcement learning (DRL)
framework incorporating a modified proximal policy optimiza-
tion (MPPO) algorithm. This algorithm is designed for better
stability and convergence, outperforming the standard PPO in
terms of faster convergence in the present URLLC transmission
latency minimization process. Simulation results indicate that
our proposed DT-based spectrum management and MPPO in
CRNs result in a 27.89% increase in CRN’s average throughput
and a 39.94% reduction in transmission latency compared to the
conventional equal resource allocation scheme.

Index Terms—Cognitive radio networks, deep reinforcement
learning, digital twin, spectrum sensing, ultra-reliable low-latency
communication.

I. INTRODUCTION

Wireless communication technologies proliferate and de-
mand improved spectrum efficiency (SE) to meet the growing
need for high data rates and widespread connectivity. Cognitive
radio networks (CRNs) allow secondary users (SUs) to use
the spectrum opportunistically, thus maximizing SE [1]. Yet,
ultra-reliable low-latency communication (URLLC) integration
into CRNs presents significant challenges due to its stringent
reliability and latency demands [2]. Existing studies investi-
gated self-organizing schemes for URLLC in device-to-device
communications within CRNs, proposing resource allocation
frameworks suitable for opportunistic spectrum access [3]. Chu
et al. developed a method using a successive convex approxi-
mation to address probabilistic interference in CRNs [4]. These
methods aimed to meet URLLC requirements and improve
spectrum sharing. However, they often underperform in com-
plex network scenarios and simplify practical implementation
details. Research turned to digital twin (DT) integration with
wireless networks, showing promise in resource optimization
and prediction [5], [6], though DT’s use in CRN spectrum
management remains limited.

The dual tasks of spectrum sensing (SS) and communication
in interweave CRNs become more challenging due to unpre-
dictable primary user (PU) activity and variable channel state

[7]. Mobile SUs introduce further complexity to spectrum al-
location, complicating bandwidth assignment for intercell and
intracell communication. The problem’s non-convex nature and
multiple constraints make finding closed-form solutions diffi-
cult. Deep reinforcement learning (DRL) is a capable approach
to address these intricate resource allocation issues, noted for
its adaptability and decision-making under uncertainty [6], [8].
The combination of DRL and DT could create a transformative
strategy for CRNs, allowing them to continuously improve
their policies without affecting the live network.

A. Motivations and Contributions of the Present Work

This work pioneers applying DT technology in interweave
CRNs for spectrum management, particularly for bandwidth
assignment in URLLC-enabled SUs. It relies on the advantages
of unmanned aerial vehicles (UAVs) for SS and employs a DT
framework on an edge server to enhance network visualization
and resource allocation for mobile SUs. Addressing the gap in
current literature, it explores the untouched potential of DT for
interweaving CRNs’ spectrum management and its significant
role in enhancing SE. A DRL framework incorporating a
modified proximal policy optimization (MPPO) algorithm is
introduced to navigate the resource allocation complexities in
non-convex optimization scenarios. The novel design of MPPO
ensures better stability and convergence over the standard PPO
algorithm [6], adapting specifically to the dynamic and intricate
demands of URLLC-focused mobile SUs in CRNs.

In summary, the notable contributions of this work are:
1) A UAV-based SS methodology integrated with satellite

service to enhance the reliability of CSS in CRNs.
2) The novel use of DT technology for spectrum man-

agement in CRNs, a first in the field for bandwidth
assignment to URLLC-enabled SUs, provides a flexible
platform for network experimentation and planning.

3) The MPPO algorithm, designed for resource allocation
in interweave mobile CRNs to minimize transmission
latency, is innovatively improved to offer better stability
and convergence for URLLC.

II. SYSTEM MODEL

Fig. 1 illustrates the proposed system model, which en-
compasses a single PUT, I = {1, 2, . . . , 𝐼} aerial UAVs
and B = {1, 2, . . . , 𝐵} ground-based URLLC service enabled
SUs. Notably, except for UAVs, every physical node in this
system is equipped with a single antenna. Each UAV has



K = {1, 2, . . . , 𝐾} number of antenna. UAVs are particularly
favored for SS due to their potential advantage in obtaining
a clear line-of-sight (LoS) from the PUT. From SS aspects,
all UAVs relay their local SS decision to a central satellite
for obtaining a global sensing decision. If the global CSS
determines that the PUT is idle, the satellite distributes the
available PU spectrum bands amongst the UAVs based on
their traffic load requirements. An SU must be affiliated with
a specific UAV to get URLLC service support.

