
Quantum-Driven Context-Aware Federated Learning
in Heterogeneous Vehicular Metaverse Ecosystem

Bishmita Hazarika∗, Keshav Singh∗, Trung Q. Duong†, and Octavia A. Dobre†
∗National Sun Yat-sen University, Taiwan (e-mail: keshav.singh@mail.nsysu.edu.tw)
†Memorial University of Newfoundland, Canada (e-mail: {tduong, o.dobre}@mun.ca)

Abstract—In the rapidly evolving domain of vehicular
metaverse, this study introduces a cutting-edge quantum-
based decentralized and heterogeneity-aware federated learning
framework for vehicular metaverse named QV-MetaFL, which
stands as a testament to the innovative fusion of quantum
computing principles with federated learning (FL). This
framework is ingeniously tailored to address the challenges in
a vehicular metaverse, offering a cost-efficient and adaptive
solution for the dynamic vehicular landscape. QV-MetaFL is
strengthened by the quantum sequential-training-program (Q-
STP) algorithm, a quantum-based sequential training program
that transforms model training, reducing communication costs
and adeptly managing vehicle states. Complementing this, the
quantum vehicle-context-grouping (Q-VCG) mechanism groups
vehicles based on contextual data similarity, effectively tackling
the complexities of data heterogeneity. The synergy of Q-
STP and Q-VCG culminates in the QV-MetaFL algorithm, a
decentralized, efficient, and context-aware quantum federated
learning (QFL) process that redefines learning dynamics in the
vehicular metaverse. Additionally, our research introduces an
innovative composite loss function that amalgamates classical loss
metrics with quantum parameter regularization, deftly addressing
quantum sensitivity to noise. The effectiveness of the QV-MetaFL
framework is rigorously validated through comprehensive
simulations, with its performance meticulously compared against
various adaptations, showcasing its transformative capabilities
within the vehicular metaverse ecosystem.

I. INTRODUCTION

THE next-generation vehicular metaverse presents
formidable challenges, including scalability, complexity,

data diversity, precision in data management, and security.
While classical federated learning (CFL) offers benefits in
collaborative model training and data privacy, its suitability
for addressing the dynamic and heterogeneous nature of the
vehicular metaverse remains uncertain [1]. Despite insights
gained from decentralized CFL applications in the Internet
of Vehicles (IoV) [2] and industrial metaverse domains,
challenges such as data inconsistency, model obsolescence,
and scalability issues continue to raise questions about its
efficacy within the broader vehicular metaverse context [3].

In this context, quantum federated learning (QFL) emerges
as a promising solution to address CFL limitations [4].
Leveraging quantum neural networks (QNN), QFL offers
advanced data processing, model precision, and enhanced
security, well-suited for the dynamic vehicular metaverse.
QFL adoption is essential for future-proofing systems in this
rapidly advancing field, mitigating the risk of obsolescence.
Yet, practical QFL application faces challenges such as
heterogeneous data integration, increased computational
demands, and quantum-specific issues [5]. On that note,
the authors in [6] have proposed an efficient FL system

for the industrial metaverse, addressing challenges like non-
informally-identically-distributed (non-i.i.d.) data, learning
forgetting, and limited bandwidth; however, its reliance on
traditional computing methods limits its applicability in
the quantum-centric, dynamic, and data-intensive vehicular
metaverse. In [7], the authors propose a decentralized and
secure QFL framework, leveraging blockchain to enhance
transparency and robustness, but the potential limitation lies
in its adaptability to the dynamic network and handling
of heterogeneous data inherent. Overcoming these hurdles
is pivotal for QFL’s evolution into a key component
of our future, enhancing the next-generation metaverse’s
computational capabilities. However, current research has yet
to fully explore quantum techniques, particularly in managing
diverse contextual data.

Addressing this gap, our study introduces a novel
framework: a decentralized, context-aware, quantum-based
federated learning model. This framework is designed with
scalability in mind, making it suitable for large-scale
deployment. It efficiently tackles data heterogeneity challenges
while maintaining cost-effectiveness and adapting to the
dynamic nature of the vehicular metaverse. The primary
contributions of this research can be outlined as follows:

1) We introduce the quantum-based decentralized and
heterogeneity-aware federated learning framework for
vehicular metaverse (QV-MetaFL framework) which
innovatively merges quantum computing principles with
federated learning, a novel approach that harnesses the
strengths of both domains to optimize learning processes
in a distributed vehicular metaverse.

