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Abstract—This paper aims to tackle the complex prob-
lem of channel assignment and joint power-energy al-
location within a cellular-vehicle-to-everything (C-V2X)
network in an urban traffic intersection. Here, the C-
V2X network is strategically deployed to facilitate the
coordination of multiple vehicle platoons. This includes
updating platoon states to the roadside unit (RSU) and
managing the exchange of cooperative awareness messages
(CAMs) among vehicles. Our objective is to minimise the
average age of information (AoI), maximise the CAM
delivery probability, and promote sustainable, green com-
munication practices through optimal power-energy man-
agement. Given the intricate nature of this challenge, we
adopt a multi-agent deep reinforcement learning (MADRL)
approach based on Markov decision process (MDP). Next,
we introduce two innovative algorithms based on multi-
agent deep deterministic policy gradient (MADDPG) and
twin delayed deep deterministic policy gradient (TD3) to
effectively address the optimisation problem. Finally, the
simulation results demonstrate remarkable performance in
terms of energy efficiency, while maintaining algorithm
convergence speed and AoI level.

Index Terms—Vehicle-to-everything, multi-agent deep
reinforcement learning, age of information, resource al-
location, green communication.

I. INTRODUCTION

With the advancements in autonomous systems, self-
driving vehicles and intelligent transportation systems
(ITS) have emerged as critical elements in the blueprint
of any smart city application [1]. Consequently, they
have become a focus of long-term interest and ex-
tensive study [1]–[9]. ITS holds considerable potential
for alleviating traffic congestion, lowering the risk of
car accidents, and improving urban air quality [1].
To address the information transmission issues in ITS,
vehicle-to-everything (V2X) [2]–[4] plays an important
role, as it enables vehicle-to-vehicle (V2V), vehicle-
to-pedestrian (V2P), vehicle-to-infrastructure (V2I), and
vehicle-to-network (V2N) communications to broadcast
almost real-time updates on surrounding transportation
conditions and potential hazards. One pattern that utilises
the concept of V2X to realise ITS is the platoon-
based control strategy [2]–[7] which packs the close
same-line self-driving vehicles into platoons to achieve
more efficient traffic control and higher traffic flow. In

one pack of vehicles (a platoon), the first vehicle is
considered the platoon leader (PL), which is responsible
for uploading platoon state messages to and receiving
control commands from the roadside unit (RSU), as well
as exchanging cooperative awareness messages (CAMs)
[9] with the other vehicles in the platoon, namely V2I
and V2V communications. Keeping highly frequent up-
dates of platoon states to the RSU is essential in this
design, which allows RSU to maintain control of the
time-critical information (e.g. safety information). Age
of information (AoI) [8] is introduced as a measure of
the freshness of information, which grows over time
if the PL does not update the RSU, and is reset after
each successful update. A lot of work has been done in
minimising the AoI in the vehicular networks [6]–[8].

In this work, we address the resource allocation prob-
lem in a cellular-V2X (C-V2X) network at an inter-
section, aiming to minimise AoI and energy consump-
tion using a platoon-based strategy. Building on prior
research [5], [6], our model integrates the distributed
resource allocation of Mode 4 [4] and urban scenarios
[2], [4]. Given the dynamic environment—rapid vehi-
cle movements and diverse communication demands,
we employ multi-agent deep reinforcement learning
(MADRL) using the extension of standard deep deter-
ministic policy gradient (DDPG)—multi-agent DDPG
(MADDPG), enhanced by decomposed MADDPG (DE-
MADDPG) [10], task decomposition (TDec) algorithm
[11], and twin delayed deep deterministic policy gradient
(TD3) [12] to tackle this complex challenge.

Conventional studies on vehicular networks have
largely focused on the immediate impact of power
consumed by the PL on communication quality, often
overlooking the broader, long-term implications of en-
ergy usage which significantly affects operational costs.
Our research addresses this gap by adopting a holistic
approach to power and energy allocation, enhancing both
the effectiveness of operational communications and the
long-term sustainability of the C-V2X network. This ap-
proach supports the global shift towards green commu-
nication technologies, which are increasingly valuable
for their environmental benefits [13]. Thus, this study



Fig. 1: A single-antenna multi-platoon C-V2X network.

makes the following key contributions to the field of ITS
and green communications by introducing innovative
techniques and methodologies:

• We formulate a problem that optimises the AoI,
the probability of CAM delivery, and critically, the
joint power-energy consumption within a platoon-
based C-V2X network. This framework is designed
to enhance network efficiency and sustainability
simultaneously.