Fig. 1: UAV-aided interweave CRNs under DT framework

The entire network’s DT underpins this spectrum allocation
among UAVs to serve its respective affiliated URLLC-enabled
SUs. DT at a mobile edge server hosts digital replicas of
all physical entities in the CRN as 𝑝𝑞 , where 𝑞 ∈ Q =

{1, 2, . . . , 𝑄}. The set is defined as 𝑝𝑞 ∈ {𝑝PUT
𝑞 ∪ 𝑝SAT

𝑞 ∪
𝑝

UAV{A}
𝑞 ∪ 𝑝SU{B}

𝑞 }. It’s imperative to note that these DTs
emulate the operations of their physical counterparts. For the
device associated with user 𝑝𝑞 , its digital twin representation
at a specific time point 𝑡 is given by [9]

𝑓𝐷𝑇 (𝑝𝑞) [𝑛] = Θ (D𝑛 [𝑛],S𝑛 [𝑛],M𝑛 [𝑛],ΔS𝑛 (𝑡 + 1)) , (1)

where, D𝑛 denotes the accumulated data related to the physical
device 𝑝𝑞 , which includes configuration and past historical
operational data. The term S𝑛 [𝑛] indicates the current opera-
tional state of the device 𝑝𝑞 , which encapsulates time-variant
multi-dimensional information.M𝑛 represents the collection of
behavior patterns for 𝑝𝑞 that are defined by various behavioral
dimensions. Lastly, ΔS𝑛 (𝑡 + 1) provides the state transition of
S𝑛 [𝑛] for the subsequent time slot 𝑡 + 1.

A. PU Spectrum sensing by UAVs

The channel gains from PUT to the 𝑖-th UAV are represented
by h𝑖 ∈ C1×𝐾 . Taking into account the Doppler effect due
to the UAV’s motion, and in the context of additive white
Gaussian noise (AWGN), the signal captured by the 𝑖-th UAV
from PUT at the discrete time index ‘𝑛’ is:

𝑦𝑖 [𝑛] = h𝑖𝑒 𝑗2𝜋 𝑓𝑖𝑛𝑇𝑠 𝑠[𝑛] + 𝑛𝑖 [𝑛], (2)

where 𝑠[𝑛] is the signal sent from PUT with zero mean and
a variance denoted as E[|𝑠[𝑛] |2] = 𝑃𝑝 . Symbol 𝑓𝑖 represents
the Doppler frequency shift due to the UAV’s motion. 𝑇𝑠 is
the sampling period and 𝑛𝑖 [𝑛] is the AWGN at the 𝑖-th UAV,
which also has zero mean and variance E[|𝑛𝑖 [𝑛] |2] = ℘𝑞 . The
Doppler frequency for the 𝑖-th UAV is calculated as:

𝑓𝑖 [𝑛] = V̂𝑖 [𝑛] cos(𝜚𝑖 [𝑛]) cos(𝜑𝑖 [𝑛])/𝜍 [𝑛], (3)

where V̂𝑖 [𝑛] is the magnitude of the relative velocity between
the 𝑖-th UAV and the PUT and 𝜚𝑖 [𝑛] ∈ [0, 𝜋/2] and 𝜑𝑖 [𝑛] ∈
[0, 2𝜋) are the elevation and azimuth angles of departure
(AoD) from the PUT to the UAV, respectively. 𝜍 [𝑛] denotes
the signal’s wavelength at discrete time index 𝑛. Considering
Rician fading, the channel is expressed as:

h𝑖 [𝑛] =
√︁
(PL)𝑖 [𝑛]

√︂
𝜅

𝜅 + 1
hLoS
𝑖 [𝑛] +

√︂
1

𝜅 + 1
hNLoS
𝑖 [𝑛], (4)

where 𝜅 is the Rician factor, denoting the power ratio of the
LoS component to the scattered paths. The (PL)𝑖 [𝑛] is the path
loss between PUT and the 𝑖-th UAV and given by:

(PL)𝑖 [𝑛] = 20 log10

(4𝜋 𝑓𝑐𝑑𝑖 [𝑛]
𝑐

)
, (5)

where 𝑓𝑐 is the carrier frequency, 𝑐 is the speed of light,
and 𝑑𝑖 [𝑛] is the distance between PUT and the 𝑖-th UAV.
The LoS component of the channel is determined as follows:
hLoS
𝑖
[𝑛] = 𝑎PUT (𝜃𝑖 [𝑛])aUAV (𝜙𝑖 [𝑛]), where 𝑎PUT (𝜃𝑖 [𝑛]) as the

scalar response of the PUT’s antenna whose response value is
set to 1 for simplicity, indicating a normalized response. While
the steering vector aUAV (𝜙𝑖 [𝑛]) is represented as:

aUAV (𝜙𝑖 [𝑛]) =
[
1, 𝑒 𝑗

2𝜋𝛿
𝜍

sin 𝜙𝑖 [𝑛] , .., 𝑒 𝑗
2𝜋𝛿
𝜍
(𝐾−1) sin 𝜙𝑖 [𝑛]

]T
, (6)

where 𝛿 represents the antenna separation distance. 𝜗𝑣 [𝑛]
represents the angle of arrival (AoA) of the signal from the
PUT to the 𝑖-th UAV at discrete time index 𝑛. T stands for
transpose of the vector. The non-LoS (NLoS) component of
the channel is modeled as follows:

hNLoS
𝑖 [𝑛] =

[
1, 𝑒 𝑗

2𝜋𝛿
𝜍 [𝑛] sin(𝜗𝑣 [𝑛] ) , .., 𝑒 𝑗

2𝜋𝛿
𝜍 [𝑛] (𝐾−1) sin(𝜗𝑣 [𝑛] )

]T
. (7)

For 𝑛 number of samples, which corresponds to a time
duration of 𝑇 = 𝑛 ×𝑇𝑠 , the energy received 𝐸𝑖 is calculated as
𝐸𝑖 =

∑𝑁−1
𝑛=0 |𝑦𝑖 [𝑛] |2. The decision statistic, 𝜁𝑖 , is thus: 𝜁𝑖 =

𝐸𝑖

𝜎2 .
This statistic 𝜁𝑖 is then gauged against a preset threshold 𝜆:

Decision(Φ) =
{

1 ; i.e., PU is present if 𝜁𝑖 > 𝜆
0 ; i.e., PU is absent if 𝜁𝑖 ⩽ 𝜆.