2) Next, we design the quantum sequential-training-program
(Q-STP) algorithm, a quantum-based sequential training
program that significantly reduces communication costs
and ensures robust model training within our QV-MetaFL
framework by dynamically managing the operational
states of vehicles.

3) Further, we introduce quantum vehicle-context-grouping
(Q-VCG), an innovative and scalable quantum-driven
mechanism for vehicle grouping based on contextual data
similarity to address the data heterogeneity issues in
model training.

4) Subsequently, we integrate Q-STP and Q-VCG into the
QV-MetaFL framework, leading to the creation of the
QV-MetaFL algorithm. This facilitates a decentralized,
efficient, and context-aware QFL process.

5) Additionally, our research includes a composite loss
function that merges classical loss metrics (mean

square error and Huber loss) with quantum parameter
regularization to mitigate the quantum sensitivity to noise.

6) Finally, we assess the effectiveness of our framework
through simulations. The comparative performance
analysis of the QV-MetaFL algorithm with its various
adaptations offers insightful benchmarks and highlights
its capabilities within the framework’s ecosystem.

II. SYSTEM MODEL

In this study, we explore a suburban vehicular metaverse
environment comprising K vehicles, as depicted in Fig. 1,
equipped with intelligent agents, each outfitted with quantum
processors, real-world data collection sensors, sophisticated
AI functionalities, and state-of-the-art connectivity modules.
Each of these vehicles, or “clients” in the FL context, is
engaged in an intricate interplay of both learning and sharing.
They consistently enhance their localized QNN models and
occasionally synchronize with a comprehensive global model
hosted on an edge server. Multiple edge servers, serving as
aggregators, enable independent and concurrent global model
updates. Our QV-MetaFL framework operates over t rounds,
each divided into r time slots. During these slots, vehicles
refine models, apply the quantum parameter shift rule for
gradient calculation, and communicate updates to the edge
server. Communication decisions are optimized through mode
indicators for adaptability and efficiency. The central server
models are updated based on all vehicle inputs. Scheduled
synchronizations, governed by Rsync, guarantee consistent
alignment with the global model for all vehicles, irrespective
of their individual communication frequencies.

Fig. 1: An illustration of QV-MetaFL based vehicular metaverse framework.

III. QUANTUM SEQUENTIAL-TRAINING-PROGRAM

In the dynamic realm of vehicular metaverses intersecting
with quantum environments, managing communication
overhead is crucial. The complexity of quantum data and
the ever-evolving vehicular metaverse pose scalability and
robustness challenges. An optimized approach is vital to
balance communication efficiency with model integrity. To
address this, we propose two key operational modes for
vehicles within the FL process.
1. Streaming Mode: An operational state in which a vehicle
actively participates in quantum streaming for FL.
2. Calibration Mode: An operational state in which a vehicle

focuses on stabilizing its local model using quantum techniques
without actively participating in quantum streaming.

We formulate the optimization problem, aiming to minimize
communication costs, as:

(P1) : min
Mi,Ci,W

(t)
i ,U

(t)
i

∑N

i=1
CCi

s.t.(C.1) Mi ∈ {0, 1} ∀i ,
(C.2) CCi ≥ 0 ∀i
(C.3) Li(t) = U(Li(t− 1), Di(t)) if Mi = 1, ∀i ,
(C.4) Li(t) = S(Li(t− 1), Di(t)) if Mi = 0, ∀i ,
(C.5) W

(t)
i , if Mi = 1, ∀i ,

(C.6) U
(t)
i , if Mi = 1 or Mi = 0, ∀i . (1)

Here, in constraint C.1, Mi serves as a binary indicator for the
quantum mode:

Mi =

{
1 if di > T and CCi ≤ Limitsi
0 otherwise

(2)