• To tackle the formulated problem, we employ a
MADRL approach by combining MADDPG with
several performance enhancement techniques such
as DE-MADDPG, TDec, and TD3 to achieve better
optimisation results.

• Finally, the numerical results confirm that our
energy-focused algorithms considerably lower en-
ergy usage compared to traditional methods, while
maintaining similar convergence rates and AoI.
Additionally, we introduce a metric specifically
for assessing energy efficiency, underscoring the
benefits of our approaches.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Environment Model

Fig. 1 illustrates an intersection managed by a single-
antenna RSU at its centre, coordinating L platoons
(L ∈ N, L = {1, 2, . . . , L}) via a C-V2X system.
Each platoon l ∈ L consists of Vl vehicles (Vl ∈ N+,
Vl = {1, 2, . . . , Vl}). The head-of-line vehicle in each
platoon, designated as the PL (vl = 1 for each vl ∈ Vl),
leads the communication with the RSU and within its
platoon. In V2I mode, the RSU gathers states and relays
states and commands based on the information from
each PL. In V2V mode, CAMs are exchanged among
vehicles within the same platoon.

B. Communication Model

In this work, orthogonal frequency-division multiplex-
ing (OFDM) is used to cope with the frequency-selective
wireless channels [14]. The system’s wireless channel is
segmented into K orthogonal subchannels, each with
bandwidth W , where K ∈ N+ and K = {1, 2, . . . ,K}

denotes the set of subchannels. The channel fading is
independent across all subchannels and remains constant
within a single coherence time, ∆t. Accordingly, the
timeline is divided into intervals of duration ∆t, with
t ∈ N+ serving as the index for time steps. The channel
gain for PLl (leader of platoon l) in subchannel k ∈ K at
time step t is expressed as htl [k] = βtl g

t
l [k], where βtl and

gtl [k] are the large and small scale fading, respectively.
In addition, two decision parameters δtl,k, λ

t
l ∈ {0, 1}

are defined for the channel and communication mode
selections. If δtl,k = 1, the subchannel k is allocated to
the platoon l at time step t, PLl will use it for V2I
mode communication when λtl = 0, and V2V mode
communication when λtl = 1. The channel capacity for
V2I and V2V communications can hence be written as

Ctl,R[k] = log2

(
1 +

(1− λtl)δ
t
l,kp

t
l [k]h

t
l,R[k]

Itl,R[k] + σ2

)
,

Itl,R[k] =
∑
l′,l′ ̸=l

δtl′,kp
t
l′ [k]h

t
l′,R[k],

Ctl,vl [k] = log2

(
1 +

λtlδ
t
l,kp

t
l [k]h

t
l,vl

[k]

Itl,vl [k] + σ2

)
,

Itl,vl [k] =
∑
l′,l′ ̸=l

δtl′,kp
t
l′ [k]h

t
l′,vl

[k], vl ∈ Vl\{1},

(1)

(2)

where the signal-to-interference-plus-noise ratio (SINR)
is estimated from the interference of other platoons
which is treated as noise. The power used by PLl on sub-
channel k is denoted by ptl [k]. The channel gains from
PLl to the RSU and to other vehicles within platoon l
are represented by htl,R[k] and htl,vl [k], respectively. The
noise power is denoted by σ2. The interference power
experienced at the RSU and the vehicles within platoon
l, denoted as Itl,R[k] and Itl,vl [k], is calculated from the
transmit power ptl′ [k] of other PLs and the corresponding
channel gains htl′,R[k] and htl′,vl [k].

C. Age of Information Model

AoI is crucial in ensuring that the PLs maintain
timely information exchange with the RSU via V2I
communication. This exchange is necessary for updating
the platoon state and receiving control commands. The
AoI level for platoon l at the tth coherence time step is
represented by Atl and updated as

At+1
l =

{
1, if Ctl,R[k] ≥ Cmin

l,R ,
Atl + 1, otherwise,

(3)

where ’1’ represents one time step, Cmin
l,R is the minimum

required data transmission rate for V2I communication.
If the current transmission rate is less than the require-
ment, i.e., V2I communication fails or V2I mode is
not selected, AoI will increase by 1. In contrast, if
the requirement is satisfied, i.e., V2I communication is
successful, AoI will be reset to 1.