(8)

The threshold 𝜆 is established through analytical derivations,
factoring in the desired detection and false alarm probabilities.

B. Probability of PU Detection and False Alarm

Each UAV makes a local SS decision and forwards its
decision to the satellites for a global CSS decision.

1) Local SS decision at UAVs: The probability of a false
alarm (P 𝑓 𝑎) signifies the likelihood that the decision statistic
goes beyond the threshold in the absence of the PU, expressed
as P 𝑓 𝑎 = P(𝜁𝑖 > 𝜆 |𝐻0). Given the Gaussian nature of the noise
and accounting for the 𝑁 samples, the distribution of 𝜁𝑖 under
𝐻0 is chi-squared with 2𝑁 degrees of freedom, the P 𝑓 𝑎 is:

P 𝑓 𝑎 = 1 − 𝐹𝜒2
2𝑁

(
𝜆

𝜎2

)
, (9)

where 𝐹𝜒2
2𝑁

signifies the cumulative distribution function
(CDF) of the chi-squared (𝜒2) distribution with 2𝑁 degrees



of freedom. This is defined as𝐹𝜒2
2𝑁
(𝑥) = 1

Γ (𝑁 )
∫ 𝑥

0 𝑒−𝑡/2𝑡𝑁−1𝑑𝑡.
Here, Γ(𝑁) represents the gamma function. the probability of
PU detection (P𝑑) indicates the likelihood that the decision
statistic surpasses the threshold when the PU is actively
transmitting such that P𝑑 = P(𝜁𝑖 > 𝜆 |𝐻1). When the PU is
present, the distribution of 𝜁𝑖 under 𝐻1 (i.e., PU is present)
has a non-central chi-squared distribution with 2𝑁 degrees of
freedom and a non-centrality parameter 𝜆𝑠:

P𝑑 = 1 − 𝐹𝜒2
2𝑁

(
𝜆

𝜎2 ;𝜆𝑠
)
, (10)

where 𝜆𝑠 = 𝑁
𝑃𝑝 |ℎ |2
℘𝑞

. The aforementioned equations in (9) aid
in identifying the threshold 𝜆 for a given P 𝑓 𝑎, which is further
utilized to compute the associated P𝑑 .

2) Global CSS decision at Satellite: Each UAV forwards
its individual SS decision Φ ∈ {0, 1} to the satellite using a
dedicated time division multiple access (TDMA) slot, which
primarily experiences free space path loss. The global CSS
decision at the satellite is based on a majority voting rule. Let
Φ̄ =

∑𝐼
𝑖=1 Φ𝑖 represent the summation of local SS decisions,

then the global CSS decision Φglobal will be expressed as:

Φglobal =

{
0 if Φ̄ < 𝑁

2 ,

1 if Φ̄ ⩾ 𝑁
2 .

(11)

C. Analysis of SU Mobility Model

Using our prior work in [10], we calculate the probability
that the 𝑏-th SU is within the service area of UAV 𝑖, with
service radius 𝑟, as the SU moves uniformly at velocity 𝑣𝑏
in an urban grid of side ℓ. Denoting (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑏, 𝑦𝑏) as
the 2D service footprint coordinates of 𝑖-th UAV and 𝑏-th SU,
respectively, the probability P(𝐼 𝑖

𝑏
) is:

P(𝐼 𝑖𝑏) =
𝜋𝑟2

ℓ2 −
8𝑟3

3ℓ3 +
𝑟4

2ℓ4 . (12)

III. PROBLEM FORMULATION

In the present work, strategic bandwidth allocation to SUs
is critical to satisfy service requirements while adhering to
constraints like primary user receiver (PUR) interference pro-
tection, UAV power limits, data rate minimums, block length
caps, and URLLC latency thresholds. Our approach minimizes
URLLC downlink transmission latency for the mobile SUs
in CRNs. We utilize the Rician channel model, consider the
Doppler effect, and apply a specific path loss model, noting that
the URLLC vehicle receiver has a single antenna and operates
under space division multiple access (SDMA).

A. Serving Bandwidth to Mobile SUs

The 𝑏-th SU receives bandwidth (𝑊 𝑖
𝑏
) from the total avail-

able PU spectrum (𝑊max) through its affiliated 𝑖-th UAV. The
satellite dynamically allocates bandwidth to UAVs based on
their traffic demands, optimizing service quality and SE. Thus,∑︁𝐵

𝑏=1
𝑊 𝑖
𝑏 ⩽ 𝑊

uav
𝑖 ⩽ 𝑊max,∀𝑖 ∈ I, (13)

where 𝑊uav
𝑖

is the bandwidth allocated to the 𝑖-th UAV.