Here, di > T ascertains if the vehicle i is sufficiently distant
from the server, surpassing thresholdT, to engage the quantum
streaming mode. Concurrently, CCi ≤ Limitsi ensures
that vehicle i’s communication cost adheres to the limit,
Limitsi = m mbps per vehicle× vehicle to bandwidth ratio×
OHF, where OHF stands for overhead factor. Both conditions
must concur for Mi to be 1, indicating the vehicle’s operation
in the quantum streaming mode. Conversely, Mi defaults to 0,
denoting calibration mode. Additionally, C.2 mandates non-
negative communication costs. C.3 postulates that quantum
updates through operation U are applied to the local model
Li(t− 1) of vehicle i at round t using data Di(t) solely when
Mi = 1. Further, C.4 underscores that operation S is triggered
when Mi = 0 (representing the calibration mode), C.5 and C.6
respectively elaborate on the nuances of quantum transmissions
W

(t)
i and quantum update exchanges U (t)

i contingent on the
quantum mode.

To address the problem outlined by P1, it is crucial first
to comprehend the communication cost within the framework.
While there are a multitude of factors in practical scenarios that
determine communication costs, we will center our attention
on a select group of pivotal parameters for simplicity and
computational efficiency: di: the distance between vehicle i
and server, b: the available communication bandwidth, si: the
size of the quantum update or data transmitted by vehicle i,
and e: the transmission rate. The communication cost is:

CCi =
si
e
+
si
b
· di , (3)

where si
e and si

b · di represent the time it takes to transmit the
quantum update locally, and over to the server.

To navigate the inherent challenges and elevated
communication costs in QFL, we introduce the quantum-
based sequential training program called Q-STP. Tailored
for the vehicular metaverse, Q-STP is a dynamic technique
that effectively shifts between quantum streaming and
calibration modes, respecting the ever-evolving vehicular data
landscape. It leverages quantum methodologies to achieve

optimal training, all the while slashing communication
overhead. The Q-STP initiative commences with parameter
and hyperparameter initialization, setting each vehicle’s CCi

to zero. Each iterative round encompasses:
1) Calculate CCi: For each vehicle i, it computes CCi.
2) Mode Switching: From 2, if Mi = 1, it

activates the quantum streaming mode by setting
STREAMING_MODE_ACTIVE to 1.

3) Mode Counter: Continuously monitoring and switching
modes might introduce its own overheads. Therefore we
introduce ModeCounteri as a delay before transitioning
from one mode to another for a specific vehicle i. This
counter keeps track of the number of consecutive rounds a
vehicle meets the conditions for its current mode. A mode
switch for vehicle i will only occur once ModeCounteri
reaches a pre-defined transition threshold, H.

4) QFL: Depending on the active mode, the algorithm
conducts QFL with a certain number of epochs. If Mi =
1, it sets STREAMING_TRAINING to true; otherwise, it
sets CALIBRATION_TRAINING to true.

For a comprehensive understanding, the Q-STP is detailed in
Algorithm 1 where the epochs for streaming and calibration
are denoted as S Epochs and C Epochs, respectively.

IV. QUANTUM VEHICLE-CONTEXT-GROUPING

Although the Q-STP process reduces communication costs,
data heterogeneity in QFL presents a challenge that impedes
its ultimate efficiency. Vehicles ideally need to maintain similar
data distributions to achieve the best performance outcomes.
Given the vast scope of the vehicular metaverse, a scalable
and decentralized solution becomes imperative. With this in
mind, we present an optimization problem, focusing on training
vehicles based on data context similarity as

(P2) : max
Ωij

∑V

i=1

∑V

j=1
j ̸=i

similarity_score(i,j) · Ωij

s.t.(C.7) Ωij ∈ {0, 1} ∀i ̸= j, ∀(i, j) ∈ {1, . . . ,K} ,
(C.8) Ωij = Ωji ∀(i, j) ∈ {1, . . . ,K} ,

(C.9)
∑K

j=1
j ̸=i

Ωij = 1, ∀i ∈ {1, . . . ,K} ,

(C.10) Ωii = 0,∀i ∈ {1, . . . ,K} , (4)

where the contextual data are based on the vectors-
Geographical Location (lat, long): (V1, V2), (speed):
V3, X-coordinate: V4, Y-coordinate: V5, Bandwidth: V6.