D. Problem Formulation

Based on the discussions and models outlined in the
preceding sections, we can now formulate the optimisa-
tion problem for platoon l as follows,

min
δ,λ,p,E

{
T∑
t=1

[
1

T
Atl ,

1

T

∑
k

ptl [k],
∑
k

Etl [k]

]
,

−Pr

(
T∑
t=1

∑
k

min
vl

{
Ctl,vl [k]

}
∆t ≥ Dl

)}
,

s.t. ptl [k] ∈ [0, pmax] ,∀t, l, k,

δtl,k, λ
t
l ∈ {0, 1},∀t, l, k,∑

k

δtl,k ≤ 1,∀t, l,∑
l

∑
k

δtl,k ≤ K,∀t,

(4)

(4a)

(4b)

(4c)

(4d)

where Etl [k] = ptl [k]∆t is the energy consumption
of PLl, focusing primarily on communication energy,
though it is noted that energy for decision-making and
other activities by PLl could also be considered. The
data size for the CAM from platoon l is denoted by Dl.
The primary objective of this optimisation problem is
to minimise the average AoI, average power consump-
tion, and total energy consumption, while maximising
CAM delivery probability within a designated time slot
T—where the CAM dissemination frequency ranges
from 10 to 100 Hz, implying that the exchange period
should be less than 100 ms.

Constraint (4a) ensures PLl’s power consumption
remains below pmax. Constraints (4c) and (4d) limit PLl
to one subchannel per time step t and restrict total
allocations to K subchannels.

Given the complexities of solving this mixed-integer
nonlinear programming problem for L platoons, we
employ a MADRL approach. The application of this
method to address the optimisation problem will be
explored in subsequent sections.

III. PRELIMINARIES OF THE MADRL ALGORITHM

A. Markov Decision Process

From the problem (4) in Sec. II-D, the MADRL
issue is modelled as a Markov Decision Process (MDP)
[15], described by the tuple ⟨S,A,P,R, γ⟩, covering
state and action spaces S,A, transition probability P ,
reward function R, and discount factor γ ∈ [0, 1]. The
formulation is as follows:

• Agent: The L platoons at the intersection collec-
tively form the MADRL environment, with each
platoon regarded as an agent. PLs observe states,
take actions based on their policies, and optimise
policies by interacting with the environment.

• State space: At time step t, observed by PLl, the
state space is defined as

Stl =
[
htl,R[k], htl,vl [k], T

′, D′
l, A

t
l ,

Itl,R[k], Itl,vl [k], σ
2, Locall

]
, (5)

where T ′ ∈ [0, T ] represents the remaining time in
the time slot T , D′

l ∈ [0, Dl] is the residual CAM
data size to be transferred, and Locall indicates
platoon l’s location. Platoons dynamically update
their locations at each time step t and make random
movement decisions.

• Action space: The action by PLl comprises four
components, represented as

At
l =

[
δtl,k, λ

t
l , p

t
l [k], E

t
l [k]
]
. (6)

Given the state space Stl , PLl chooses subchannel
k ∈ K, the communication mode (V2I/V2V), and
regulates power and energy at time t. These actions
must adhere to constraints (4a)–(4d).

• Transition probability: The transition probability
P captures the likelihood of state s moving to
state s′ upon action a by an agent. It includes:
1) Changes in interference within other PLs’ state
spaces due to the subchannel and power settings
of PLl for V2I/V2V communication; 2) The in-
herent randomness of platoon movements (turning
right/left or continuing straight), independent of the
actions taken.

• Reward function: Each of the agents in this multi-
agent environment receives a local reward as feed-
back for its action, while there is also a global
reward that measures the joint performance of all
the agents. Based on the optimisation problem (4),
the local reward function for agent l is defined as
Rt
l = −F1

(
Atl
)
−F2

(
ptl [k]

)
−F3

(
Etl [k]

)
−F4 (D

′
l/Dl) + wΓ

(
Ctl,R[k]− Cmin

l,R
)
,

(7)

where F1–F4 map the first four terms to the same
range and weight their contributions, w > 0 weights
the last term Γ which is a stepwise function:

Γ (x) =

{
1, x ≥ 0,

0, otherwise.
(8)

The first four components of (7) align with those in
(4), and following [6], the final term uses a stepwise
function to promote successful V2I communica-
tions. The global reward, considering the interfer-
ence impact from each PL’s subchannel and power
choices, is defined as the average interference:

Rt
g = − 1

L

∑
l

∑
k

F5

(
Itl,x[k]

)
, (9)

where F5 maps the interference power to a suitable
range, and the global reward is affected by PLs
differently according to their communication mode:
Itl,x[k] = Itl,R[k] for V2I, Itl,x[k] = Itl,vl [k] for
V2V. This design encourages channel selections
that minimise disruption to other PLs.