B. Throughput calculation for URLLC-enabled vehicle

Let g𝑏
𝑖

represent the channel from the 𝑖-th UAV, with 𝑖 ∈ I,
to the 𝑏-th URLLC-enabled SU vehicle. Given that g𝑏

𝑖
∈ C1×𝐾 ,

we define the total time dedicated to serving the mobile SU
as 𝑡. During this period, the registered 𝑖-th UAV serves for a
duration of 𝛼𝑡, while the remaining time, (1 − 𝛼)𝑡, is served
by other UAVs, denoted as 𝑗 UAVs. Here, 0 < 𝑗 < 𝐴 and
0 < 𝛼 ⩽ 1.

1) UAV to SU-vehicle channel model: The array response
vector for the UAV, equipped with its multiple antennas,
is defined as a(𝜙) =

[
1, 𝑒 𝑗

2𝜋
𝜆𝑤
𝑑 sin(𝜙)

, . . . , 𝑒
𝑗 2𝜋
𝜆𝑤
(𝐾−1)𝑑 sin(𝜙)

]
,

where 𝜙 represents the angle, which could be either AoD
or AoA, 𝜆𝑤 denotes the signal’s wavelength, 𝑑 signifies the
spacing between the antennas in the UAV’s array. Integrating
the LoS and NLoS components of the channel using AoD and
AoA, we can express the channel as:

g𝑏𝑖 (LoS) = 𝑎UAV (𝜙AoD)𝑎vehicle (𝜙AoA)∗, (14)

g𝑏𝑖 (NLoS) =
𝐿∑︁
𝑙=1

𝛽𝑙𝑎UAV (𝜙AoD,𝑙)𝑎vehicle (𝜙AoA,𝑙)∗, (15)

where 𝐿 is the number of multipath components and 𝛽𝑙 repre-
sents the complex gain for the 𝑙-th scatterer. Upon combining
the effects of pathloss, Rician fading, and the Doppler effect,
the overall channel model becomes:

g𝑏𝑖 =
1√︁

PL(𝑑𝑖,𝑏)

(√︂
𝜅

𝜅 + 1
g𝑏𝑖 (LoS)𝑒 𝑗2𝜋 𝑓𝑑𝑛𝑇𝑡

+
√︂

1
𝜅 + 1

g𝑏𝑖 (NLoS)𝑒 𝑗2𝜋 𝑓𝑑𝑛𝑇𝑡
)
, (16)

where 𝑑𝑖,𝑏 denotes the distance between the 𝑖-th UAV and the
𝑏-th mobile SU, 𝑇𝑡 is the transmission time, and ℎ represents
the altitude difference between the UAV and the SU. We define
the elevation angle 𝜃 as 𝜃 = tan−1 (ℎ/𝑑𝑖,𝑏). The path loss,
PL(𝑑𝑖,𝑏), is described as:

PL(𝑑𝑖,𝑏) =
{

PLLoS (𝑑𝑖,𝑏) if LoS is detected,
PLNLoS (𝑑𝑖,𝑏) otherwise.

(17)

For the LoS scenario, PLLoS (𝑑𝑖,𝑏) = 20 log10 (4𝜋𝑑𝑖,𝑏 𝑓𝑐/𝑐) +
𝛽LoS (ℎ), where 𝛽LoS is a height-dependent term for the UAV.
For the NLoS scenario: PLNLoS (𝑑𝑖,𝑏) = PLLoS (𝑑𝑖,𝑏) + 𝜉 (𝜃),
where 𝜉 (𝜃) is a correction factor contingent on the elevation
angle, typically derived from empirical data in urban contexts.

We consider the total transmission slot 𝑇 . A fraction of
this time, 𝛼𝑡, is served by the 𝑖-th UAV, while the remaining
time, (1 − 𝛼)𝑡, is served by other UAVs in the set 𝐽 =

{1, 2, .., 𝑗 , .., (𝐴 − 1)}. We break the time 𝑡 into 𝑛 slots, such
that 𝑛 × 𝑇𝑡 = 𝑇 . For the 𝑖-th UAV:

SINR𝑖 [𝑛] =
|g𝑏
𝑖
|2𝑃𝑖∑

𝑗≠𝑖 |g𝑏𝑗 |2𝑃 𝑗 + 𝜎2
𝑏

, (18)

where the term 𝜎2
𝑏

represents the noise variance in the system
and 𝑃𝑖 denotes the transmission power of the UAV. Given the



bandwidth 𝑊 𝑖
𝑏

and the probability in (12) for being UAV’s
services coverage, the URLLC rate for the 𝑖-th UAV is:

𝑅𝑖 [𝑛]=𝑊 𝑖
𝑏P(𝐼

𝑖
𝑏)

(
log2 (1+SINR𝑖 [𝑛])−

log2 (𝑒)
𝑄(𝜖)