To navigate the diverse data landscape in the dynamic
metaverse and to address P2, we introduce a quantum-
driven vehicular context grouping mechanism, called Q-VCG
which groups vehicles by their contextual data similarities.
Each formed group then embarks on independent quantum
training on distinct edge servers. By harnessing the power
of data similarity, we optimize QFL and tackle the inherent
challenges posed by data diversity. This strategy culminates
in a decentralized, scalable training system. Remarkably, its
design allows for the modulation of group sizes based on the
count of vehicles, ensuring consistent adaptability to the ever-
evolving vehicular metaverse. We determine the similarity of

Algorithm 1 Q-STP for Communication Cost Minimization
1: Initialize parameters and hyperparameters.
2: Initialize CCi ← 0 for each vehicle i.
3: Initialize Mi ← 0 for each vehicle i.
4: Initialize ModeCounteri ← 0 for each vehicle i.
5: for each round do
6: dynamics metrics← calculate dynamics metrics()
7: for each vehicle i do
8: di ← dynamics metrics[vehicle][‘distance’]
9: si ← dynamics metrics[vehicle][‘data size’]

10: CCi ← Equation (3).
11: if dynamics metrics[i][‘metric’] > T and

CCi ≤ Limitsi then
12: if Mi = 0 then
13: ModeCounteri ← 0
14: end if
15: Mi ← 1
16: ModeCounteri ←ModeCounteri + 1
17: else
18: if Mi = 1 then
19: ModeCounteri ← 0
20: end if
21: Mi ← 0
22: ModeCounteri ←ModeCounteri + 1
23: end if
24: if ModeCounteri < H then
25: Continue
26: end if
27: end for
28: for each vehicle i do
29: if Mi = 1 then
30: for each epoch in S Epochs do
31: STREAMING_TRAINING=TRUE.
32: end for
33: else
34: for each epoch in C Epoch do
35: CALIBRATION_TRAINING=TRUE.
36: end for
37: end if
38: end for
39: if dynamics change detected() then
40: if STREAMING_MODE_ACTIVE=1 then
41: STREAMING_MODE_ACTIVE← 0
42: else
43: STREAMING_MODE_ACTIVE← 1
44: end if
45: end if
46: end for

data between vehicles, i and j, using the cosine similarity
metric among their datasets, similar to [8]. The magnitude
is calculated as ||V|| =

√
V 2
1 + V 2

2 + V 2
3 + V 2

4 + V 2
5 + V 2

6 .
Next, we compute the normalization of each factor such that
V̂n denotes the normalized nth factor (n = 6). Thus, to
compute the cosine similarity between vehicles i and j, we
first calculate the dot product of each normalized vector,
followed by their cumulative Euclidean norms V̂i and V̂i.
Finally, the cosine similarity score between vehicles i and j is:
cos_sim(i,j) = ·

∥V̂i∥·∥V̂j∥
. This iterative process determines

similarity for each vehicle pair, with a higher cos_sim(i,j)

score indicating greater contextual data similarity. Furthermore,
Q-VCG adheres to the following conditions:

• The maximum number of groups, denoted as G, does not
exceed β ×K, where β represents the proportion of the
total vehicles.

• A group must comprise at least Kmin vehicles. If a vehicle

i is not part of a group with a minimum of Kmin vehicles,
it will not engage in the training.

• During a specific training round t, a vehicle, denoted as
i, remains exclusive to one group.

• Vehicles i and j share a group only if their similarity score
surpasses a predetermined threshold, Sim_Thres. This
threshold is configured based on a specific percentile P of
all the similarity values recorded in that round, ensuring
adaptability to potential shifts in data distribution.

The comprehensive Q-VCG methodology is elaborated upon
in Algorithm 2.