At each time step t, PLl observes a state s ∈ Stl from
the environment, and then takes action a ∈ At

l with
a probability πl(a|s), where πl(a|s) is the conditional
probability that Atl = a if Stl = s, i.e., the policy of
PLl. A reward Rtl = r will be received from interacting
with the environment using the selected action, and then
the time is moved to t+ 1.

B. Policy and Value Function

Following previous discussions, the optimisation
problem focuses on maximising the expected discounted
return via the state-value function V :

V ∗
l (s) = V

π∗
l

l (s) = max
πl

V πl

l (s)

= max
πl

El,πl

[ ∞∑
n=0

γnRt+n+1
l

∣∣∣∣∣Stl = s

]
,∀s ∈ S,

(10)

where V πl

l (s) is the state-value function, V π
∗
l

l (s) is
the state-value function under the optimal policy π∗

l ,
V ∗
l (s) is the optimal state-value function, and El,πl

[·]
is the expected value of the discounted return Gtl =∑∞
n=0 γ

nRt+n+1
l given that PLl follows policy πl.

Bellman optimality equation [15] is reviewed to help us
solve the problem stated in (10), which shows that the
state value under the optimal policy equals the expected
return from the state under the best action:

V
π∗
l

l (s) = max
a∈At

l(s)
Q
π∗
l

l (s, a),∀s ∈ S, (11)

where Qπl

l (s, a) = El,πl
[Gtl |Stl = s,Atl = a] is the

action-value function and Q
π∗
l

l (s, a) is the action-value
function under the optimal policy. Similarly, the op-
timal action-value function Q∗

l (s, a) is equivalent to
Q
π∗
l

l (s, a), and hence

V ∗
l (s) = max

a∈At
l(s)

Q∗
l (s, a),∀s ∈ S. (12)

In the MDP, PLl continually updates its policy to
optimise the state-value function as in (10) and seeks
actions that maximise the action-value function—the Q-
function in (12). Both strategies aim to achieve the
optimal state-value function, effectively solving the op-
timisation problem in (4).

IV. MADRL APPROACH

According to the Q-function in Sec. III-B, we im-
plemented the DDPG algorithm, or more precisely,
MADDPG algorithm for the joint optimisation of the
policy π in (10) and Q-function in (12) in the multi-
agent environment. Similar to the work that has been
done in [6], we apply the DE-MADDPG algorithm,
which is a combination of the standard MADDPG and
DDPG algorithms that can be found in [10]. We also
combine it with the TDec algorithm proposed in [11] to
apply the DE-MADDPG-TDec algorithm. In addition,
we introduce TD3 [12] and its extension—multi-agent
TD3 (MATD3) to overcome the overestimation problem
in Q-functions to further enhance the performance.

A. Decomposed Multi-Agent Deep Deterministic Policy
Gradient

Different from the conventional MADDPG (or
MATD3) that trains multiple agents with only one critic
(or two critics), the main idea behind DE-MADDPG is
to introduce the standard DDPG (or TD3) for each local
agent and combine with a centralised global critic. The
objective becomes optimising the policy to maximise
both the local and global critics. The combined policy
gradient for agent l is

∇J(θl) =

MADDPG: Global Critic︷ ︸︸ ︷
Es,a∼B

[
∇θlπl (al|sl)∇alQ

g
ψ(s, a)

]
+Esl,al∼B

[
∇θlπl (al|sl)∇alQ

πl

ϕl
(sl, al)

]
︸ ︷︷ ︸

DDPG: Local Critic

,
(13)

where θl parameterises the policy of agent l, s =
(s1, ..., sL), a = (a1, ..., aL), B is the experience replay
buffer, al = πl(sl) is the action of agent l under its
policy, ψ and ϕl parameterises the Q-functions—Qgψ
for global critic and Qπl

ϕl
for local critic. The global

critic and the local critic are updated by minimising the
following loss functions:

L(ψ) = Es,a,r,s′

[(
Qgψ(s, a)− yg

)2]
, (14)

L(ϕl) = Esl,al,rl,s′l

[(
Qπl

ϕl
(sl, al)− yl

)2]
, (15)

where r = (r1, ..., rL), s′ = (s′1, ..., s
′
L) are the next

states, s′l ∈ s′. The global and local target values are
written as

yg = rg + γQgψ′ (s′, a′)
∣∣∣
a′l=π

′
l(s′l)

, (16)

yl = rl + γQπl

ϕ′
l
(s′l, a

′
l)
∣∣∣
a′l=π

′
l(s′l)

, (17)

where a′ = (a′1, ..., a
′
L) is the next set of actions, a′l ∈ a′,

Qgψ′ and Qπl

ϕ′
l

represent the target global and local critics,
and π′

l is the target policy for agent l.