√︂
𝑉

𝐵𝑖

)
, (19)

where
√︃
𝑉
𝐵𝑖

is a representation of the effective channel disper-
sion (𝑉) normalized by the finite block length (FBL) 𝐵𝑖 . Here,
𝑉 is expressed as 𝑉 = 1−(1 + SINR𝑖 [𝑛])−2 for AWGN channel
in the high SNR regime. Symbol 𝜖 represents an acceptable
packet error rate. The average rate over the duration 𝛼𝑡 is:
�̄�𝑖 =

1
𝑛𝑖

∑𝑛𝑖
𝑘=1 𝑅𝑖 [𝑘]. For the UAVs in set 𝐽:

𝑅 𝑗 [𝑛]=𝑊 𝑗

𝑏
P(𝐼 𝑗

𝑏
)
(
log2 (1+SINR 𝑗 [𝑛])−

log2 (𝑒)
𝑄(𝜖)

√︄
𝑉

𝐵 𝑗

)
(20)

The average rate for each UAV in set 𝐽 to serve 𝑏-th SU across
the duration (1−𝛼)𝑡 is �̄� 𝑗 = 1

𝑛 𝑗

∑𝑛
𝑘=𝑛𝑖+1 𝑅 𝑗 [𝑘]. The combined

average rate for all UAVs in set 𝐽 is �̄�𝐽 = 1
|𝐽 |

∑
𝑗∈𝐽 �̄� 𝑗 .

The average data rate for URLLC over the entire time slot
𝑡 is �̄� = 𝛼�̄�𝑖 + (1 − 𝛼) �̄�𝐽 . Meanwhile, successful CRN
transmissions occur primarily under non-interfering with PU
conditions, which means no PU activity and no false alarms.
This condition is modelled by P(𝐻0) (1−P 𝑓 ). The problematic
scenario of undetected PU activity, P(𝐻1) (1−P𝑑), is excluded
from our analysis due to potential interference. Hence, our rate
expression focuses solely on the non-interfering case:

�̂� = P(𝐻0) (1 − P 𝑓 ) �̄�. (21)

C. Interference Protection for PU Receivers

PUT transmissions may not always be detected, necessitating
protection for PURs due to their spectrum rights. We consider
𝑀 number of immobile PURs may encounter interference from
UAVs due to wrong CSS outcomes. Therefore, we impose an
interference protection to maintain PUR’s QoS as:

ℑ𝑚 = P(𝐻1) (1 − P𝑑)
I∑︁
𝑖=1

g𝑖𝑚𝑃𝑖 , (22)

where g𝑖𝑚 represents the channel gain which is modeled
similarly to UAV-SU channels.

D. Digital Twin and Computation Model

When transferring 𝐷𝑏 amount of data to the 𝑏-th SU from
the 𝑖-th UAV, our model calculates the required bandwidth as:

𝑊 𝑖
𝑏 [𝑛] =

𝐷𝑏 [𝑛](
log2 (1 + SINR𝑖 [𝑛]) − log2 (𝑒)

𝑄 (𝜖 )

√︃
𝑉
𝐵𝑖

) (23)

However, the DT may not always precisely mimic the real-
time channel state, which can result in inaccuracies in the
SINR estimation. These inaccuracies, in turn, can affect the
optimal bandwidth allocation. We quantify this discrepancy as
follows: Δ𝑊 𝑖

𝑏
[𝑛] = 𝑊 𝑖real

𝑏
[𝑛] −𝑊 𝑖DT

𝑏
[𝑛]. To compensate for this

discrepancy and ensure efficient spectrum usage, the DT must
adaptively adjust the bandwidth𝑊 𝑖DT

𝑏
[𝑛] based on its predictive

capabilities regarding future network demands and real-time

feedback. Accordingly, the real data rate �̂�real [𝑛] and the DT-
estimated data rate �̂�DT [𝑛] is used to adjust the anticipated
latency time to serve the 𝑏-th Secondary User (SU). Thus,
the total latency, including the adjustments made by the DT’s
estimations, is given by:

𝑇𝑏 [𝑛] =
𝐷𝑏 [𝑛]
�̂�real [𝑛]

+ 𝐷𝑏 [𝑛] �̂�DT [𝑛]
�̂�real [𝑛]

(
�̂�real [𝑛] − �̂�DT [𝑛]

) (24)

E. Formulation of the Objective Function

Our primary goal is to minimize the transmission latency
for URLLC-enabled SUs. To achieve this objective while
considering system limitations and ensuring quality of service
(QoS), the problem is mathematically formulated as follows:

min
{𝑊 𝑖

𝑏
[𝑛],𝑃𝑖 ,�̃� ,�̄� ,P𝑑 ,P 𝑓 𝑎}

𝑇𝑏 [𝑛] (25)