Algorithm 2 Q-VCG for Optimal Vehicular Grouping
1: Initialize parameters and hyperparameters.
2: Initialize G empty lists for grouped vehicles.
3: Initialize sim_values as an empty list.
4: for each round do
5: for each vehicle i do
6: for each vehicle j ̸= i do
7: Calculate cos_sim(i,j).
8: Append cos_sim(i,j) to sim_values.
9: end for

10: end for
11: Sim_Thres← percentile(sim_values, P)
12: for each vehicle i do
13: if vehicle i is not already in a group then
14: Create group G and add vehicle i to it.
15: for each potential group member (vehicle j) do
16: Calculate cos_sim(i,j).
17: if cos_sim(i,j) > Sim_Thres then
18: Assign vehicle j to vehicle i’s group.
19: end if
20: end for
21: end if
22: end for
23: end for

V. DECENTRALIZED QFL FOR VEHICULAR METAVERSE

We leverage the Q-STP and Q-VCG algorithms and
design a quantum-based decentralized and heterogeneity-aware
federated learning framework for vehicular metaverse named
QV-MetaFL framework. In this framework, the QV-MetaFL
algorithm is designed to handle data heterogeneity in a cost-
efficient way while maintaining a robust quantum environment.

In the QV-MetaFL framework, each vehicle i has a local
model (Li) initialized. This model is represented by the
parameterized quantum circuit Li(θi) = UQNN(θi) in the
context of QNN, where θi represents the set of trainable
parameters for vehicle i and UQNN denotes the parameterized
quantum unitary (circuit) for the QNN of vehicle i. Next,
updating the local model involves quantum circuits with
parameter shifts for gradient calculations given as

∆θi = −η∇Llocal(Li) , θinew = θi +∆θi , (5)

where ∇Llocal(Li) is the gradient of the local loss with respect
to the parameters of the QNN, η is the learning rate and θinew
are the updated parameters after a given update step. Next, we
derive the local gradients by applying (9), which is derived
using Theorem 1 provided below:

Theorem 1 (Quantum Parameter Shift Rule): Given a
quantum circuit with a loss function Llocal(θ), the gradient with
respect to its parameter θin can be approximated as:

∂Llocal

∂θin
≈

Llocal(θin + π
2)− Llocal(θin − π

2)

2
. (6)

Proof: Starting with the general concept of a derivative:

lim
h→0

f(x+ h)− f(x)

h
= f ′(x). (7)

From the central finite difference approximation:
∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
. (8)

By applying (8) with h = π
2 , specifically valid for

parameterized quantum circuits due to their unitary nature [9]:

∂Llocal

∂θin
≈

Llocal(θin + π
2)− Llocal(θin − π

2)

2
. (9)

Next, the global model is aggregated using the gradient:
∆θGg

= −η∇Lglobal(MGg
) , (10)

θGgnew = θGg
+∆θGg

, (11)

where θGg
is the set of trainable parameters for the global

model of the group Gg . The step r mod Rsync = 0 ensures
that vehicles that do not send updates in every time slot can
still sync with the global model periodically, where Rsync

is the synchronization time. Consequently, to counteract the
noise sensitivity inherent in quantum frameworks, we utilize a
composite loss function, blending mean square error (MSE) for
precision and Huber loss for outlier resilience. This approach
balances prediction accuracy with robustness to anomalies.
Thus, the loss function is formulated as:
Ltotal(y, ŷ) = γ1 · MSE(y, ŷ) + γ2 · Huber(y, ŷ) + γ3 · R(θ) ,

(12)

where y is the actual output, ŷ is the predicted output,
{γ1, γ2, γ3} are the hyperparameters that balance the three
components of the loss, and R(θ) is the regularization
term (using L2 regularization) penalizing large values of the
parameters to handle data heterogeneity.

In Algorithm 3, the QV-MetaFL algorithm determines
convergence dynamically through the reduction rate of the loss
value. Let Lp and Lc represent the previous and current loss
values, respectively. The percentage decrease, ∆L, is defined
as: ∆L =

Lp−Lc

Lp
. Convergence is deemed achieved when

∆L falls below a set threshold W for Y consecutive rounds,
employing a counter mechanism for tracking.

VI. EXPERIMENT

This section outlines our experimental setup.