B. Twin Delayed Deep Deterministic Policy Gradient
In order to tackle the overestimation problem in

DDPG, the idea of TD3 is introduced to improve the
parameter update in DE-MADDPG. The policy gradient
with TD3 for agent l is

∇J(θl) = Es,a∼B

[
∇θlπl (al|sl)∇alQ

g
ψ1
(s, a)

]
+Esl,al∼B

[
∇θlπl (al|sl)∇alQ

πl

ϕl
(sl, al)

]
.

(18)

The twin global critics Qgψ1
and Qgψ2

are updated by
minimising the loss function:

L(ψi) = Es,a,r,s′

[(
Qgψi

(s, a)− yg

)2]
, i = 1, 2, (19)

yg = rg + γmin
i
Qgψ′

i
(s′, a′)

∣∣∣
a′l=π

′
l(s′l)

. (20)

By delaying the update of the local network by d
loops, the final DE-MADDPG (TD3) is described in
Algorithm 1.



Algorithm 1: DE-MADDPG (TD3)
1 Initialise intersection environment & replay buffer B.
2 Initialise global critic networks: {Qgψi

, Qg
ψ′
i
}, i = 1, 2.

3 Initialise actor & critic networks for each agent:
{πl, π′

l, Q
πl
ϕl
, Q

πl

ϕ′
l
}, l = 1, 2, ..., L.

4 for episode = 1 to loop do
5 Update platoon location & channel information.
6 Reset time budget & CAM size: {T ′, D′

l}={T,Dl}.
7 for t = 1 to T do
8 for agent 1 to L do
9 Observe state stl , select action atl = πl(s

t
l),

receive local & global rewards: {rtl , r
t
g}.

10 Update channel fast fading & interference.
11 Each agent l observes new state st+1

l .
12 Store

(
st, at, rt, rtg , st+1

)
into B.

13 Sample mini-batch of M transitions(
sm, am, rm, rmg , smnew

)∣∣M
m=1

from B.
14 Update global critics: minimising L(ψi) (19) by

one-step gradient descent.
15 Target soft update: ψ′

i ← τψi + (1− τ)ψ′
i.

16 if t mod d then
17 for agent 1 to L do
18 Update local critic: minimising L(ϕl) (15)

by one-step gradient descent.
19 Update local actor: maximising ∇J(θl)

(18) by one-step gradient ascent.
20 Target soft update: ϕ′l ← τϕl + (1− τ)ϕ′l
21 θ′l ← τθl + (1− τ)θ′l

C. Task Decomposition Algorithm

According to Theorem 1 in [11], if the reward function
in the MDP can be decomposed into N sub-functions
(tasks), i.e., R(s, a) =

∑N
n=1 Rn(s, a), the state and

action value functions can also be decomposed, i.e.,
V π(s) =

∑N
n=1 V

π
n (s), Qπ(s, a) =

∑N
n=1Q

π
n(s, a).

Therefore, we adopt the idea of TDec algorithm for
our local reward function in (7), and the decomposed
functions are written as

Rt
l,1 =−F1

(
Atl
)
+ wΓ

(
Ctl,R[k]− Cmin

l,R
)

−
(
1− λtl

) [
F2

(
ptl [k]

)
+ F3

(
Etl [k]

)]
,

Rt
l,2 =−F4 (D

′
l/Dl)

− λtl
[
F2

(
ptl [k]

)
+ F3

(
Etl [k]

)]
,

(21)

(22)

where Rt
l,1 is the task 1 for V2I mode communication,

Rt
l,2 is the task 2 for V2V mode communication, and

Rt
l = Rt

l,1+Rt
l,2. Hence, our policy gradient (18), local

loss function (15), and local target function (17) can be
written as

∇J(θl) = Es,a∼B

[
∇θlπl (al|sl)∇alQ

g
ψ1
(s, a)

]
+
∑
n

Esl,al∼B

[
∇θlπl (al|sl)∇alQ

πl

ϕl,n
(sl, al)

]
,

(23)

L(ϕl,n) = Esl,al,rl,s′l

[(
Qπl

ϕl,n
(sl, al)− yl,n

)2]
,

yl,n = rl,n + γQπl

ϕ′
l,n

(s′l, a
′
l)
∣∣∣
a′l=π

′
l(s′l)

,

(24)

(25)

where n = 1, 2, and the global critics are still updated as
in (19). Based on this design, the number of local critics
is increased from 1 to N = 2. The two local critics for

TABLE I: Simulation Parameters.