s.t: 𝐶1 : 𝑊 𝑖
𝑏 [𝑛] ⩽ 𝑊

uav
𝑖 ,

∑︁
𝑖
𝑊uav
𝑖 ⩽ 𝑊max ,∀{𝑏, 𝑖},

𝐶2 : ℑ𝑚 ⩽ ℑthsld, ∀𝑚,
𝐶3 : �̂�real [𝑛] ⩾ 𝑅thsld, �̂�DT [𝑛] ⩾ 𝑅thsld,

𝐶4 : 𝑇𝑏 [𝑛] ⩽ 𝑇thsld,

𝐶5 : SINR𝑖 [𝑛] ⩾ 0,
𝐶6 : P𝑑 ⩾ Pthsld

𝑑 , P 𝑓 𝑎 ⩽ P
thsld
𝑓 𝑎 ,

𝐶7 : 𝑃𝑖 ⩽ 𝑃max,∀𝑖,
𝐶8 : 𝑇 + 𝑇 ⩽ 𝑇,

where the constraint 𝐶1 enforces the bandwidth constraint. 𝐶2
protects the PURs’ QoS by limiting the unwanted interference.
𝐶3 ensures that the real and estimated data rates. 𝐶4 ensures the
total transmission latency doesn’t surpass the acceptable limit.
𝐶5 maintains the SINR quality. 𝐶6 assures the CSS reliability.
𝐶7 defines the UAV’s maximum transmission power budget,
and 𝐶8 restricts the total time requirements for CSS (𝑇) and
CRN’s communications (𝑇).

IV. DRL-BASED SOLUTION WITH DT ENHANCEMENT

We use a DRL approach augmented with a DT utilizing
a proposed MPPO algorithm. Our proposed MPPO is the
advancement of the traditional PPO [6], [8]. Including the DT
component helps estimate future traffic demands and channel
conditions to inform the DRL agent, enabling proactive and
adaptive strategy formulation for resource allocation, thus
reducing latency and enhancing the reliability of services.

1) State Space with DT Predictions: We define the
state space, S, to integrate the real-time and predicted
states provided by the DT. Each state s𝑡 ∈ S for time
step 𝑡 is expressed as a combination of the current ob-
served state sobs

𝑡 and the DT predicted state sDT
𝑡 , such that

s𝑡 = {sobs
𝑡 ∪ sDT

𝑡 }. The observed state at time 𝑡 is given
by sobs

𝑡 = {h𝑖 [𝑛], g𝑏𝑖 [𝑛], g𝑖𝑚 [𝑛],Φglobal [𝑛], Pthsld
𝑑

, Pthsld
𝑓 𝑎
, 𝑃max,

𝑊uav
𝑖
, 𝑅thsld,ℑthsld, 𝑇thsld, 𝐷𝑏 [𝑛]}, and the DT predicted state

is sDT
𝑡 = Ψ(s𝑡−1, a𝑡−1;ΘDT), where Ψ is the DT’s predictive

function (i.e., Ψ : S × A × Θ → S) parameterized by ΘDT,
and a𝑡−1 is the action taken at the previous time step.



2) Adaptive Action Space: The DRL agent’s action space,
A, is designed to be responsive to both the immediate and
predicted state space. Actions a𝑡 ∈ A at each decision epoch
are chosen considering the predictive insights from the DT:

a𝑡 = {𝑊 𝑖
𝑏 [𝑛], 𝑃𝑖 [𝑛], 𝑇, 𝑇, P𝑑 [𝑛], P 𝑓 𝑎 [𝑛]}

A. Predictive Reward Function

The reward function R (s𝑡 , a𝑡 ), crucial in the DRL agent’s
learning, is now influenced by both the immediate outcomes
and predictive assessments from the DT:

R (s𝑡 , a𝑡 ) = 𝛼1Δ𝑇𝑏 [𝑛] − 𝛼2
∑︁𝐽

I (C 𝑗 ) + 𝛼3RDT (sDT
𝑡 , a𝑡 ) (26)

where Δ𝑇𝑏 [𝑛] = (𝑇thsld − 𝑇𝑏 [𝑛]), RDT represents the reward
component based on DT’s predictions, and 𝛼3 adjusts the
impact of the DT’s predictive accuracy on the reward function.
The function I (C 𝑗 ) is a binary indicator yielding 1 if the 𝑗-th
constraint is violated and 0 otherwise.

B. Design of the Proposed MPPO-based DRL Algorithm

The actions a𝑡 ∈ A, derived from the policy 𝜋𝜃 , parameter-
ized by 𝜃, are evaluated for their probabilities 𝜋𝜃 (a𝑡 |s𝑡 ). The
main objective in MPPO is to optimize 𝜃 to maximize expected
rewards while adhering to the strict constraints of URLLC. The
gradient of the expected reward is given by:

∇𝜃 𝐽 (𝜃) = E
[
∇𝜃 log 𝜋𝜃 (a𝑡 |s𝑡 ) �̂�𝑡

]
, (27)

where �̂�𝑡 is an estimator that quantifies the advantage of
taking action a𝑡 in state s𝑡 . The MPPO objective function,
accommodating these adaptations, is formulated as follows:

𝐿MPPO (𝜃) = E
[

min
(
𝜋𝜃 (a𝑡 |s𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 )

�̂�𝑡 ,Clip
(
𝜋𝜃 (a𝑡 |s𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 )

, ð

)
�̂�𝑡

)
− 𝛽𝐶 (s𝑡 , a𝑡 )

]
+ 𝜆𝑝 · KL

[
𝜋𝜃old (·|s𝑡 )

𝜋𝜃 (·|s𝑡 )] , (28)

where 𝐶 (s𝑡 , a𝑡 ) represents the cost of constraint violations,
ð is the adaptive clipping parameter, and 𝜆𝑝 is the penalty
coefficient for the KL divergence term [6]. These strategic
adaptations ensure that MPPO is uniquely equipped to handle
the complex requirements of URLLC in CRNs, making it a
significantly more capable algorithm than standard PPO [6] in
this context. By using this adapted objective, MPPO optimizes
policy for resource distribution as outlined in Algorithm 1.