A. Dataset Preparation

To prepare data for quantum computation, classical dataset
representations are first converted to a quantum-encoded
format. Utilizing the MNIST dataset, we extract 100 images of
digits ‘0’, ‘1’, and ‘2’ through the Tensorflow Python library.
Given our emphasis on a vehicular context, we derive vehicular
attributes from these MNIST images as follows:

Algorithm 3 QV-MetaFL framework with Q-STP and Q-VCG
1: Initialize global parameters and hyperparameters.
2: Initialize G empty lists for grouped vehicles.
3: Initialize global models MG for each group.
4: Initialize local models Li for each vehicle i.
5: Initialize CCi and mode indicators Mi for each vehicle i.
6: for each round do
7: Calculate vehicle dynamics using Q-STP.
8: Form vehicle groups using Q-VCG.
9: for each group Gg do

10: Initialize the edge server for group Gg .
11: Sync the global model MGg with the edge server.
12: for each time slot r do
13: for each vehicle i in group Gg do
14: Update the local model Li.
15: Calculate local gradients.
16: if Mi = 1 then
17: Send gradients to the edge server.
18: Update global model MGg using received gradients.
19: Send model update to the vehicle i.
20: end if
21: end for
22: if r mod Rsync = 0 then
23: for each vehicle i in group Gg do
24: if Mi = 0 then
25: Send gradients to the edge server.
26: Update MGg using received gradients.
27: Send model update to all vehicles in the group.
28: end if
29: end for
30: end if
31: function CONVERGENCE(Gg , Lp, counter)
32: Calculate Lc for group Gg .
33: ∆L = (Lp − Lc)/Lp
34: if ∆L <W then
35: counter = counter + 1
36: if counter ≥ Y then return True
37: elsereturn False
38: end if
39: else
40: counter = 0 return False
41: end if
42: end function
43: end for
44: end for
45: end for

1) Speed: Determined by the image’s average pixel intensity:∑28
i=1

∑28
j=1 PixelValue(i,j)
28×28 .

2) Coordinate: (X, Y) coordinates are obtained
from the image digit’s center of the mass.
Here, X =

∑28
i=1

∑28
j=1 i×PixelValue(i,j)

TotalPixelValue and

Y =
∑28

i=1

∑28
j=1 j×PixelValue(i,j)

TotalPixelValue .
3) Distance: Computed as the distance between the image’s

center and the digit’s center of mass, given by√
(X − 14)2 + (Y − 14)2.

4) Available Bandwidth: This is the count of pixels
exceeding the threshold of 128. It is calculated
as

∑28
i=1

∑28
j=1 Θ(PixelValue(i, j) − 128), using the

Heaviside step function, Θ().

With vehicular features sourced from MNIST images, we then
translate this data into quantum states using the Cirq and
TensorFlow Quantum (TFQ) libraries [10]. Each vehicular
attribute undergoes encoding into a quantum state via a
sequence of Ry rotation gates. The rotation angle, θ, is set

Param. Value Param. Value Param. Value
T 0.75 km t 50 γ1 0.5
H 5 r 20 γ1 0.2

S Epochs 5 Rsync 10 γ3 0.05
C Epoch 2 area 1km2 W 0.1

β 0.2 Y 5 η 0.01
Kmin 5 κ [0, 1] P 80
K 100 m 0.5 OHF 1.2

TABLE I: Simulation Parameters

relative to the attribute value, ensuring that the quantum format
represents the vehicular attribute accurately. This is expressed
as |ψ⟩ = Ry(θ)|0⟩, with θ = κ × FeatureValue and κ as a
normalization constant. The quantum vehicular dataset is then
partitioned into 80% for training and 20% for testing.
B. Experimental Setup

We set up a quantum environment using Quantum
Toolbox [11], TFQ, and an FL setup using TensorFlow
Federated (TFF) in Python, utilizing the GPU runtime on
Google Colab Pro [5], [7]. Quantum computations involve
qubits, which can computationally challenge classical systems
due to their complexity. To ensure the Colab runtime manages
our computations, we use a modest dataset of 100 vehicles
with 6 features. This dataset gets encoded into 100 quantum
circuits, each operating on 6 qubits. To simplify computations
and allow processing without a dedicated quantum processor,
we transform the issue into a classification task, assessing the
efficiency of the proposed QV-MetaFL framework. We aim
to predict a vehicle’s ‘speed’ using quantum vehicular data.
Since we have symbolically tied speed to an average pixel
intensity; we classify vehicles as ‘Fast’ (brightness above the
threshold of 128) or ‘Slow’ (below the threshold of 128). Given
that our experiments occur in a simulated environment on a
conventional computer, and the computational complexity can
rise exponentially, we opt to train a compact QNN. This QNN
has an input layer of 6 qubits (matching our data), a first hidden
layer of 3 qubits, a second hidden layer of 3 qubits, and an
output layer of 2 qubits, aligning with our classification model.
The other parameters used in this study are given in Table I.
C. Simulation Results