Parameters Value

Carrier frequency 2 GHz
Number of resource blocks 3

Resource block bandwidth 180 kHz
PL maximum power pmax = 30 dBm
Noise power σ2 = −114 dBm
CAM size Dl = 4 KB [9]
V2V time limitation T = 100 ms [6]
V2V gap 25 m
Fast fading update period 1 ms [2]
Slow fading update period 100 ms [2]

two tasks with two sub-Q-functions work jointly to move
towards the best estimation of the overall Q-function,
Qπl

ϕl
(sl, al) =

∑
nQ

πl

ϕl,n
(sl, al), and hence the best

update for the policy πl of the local actor. The structure
of DE-MADDPG-TDec is similar to Algorithm 1, the
only difference is that for each agent, an extra for loop
is added for the N tasks.

V. NUMERICAL RESULTS

In this section, we present the simulation results
demonstrating the performance of the proposed algo-
rithms. We use a single-cell urban C-V2X network
operating at 2 GHz with 3 resource blocks, adhering
to the urban specifications outlined in 3GPP TR 36.885
[2]. The primary simulation parameters are detailed in
Table I. The algorithms evaluated include:

• DE-MADDPG (TD3), DE-MADDPG-TDec (TD3).
• Decentralised MADDPG (Dec-MADDPG): No

global critic, agents functioning independently.
• Baseline-DDPG: Centralised actor-critic network.
• E-X: Corresponding energy-concerned versions.
We use Python with PyTorch to implement our

MADRL framework. The structure of our deep neural
network consists of two hidden layers for the local actor
(1024, 512 neurons) and critic (512, 256 neurons), and
three hidden layers for the global critic (1024, 512,
256 neurons). The activation function and optimiser
are chosen as the rectified linear unit and Adam. The
learning rates of the actor and critic networks are set as
0.0001 and 0.001, while the target soft update parameter
τ and the discount factor γ are set as 0.005 and 0.99.

Fig. 2: Performance comparison (P = 5, Vl = 4). (a) Average reward
of the energy-concerned algorithms. (b) AoI convergence with and
without energy consideration.



Fig. 3: Algorithms performance comparison (in the last 100 episodes). (a), (b) Average total energy consumption and AoI level of platoons. (c)
Energy consumed per decreased AoI, calculated as E/(T −AoI), describes the efficiency of using energy.

Fig. 2(a) shows the performance of the four energy-
concerned algorithms in terms of reward convergence
speed. It is clear that the proposed algorithms outperform
the other baseline algorithms. Due to different designs in
the reward functions, we compare the AoI convergence
speed of our algorithms with those proposed in [6] in
Fig. 2(b) for a fair comparison. For both DE-MADDPG
(TD3) and DE-MADDPG-TDec (TD3), our energy-
concerned algorithms converge at similar times and to
similar levels.

Fig. 3 shows the algorithm performance for various
platoon numbers (P = 4, 5, 6, 7) over the last 100
episodes, with most algorithms stabilising. In Fig. 3(a),
our energy-focused algorithms significantly reduce the
energy use for the two proposed algorithms, with a
68.47% to 87.79% decrease compared to their non-
energy-focused counterparts. While they exhibit a slight
increase in AoI—between 2.02% and 5.48%—the over-
all performance remains comparable, as illustrated in
Fig. 3(b). In Fig. 3(c), using the efficiency metric
E/(T − AoI), our proposed energy-focused solutions
demonstrate superior energy efficiency in reducing AoI,
which furthermore highlights their effectiveness.

VI. CONCLUSION

This paper presents a DRL-based optimal resource
allocation scheme for a platoon-based C-V2X net-
work at an intersection. Two MADRL algorithms, DE-
MADDPG and DE-MADDPG-TDec with TD3 tech-
nique, have been proposed for the joint optimisation of
the AoI, CAM delivery, and power-energy consumption.
Numerical results have shown a remarkable decrease
in the energy consumption of platoons compared with
existing research, while keeping similar levels of algo-
rithm convergence speed and AoI level. The metric of
energy efficiency also demonstrates that our algorithms
are much more energy-saving.
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