C. Computational Complexity Analysis of MPPO Algorithm

Denoting the number of matrix multiplications within the
policy network’s forward propagation as 𝑁𝑚, we express the
complexity as O

(
A × 𝑁𝑚 × 𝑁2.81

𝑙

)
, where 𝑁𝑙 is the neural net-

work’s layer count. The gradient complexity for the log prob-
ability of the policy network equates to O

(
A × 𝑁𝑚 × 𝑁3

𝑙

)
.

Implementing variance reduction measures with overhead 𝑉𝑟
yields a complexity of O

(
𝑉𝑟 × S × A × 𝑁2.81

𝑙

)
. The environ-

mental interactions, noted as 𝐶𝑒, contribute a complexity of
O

(
𝐶𝑒 + 𝑇×S×Abatch size

)
, where 𝑇 is the temporal scale of interaction.

Algorithm 1 Modified PPO algorithm for URLLC in CRNs.
Require: Initial policy parameters 𝜃 , value function parameters 𝜙, learning

rate 𝜉 , adaptive clipping parameter ð, penalty coefficient 𝛽, KL divergence
coefficient 𝜆𝑝 , number of iterations 𝑁 , convergence threshold 𝛿𝑀 ,
parameter convergence threshold 𝛿𝜃 .

1: Initialize performance metric list 𝑀 = [ ]
2: for 𝑛 = 1 to 𝑁 do
3: T ← {𝜏𝑖 }𝑚𝑖=1 where 𝜏𝑖 = { (s𝑡 , a𝑡 ,R (s𝑡 , a𝑡 ) , s𝑡+1 ) }𝑇𝑖𝑡=1 are trajecto-

ries collected under policy 𝜋𝜃old .
4: for each trajectory 𝜏𝑖 ∈ T do
5: Calculate 𝛿𝑡 = R (s𝑡 , a𝑡 ) + 𝛾𝑉𝜙 (s𝑡+1 ) − 𝑉𝜙 (s𝑡 )
6: Compute advantage �̂�𝑡 = 𝛿𝑡 + (𝛾𝜆𝑝 ) �̂�𝑡+1
7: Assess constraint 𝐶 (s𝑡 , a𝑡 ) = max{0, 𝑔 (s𝑡 , a𝑡 ) − 𝑐}
8: end for
9: Update 𝜃 by applying the MPPO gradient, incorporating KL diver-

gence:

∇𝜃𝐿MPPO (𝜃 ) = Ê𝑡
[
min

(
𝜋𝜃 (a𝑡 |s𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 )

�̂�𝑡 ,

Clip
(
𝜋𝜃 (a𝑡 |s𝑡 )
𝜋𝜃old (a𝑡 |s𝑡 )

, 1 − ð, 1 + ð
)
�̂�𝑡

)
− 𝛽𝐶 (s𝑡 , a𝑡 )

]
+ 𝜆𝑝 · KL

[
𝜋𝜃old ( · |s𝑡 )

𝜋𝜃 ( · |s𝑡 ) ]
10: Update 𝜙 by minimizing the value function loss:

𝐿MPPO
VF (𝜙) =

(
𝑉𝜙 (s𝑡 ) − 𝑅𝑡

)2 where 𝑅𝑡 =
∑︁∞

𝑘=0
𝛾𝑘R (s𝑡+𝑘 , a𝑡+𝑘 )

11: Dynamically adjust 𝛽 to maintain constraint satisfaction:

𝛽 ← 𝛽 + 𝛼𝛽 ·
(
Ê𝑡 [𝐶 (s𝑡 , a𝑡 ) ] − 𝑑

)
12: 𝑀 ← RecordMetric(𝜋𝜃 ), for instance, 𝑀 ← Ê𝑡 [R (s𝑡 , a𝑡 ) ].
13: if |𝑀𝑛 − 𝑀𝑛−1 | < 𝛿𝑀 then Break {Convergence based on 𝑀}
14: if ∥ 𝜃𝑛 − 𝜃𝑛−1 ∥2 < 𝛿𝜃 then Break {Convergence based on 𝜃}
15: end for
16: return 𝜋𝜃 , 𝑉𝜙