i. Training Accuracy: Fig. 2 compares the training accuracy
of the QV-MetaFL framework over various rounds. The graph
shows a clear advantage of the complete QV-MetaFL over
its version without the Q-STP and Q-VCG components,
emphasizing the importance of Q-STP and Q-VCG in
improving model learning and convergence. Examining the
loss functions, the main loss function of QV-MetaFL combines
MSE and Huber losses with a regularization component.
The graph indicates that omitting either MSE or Huber
affects the model differently, with the absence of the latter
resulting in slightly better performance than without the
former. This suggests Huber loss’s potential superiority in
managing outliers. The high accuracy levels shown are typical
for training data, which naturally tends to show positive results.

ii. Testing Accuracy: Fig. 3 illustrates the testing accuracy
for the QV-MetaFL framework and its various adaptations
over different rounds. The graph distinctly highlights the

0 5 10 15 20 25 30 35 40 45 50

Rounds

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 A

c
c
u
ra

c
y

QV-MetaFL

QV-MetaFL (without Q-STP, Q-VCG)

QV-MetaFL (Loss: without Huber)

QV-MetaFL (Loss: without MSE)

Fig. 2: Training accuracy vs. Rounds.

0 5 10 15 20 25 30 35 40 45 50

Rounds

0

0.2

0.4

0.6

0.8

1

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

QV-MetaFL

QV-MetaFL (without Q-STP, Q-VCG)

QV-MetaFL (Loss: without MSE)

QV-MetaFL (Loss: without Huber)

Fig. 3: Testing accuracy vs. Rounds

0 5 10 15 20 25 30 35 40 45 50

Rounds

0.5

1

1.5

2

2.5

3

L
o
s
s

QV-MetaFL

QV-MetaFL (Loss: without MSE)

QV-MetaFL (Loss: without Huber)

Fig. 4: Loss vs. Rounds.

10 20 40

Rounds

0

2000

4000

6000

8000

10000

M
e
m

o
ry

 C
o
n
s
u
m

e
d
 (

in
 M

B
)

QV-MetaFL

QV-MetaFL(without Q-STP, Q-VCG)

Fig. 5: Memory consumption vs. Rounds.

superior performance of the complete QV-MetaFL model
compared to its versions missing the Q-STP and Q-VCG
components, underscoring the significance of Q-STP and Q-
VCG in boosting the model’s testing accuracy. The graph
also reveals the effects of omitting either the MSE or Huber
components. Notably, the QV-MetaFL without the Huber loss
marginally outperforms the one lacking MSE, indicating that
the Huber loss might be better equipped to deal with outliers
and testing data inconsistencies.

iii. Loss: Fig. 4 displays the loss metrics over rounds for the
QV-MetaFL model and its modified versions. The pronounced
decrease in loss for the main QV-MetaFL model highlights
its adeptness in learning, harnessing the full spectrum of
its components. Versions omitting the MSE or Huber loss
components exhibit distinct trends. The model without MSE
tends to stabilize faster, pointing to the MSE’s pivotal role
in sharpening the model’s accuracy. On the other hand,
the version lacking the Huber loss shows an inconsistent
loss curve, highlighting its importance in addressing data
irregularities or outliers. This visual data emphasizes the value
of robust loss functions in ensuring peak model outcomes.