V. NUMERICAL RESULTS AND ANALYSIS

This section presents a comprehensive evaluation of the
proposed MPPO algorithm developed for URLLC services in
CRNs. The parameters used in the simulation are as follows:
number of UAVs 𝐼 = 3, number of antennas in each UAU
𝐾 = 4, number of URLLC service enabled SUs 𝐵 = 3,
distances (𝑑𝑖) from PUT to UAVs (100, 5000) meters, the side
length of squared service grid area ℓ = 200 meter, UAV’s
service radius (𝑟) is 50 meter, 𝑓𝑐 = 3 GHz, 𝑃𝑝 = 0.1 watt,
P(𝐻0) = 0.7, P(𝐻0) = 0.3, 𝑇 = 200 ms, 𝑁 = 200, 𝑊max = 30
KHz, 𝑃max = 1 watt, noise 𝜎2

𝑏
= −120 dBm, data segment

size 𝐷𝑏 = 10 Kb, 𝜖 = 10−5, 𝐵𝑖 = 256 bits, Pthsld
𝑑

= 0.95,
Pthsld
𝑓 𝑎

= 0.05, 𝑅thsld = 1 mbps, UAVs’ mean velocity V̂ = 40
Km/h, SUs’ mean velocity 𝑣𝑏 = 60 Km/h, ℑthsld = −120
dBm, 𝑇thsld = 100 ms. Unless we specify a new value, the
aforementioned values remain constant during simulations.

In our MPPO algorithm, we set 𝜉 as 10−4, while the penalty
coefficient 𝛽 starts at 0.01. The MPPO iterates 𝑁 = 3000
times, with convergence thresholds 𝛿𝑀 and 𝛿𝜃 set to 0.01 and
10−5, respectively. We use a discount factor 𝛾 of 0.99 and a
generalized advantage estimate (GAE) parameter 𝜆𝑝 of 0.95,
with a clipping parameter ð of 0.2 and update rate 𝛼𝛽 of 10−3.
The policy and value networks used three hidden layers, each
comprising 128 neurons employing ReLU activation functions.
The output layer utilizes a softmax activation for discrete
actions and a linear activation for value predictions. These
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Fig. 2: An analysis of various performance metrics for the proposed work.

networks are optimized using the Adam optimizer.
Fig. 2a depicts the convergence of our MPPO algorithm,

plotting episode count against normalized rewards from 0 to 1.
The MPPO achieves quicker convergence by the 2000-episode
mark and yields 34.64% higher rewards than conventional PPO
by the 3000-th episode, demonstrating its efficiency. This supe-
riority is attributed to MPPO’s refined policy updates compared
to PPO, potentially enabling more efficient exploration and
exploitation of the learning environment.

Fig. 2b delineates the throughput efficacy of MPPO relative
to the conventional PPO in the present interweave CRNs,
utilizing DT technology across varying PU detection thresholds
(Pthsld
𝑑

). The data affirm that MPPO transcends PPO in through-
put across the spectrum of Pthsld

𝑑
values. The incorporation of

DT notably strengthens both algorithms, with MPPO achieving
a marked throughput augmentation of 27.89% over PPO when
Pthsld
𝑑

= 1, underpinning the utilization of DT. Further analysis
reveals that MPPO with DT increases the average throughput
in CRNs by 38.39% compared to without involvement of DT
technology. This enhancement is attributable to DT’s capacity
for real-time network mirroring and historical data analysis,
facilitating refined resource allocation decisions conducive to
optimized spectrum use and elevated throughput in CRNs.

Fig. 2c presents the latency behavior as a function of
the maximum available bandwidth (𝑊max) and the number
of SUs under the application of DT and MPPO. The 3D
surface plot shows that as the bandwidth allocation per user
increases, there is a significant decrease in URLLC service
latency, underscoring the bandwidth’s impact on achieving
lower latency. Notably, even with more SUs, the application
of DT and MPPO maintains the latency below the 100 ms
threshold when adequate bandwidth is provided.

Fig. 2d presents an analysis of URLLC transmission latency
with respect to the FBL size, comparing the performance of the
proposed MPPO algorithm, conventional PPO, and a baseline
strategy employing equal resource allocation with DT. The
graph indicates that the latency decreases for all strategies
as the FBL size increases, which is expected since larger
block sizes generally allow more efficient encoding schemes,
reducing the time for successful transmission. Notably, the
proposed MPPO with DT consistently achieves lower latencies
across all block lengths than the conventional PPO with DT
and the equal resource allocation strategy with DT. At an FBL

of 256 bits, the MPPO with DT achieves a latency reduction
of approximately 19.98% over PPO and approximately 38.94%
over the equal resource allocation with DT.

VI. CONCLUSIONS

This work developed a UAV-assisted resource allocation
framework for URLLC services in interweave CRNs, utilizing
an MPPO-based DRL strategy for minimizing transmission
latency. As confirmed by our simulations, integrating DT
technology with the proposed MPPO exhibited superior latency
reduction and throughput improvement compared to conven-
tional PPO and equal allocation methods. At a block length
of 256 bits, MPPO with DT achieved a latency reduction
of 19.98% over PPO and 38.94% over equal allocation with
DT. Furthermore, with a PU detection threshold set to 1,
MPPO realized a throughput increase of 27.89% compared
to conventional PPO. These findings highlight the benefits of
incorporating DT into advanced DRL algorithms, suggesting
substantial enhancements in CRN performance and the fulfill-
ment of URLLC requirements.
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