It is essential to mention that the presented testing accuracy
and loss metrics are relatively conservative. Such results
stem from our experimental constraints, where a confined
dataset was employed alongside a limited number of rounds.
These constraints arose since our conventional processors
face challenges in managing the extensive computations tied
to quantum procedures. Despite these limitations, the main
goal was to gauge the comparative efficiency of our model.
The primary QV-MetaFL model’s standout performance, even
within these confines, affirms its promise and establishes its
proficiency in quantum-centric learning scenarios.

iv. Memory Usage: Fig. 5 depicts the memory utilization
of the QV-MetaFL over different rounds. The complete QV-
MetaFL, inclusive of Q-STP and Q-VCG, uses more memory
than its simplified version. While the memory difference is not
very high, it is evident. The rise in memory usage is due to the
complexities associated with quantum processing, especially
with the Q-STP and Q-VCG features since additional quantum
operations require substantial resources. When comparing this
with Fig. 2 and Fig. 3, the inclusion of Q-STP and Q-VCG
significantly boosts model performance, highlighting a trade-
off between resource use and efficiency.

To address these memory concerns, our future efforts will
refine the framework, aiming to implement a quantum memory

compression method to optimize QML resource usage.
VII. CONCLUSION

In this study, we introduced the QV-MetaFL framework,
a groundbreaking integration of quantum computing and
federated learning tailored for the vehicular metaverse.
The framework, strengthened by the Q-STP and Q-
VCG mechanisms, innovates a decentralized, efficient
QFL approach, streamlining model training, optimizing
communication, managing vehicle operations, and intelligently
addressing data heterogeneity. Through comprehensive
simulations, the QV-MetaFL framework demonstrated its
superiority by outperforming its various adaptations in
terms of accuracy and efficiency. Although our experiments
were constrained by the limitations of classical simulations,
the results provide insightful benchmarks and underscore
the framework’s potential within the vehicular metaverse
ecosystem. Looking ahead, future efforts will focus on
refining the framework, particularly in optimizing quantum
memory usage, thus reinforcing its practicality and efficiency
for real-world applications in the vehicular metaverse.

REFERENCES

[1] Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Quantum collective
learning and many-to-many matching game in the metaverse for
connected and autonomous vehicles,” IEEE Trans. Veh. Technol., vol. 71,
no. 11, pp. 12 128–12 139, Jul 2022.

[2] B. Hazarika and K. Singh, “AFL-DMAAC: Integrated resource
management and cooperative caching for URLLC-IoV networks,” IEEE
Trans. Intell. Veh., 2023.

[3] B. Hazarika, K. Singh, C.-P. Li, A. Schmeink, and K. F. Tsang, “RADiT:
Resource allocation in digital twin-driven UAV-aided internet of vehicle
networks,” IEEE J. Sel. Areas Commun., 2023.

[4] Y. Cao et al., “Hybrid trusted/untrusted relay-based quantum key
distribution over optical backbone networks,” IEEE J. Sel. Areas
Commun., vol. 39, no. 9, pp. 2701–2718, Mar 2021.

[5] R. Huang et al., “Quantum federated learning with decentralized data,”
IEEE J. Sel. Top. Quantum Electron., vol. 28, pp. 1–10, Apr 2022.

[6] S. Zeng, Z. Li, H. Yu, Z. Zhang, L. Luo, B. Li, and D. Niyato, “Hfedms:
Heterogeneous federated learning with memorable data semantics in
industrial metaverse,” IEEE Trans. Cloud Comput., 2023.

[7] D. Gurung, S. R. Pokhrel, and G. Li, “Decentralized quantum federated
learning for metaverse: Analysis, design and implementation,” arXiv
preprint arXiv:2306.11297, 2023.

[8] L. Zheng, K. Jia, T. Bi, Y. Fang, and Z. Yang, “Cosine similarity based
line protection for large-scale wind farms,” IEEE Trans. Ind. Electron.,
vol. 68, no. 7, pp. 5990–5999, Apr 2020.

[9] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, “General parameter-
shift rules for quantum gradients,” Quantum, vol. 6, p. 677, Mar 2022.

[10] M. Broughton et al., “Tensorflow quantum: A software framework for
quantum machine learning,” arXiv preprint arXiv:2003.02989, 2020.

[11] J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: An open-source
Python framework for the dynamics of open quantum systems,” Comput.
Phys. Commun., vol. 183, no. 8, pp. 1760–1772, Aug 2012.

